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We study isolated vertices and connectivity in the random intersection graphG(n,m, p). A Poisson
convergence for the number of isolated vertices is determined at the threshold for absence of
isolated vertices, which is equivalent to the threshold for connectivity. When m = �nα� and α > 6,
we give the asymptotic probability of connectivity at the threshold for connectivity. Analogous
results are well known in Erdős-Rényi random graphs.

1. Introduction

The classical random graphG(n, p), introduced by Erdős and Rényi in the late 1950s, consists
of a fixed set of n vertices and edges that exist with a certain probability p, independently from
each other. Since then many other random graph models with dependent edges have been
developed. Among them, random intersection graph [1, 2] is defined as follows. Consider a
set V with n vertices and another universal set W with m elements. Define a bipartite graph
B(n,m, p) with independent vertex sets V and W . Edges between v ∈ V and w ∈ W exist
independently with probability p. The random intersection graph G(n,m, p) derived from
B(n,m, p) is defined on the vertex set V with vertices v1, v2 ∈ V adjacent if and only if there
exists some w ∈ W such that both v1 and v2 are adjacent to w in B(n,m, p).

Appropriately scaling the parameter m as m = �nα� with some α > 0, Singer-Cohen
[1] establishes connectivity thresholds for G(n,m, p): the threshold lies at p = (lnn)/m
and
√
(lnn)/nm for α ≤ 1 and α > 1, respectively. The result also reveals an asymptotic

equivalence of graph connectivity and absence of isolated vertices in G(n,m, p), that is, the
zero-one law for the absence of isolated vertices is equal to that for connectivity. This is
familiar in Erdős-Rényi model; see [3, 4] for more details. The study in the present paper
is in continuation of Chapter 3 in [1]. Taking our cue from existing results for Erdős-Rényi
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graphs (e.g., [4, Corollary 3.31] and [3, Theorem 7.3]), we aim to explore similar results for
the properties of isolated vertices and connectivity in G(n,m, p).

The connectivity thresholds of another class of random intersection graphs G(n,m, k),
called random key graphs or uniform random intersection graphs, have been investigated
recently [5, 6]. Both G(n,m, p) and G(n,m, k) can be viewed as subclasses of a general
model [7]. In [8], the authors determine a zero-one law for the absence of isolated vertices
in G(n,m, k), which again turns out to be equivalent to that for graph connectivity [6].
Moreover, they show a Poisson convergence for the number of isolated vertices, which refines
the corresponding zero-one law and leads to a “double exponential” result.

In this paper, we deal with the asymptotic distribution of the number of isolated
vertices and address the connectivity probability in G(n,m, p) with m = �nα�, α > 6. A
Poisson approximation result (Theorem 2.1) for the number of isolated vertices is obtained
by utilizing the Stein-Chen method, which yields convergence to a Poisson random variable.
The isolated vertices threshold [1, Proposition 3.2] now readily follows from our Theorem 2.1
by an easy monotonicity argument. In addition, based on a strong equivalence theorem [9]
relating the G(n,m, p) and G(n, p) models we derive an approximation of the probability of
connectivity at the threshold when α > 6 (see Theorem 2.3), which is analogous to the well-
known “double exponential” result of Erdős and Rényi [10].

Other related works regarding G(n,m, p) model have been reported. For example,
[11, 12] examines the limiting distribution of the degree of a typical vertex, [13] treats the
evolution of the order of the largest component, and random weights are assigned to the
vertices in [14] to get general degree distributions.

The rest of the paper is organized as follows. Our main results are presented in
Section 2. Sections 3 and 4 contain technical proofs of Theorems 2.1 and 2.3, respectively.
Throughout the paper we setm = �nα� for some α > 0.

2. Main Results

In this section we provide our main results. Let X denote the number of isolated vertices
in G(n,m, p) and let Poi(λ) be a Poisson random variable with parameter λ. Denote by E(X)
and Var(X) the mean and variance of random variableX, respectively. Recall that the Poisson
random variable has the unusual property that the mean and variance are both equal to the
parameter λ.

Theorem 2.1. In the model G(n,m, p), let

p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lnn + βn

m
, α ≤ 1,

√
lnn + βn

nm
, α > 1,

(2.1)

where βn ∈ �. If limn→∞βn = β ∈ �, then one has

X
D−→ Poi

(
e−β
)

(2.2)

as n → ∞, where D→ represents convergence in distribution.
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The upcoming corollary is immediate from Theorem 2.1.

Corollary 2.2. In the model G(n,m, p) with p determined through (2.1), suppose limn→∞βn = β ∈
�. Then one gets

lim
n→∞

P
(
G
(
n,m, p

)
contains no isolated vertices

)
= e−e

−β
. (2.3)

For a parallel “double exponential” result for connectivity when α is large, we have
the following.

Theorem 2.3. In the model G(n,m, p) with α > 6 and p determined through (2.1) (i.e., p =√
(lnn + βn)/nm), assume that limn→∞βn = β ∈ �. Then one has

lim
n→∞

P
(
G
(
n,m, p

)
is connected

)
= e−e

−β
. (2.4)

These results complement those presented in [1] and get further insight into the
evolutionary similarities and differences between G(n,m, p) and G(n, p) models. A natural
question would be to ask what happens for connectivity probability when α is small. This is
currently under investigation.

3. Proof of Theorem 2.1

For i = 1, . . . , n, let Xi = 1[vertex i is isolated in G(n,m,p)] and X =
∑n

i=1 Xi. Therefore, X counts the
number of isolated vertices in G(n,m, p) as defined in Section 2. We will demonstrate the
asymptotic Poisson distribution of X by employing the Stein-Chen method [15].

Before proceeding, we first introduce some definitions and notations. Let q = 1−p and
|S| denote the cardinality of a set S. For two integer-valued random variables X and Y , the
total variation distance between them (more correctly, between their distributions L(X) and
L(Y)) is given by

dTV(X, Y) = dTV(L(X),L(Y)) = sup
A⊆�

|P(X ∈ A) − P(Y ∈ A)|. (3.1)

Let Γ be a finite set of indices and let (Ia)a∈Γ be a family of random indicator variables. We
say (Ia)a∈Γ are positively related (c.f. [15]) if, for each a ∈ Γ, there exist random indicator
variables (Jba)b∈Γ\{a} with the distributions

L
(
(Jba)b∈Γ\{a}

)
= L
(
(Ib)b∈Γ\{a} | Ia = 1

)
, (3.2)

such that Jba ≥ Ib for every b /=a. It is notable that “positively related” is much stronger than
“positively correlated”. Suppose (an)n≥1 and (bn)n≥1 are sequences of positive real numbers.
We write an ∼ bn if limn→∞an/bn = 1.

A useful result obtained by the Stein-Chen method is the following.
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Lemma 3.1 (see [4, 15]). Suppose that Y =
∑

a∈Γ Ia, where the (Ia)a∈Γ are positively related random
indicator variables. Then one has

dTV(Y,Poi(EY)) ≤ 1 − e−EY

EY

[

VarY − EY + 2
∑

a∈Γ
(EIa)2

]

. (3.3)

The next lemma collects some well-known approximations that are used in this paper.

Lemma 3.2. If mp → 0, then (1 − p)m ∼ 1 −mp; and if mp2 → 0, then (1 − p)m ∼ e−mp.

In the sequel, we estimate the expectation of random variable X.

Lemma 3.3. Suppose α > 0. Under the assumptions of Theorem 2.1, one gets

lim
n→∞

EX = e−β. (3.4)

Proof. The probability that a vertex i is isolated can be computed as

EXi =
m∑

s=0

(
m

s

)

ps
(
1 − p
)m−s(1 − p

)(n−1)s =
[
1 − p + p

(
1 − p
)n−1]m

, (3.5)

where the index s represents the number of vertices inW which are adjacent to i in B(n,m, p).
Hence

EX = n
[
1 − p + p

(
1 − p
)n−1]m

. (3.6)

For α ≤ 1, we have

mp2
(
1 − qn−1

)2
≤ mp2 =

(
lnn + βn

)2

m
−→ 0,

pmqn−1 =
(
lnn + βn

)
(
1 − lnn + βn

m

)n−1
≤ (lnn + βn

)
e−((n−1)/m)(ln n+βn) −→ 0

(3.7)

as n → ∞. Thus by Lemma 3.2, we obtain

EX ∼ ne−pm(1−qn−1) = ne−pmepmqn−1

∼ ne−pm = ne−(lnn+βn) −→ e−β,
(3.8)

as n → ∞.
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For α > 1, note that

np = n

√
lnn + βn

nm
=

√
lnn + βn

nα−1 −→ 0,

m
(
np2
)2

= m

( lnn + βn
m

)2

=

(
lnn + βn

)2

m
−→ 0

(3.9)

as n → ∞. By using Lemma 3.2, we have

EX ∼ n
[
1 − p + p

(
1 − np

)]m = n
(
1 − np2

)m

∼ ne−np
2m = ne−(lnn+βn) −→ e−β,

(3.10)

as n → ∞. The proof is then complete.

Proof of Theorem 2.1. The triangular inequality for the total variation distance implies

dTV

(
X,Poi

(
e−β
))

≤ dTV(X,Poi(EX)) + dTV

(
Poi(EX),Poi

(
e−β
))

. (3.11)

By a coupling argument ([16, page 58]) and Lemma 3.3, we have

dTV

(
Poi(EX),Poi

(
e−β
))

≤
∣
∣∣EX − e−β

∣
∣∣ −→ 0 (3.12)

as n → ∞. Combining this with (3.11), we now only need to prove

lim
n→∞

dTV(X,Poi(EX)) = 0. (3.13)

First, we claim that (Xi)ni=1 are positively related. To see this, define

Xji = 1[vertex j is isolated in G(n,m−|Si|,p)] (3.14)

for every j /= i, where Si ⊆ W represents the elements inW which are adjacent to i in B(n,m, p)
(Si is possibly empty). The random graphs G(n,m − |Si|, p) and G(n,m, p) are coupled in a
natural way. Conditional on the isolation of vertex i in G(n,m, p), any vertex j (j /= i) is not
adjacent to vertices of Si in B(n,m, p). Hence, we have

L
((

Xji

)n
j=1,j /= i

)
= L
((

Xj

)n
j=1,j /= i

| Xi = 1
)
. (3.15)

For every j /= i, if Xj = 1 then Xji = 1. Consequently, we get Xji ≥ Xi.
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By Lemma 3.1, the binary nature and exchangeability of the random variables
involved, we find that

dTV(X,Poi(EX)) ≤ 1 − e−EX

EX

[

VarX − EX + 2
n∑

i=1

(EXi)2
]

≤ 1
EX

[

VarX − EX + 2
n∑

i=1

(EXi)2
]

=
1
EX

[
E
(
X2
)
− (EX)2 − EX + 2n(EX1)2

]

=
1
EX

[
n(n − 1)E(X1X2) − n(n − 2)(EX1)2

]
.

(3.16)

The cross term E(X1X2) in (3.16) is shown to be given by

E(X1X2) =
m∑

s=0

2m−s
(
m

s

)
(
1 − p
)2s(1 − p

)(m−s)(n−2)[
p
(
1 − p
)]m−s

=
[(
1 − p
)2 + 2p

(
1 − p
)n−1]m

,

(3.17)

where s counts the number of vertices in W adjacent to neither 1 or 2 in B(n,m, p), leaving
m − s vertices inW adjacent to exactly one of 1, 2.

Combining (3.5), (3.16), and (3.17) readily gives

dTV(X,Poi(EX))

≤
(n − 1)

[(
1 − p
)2 + 2p

(
1 − p
)n−1]m − (n − 2)

[
1 − p + p

(
1 − p
)n−1]2m

[
1 − p + p

(
1 − p
)n−1]m .

(3.18)

For α ≤ 1, we have similarly as in the proof of Lemma 3.3,

mp2
(
2 − p − 2qn−1

)2
≤ 4mp2 −→ 0, pmqn−1 −→ 0 (3.19)

as n → ∞. Thereby, it follows from Lemma 3.2 that

(n − 1)
[(
1 − p
)2 + 2p

(
1 − p
)n−1]m = (n − 1)

[
1 − p
(
2 − p − 2qn−1

)]m

∼ ne−mp(2−p−2qn−1 )

= ne−2mpemp(p+2qn−1)

∼ ne−2mp.

(3.20)
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Applying this to (3.18), we obtain

dTV(X,Poi(EX)) ≤ (1 + o(1))ne−2mp − (1 + o(1))ne−2mp

(1 + o(1))e−mp

= o(1)ne−mp = o(1)e−βn −→ 0,
(3.21)

as n → ∞.
For α > 1, we get as in the proof of Lemma 3.3,

np −→ 0, m
(
np2
)2

−→ 0 (3.22)

as n → ∞. Hence, from Lemma 3.2 we have

(n − 1)
[(
1 − p
)2 + 2p

(
1 − p
)n−1]m = (n − 1)

[
1 − 2p + p2 + 2p

(
1 − p
)n−1]m

∼ n
[
1 − 2p + p2 + 2p

(
1 − np

)]m

∼ n
(
1 − 2np2

)m

∼ ne−2nmp2 .

(3.23)

Applying this to (3.18), we have

dTV(X,Poi(EX)) ≤ (1 + o(1))ne−2nmp2 − (1 + o(1))ne−2nmp2

(1 + o(1))e−nmp2

= o(1)ne−nmp2 = o(1)e−βn −→ 0,

(3.24)

as n → ∞, which concludes the proof.

4. Proof of Theorem 2.3

Let

p̂ = 1 −
(

1 − p2

q2 + npq + ( n
2 )p2

)m

. (4.1)

The following lemma drawn from [9] states an equivalence of G(n,m, p) and G(n, p̂)models.

Lemma 4.1 (see [9]). Let α > 6 and p be such that

ω

n
√
m

≤ p ≤
√

2 lnn −ω

m
(4.2)

for some ω → ∞. For any a ∈ [0, 1] and any graph propertyA, as n → ∞ if it follows that

P
(
G
(
n,m, p

) ∈ A) −→ a if and only if P
(
G
(
n, p̂
) ∈ A) −→ a. (4.3)
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We recall the following classical result for connectivity threshold of G(n, p).

Lemma 4.2 (see [10]). Let c ∈ � be fixed and p = (lnn + c + o(1))/n. Then

P
(
G
(
n, p
)
is connected

) −→ e−e
−c
, (4.4)

as n → ∞.

Proof of Theorem 2.3. In view of Lemmas 4.1 and 4.2, it suffices to prove that

np̂ − lnn −→ β, (4.5)

as n → ∞.
By the assumptions, we find that

np̂ − lnn

∼ n

⎡

⎢
⎣1 −

⎛

⎜
⎝1 − �

(
1 − √

�

)2
+ n

√
�

(
1 − √

�

)
+ n2/2(�)

⎞

⎟
⎠

m⎤

⎥
⎦ − lnn

∼ n

⎡

⎢
⎣1 −

⎛

⎜
⎝1 − lnn + βn

nm + n
√
nm
(
lnn + βn

)
+
(
lnn + βn

)
(1 − n + n2/2)

⎞

⎟
⎠

m⎤

⎥
⎦ − lnn,

(4.6)

where � denotes (lnn + βn)/nm. Since

m

⎛

⎜
⎝

lnn + βn

nm + n
√
nm
(
lnn + βn

)
+
(
lnn + βn

)
(1 − n + n2/2)

⎞

⎟
⎠

2

−→ 0 (4.7)

as n → ∞, by Lemma 3.2, the right-hand side of (4.6)

∼ nm
(
lnn + βn

)

nm + n
√
nm
(
lnn + βn

)
+
(
lnn + βn

)
(1 − n + n2/2)

− lnn

=
βn − lnn

√
n
(
lnn + βn

)
/m − lnn

(
lnn + βn

)
(1/nm − 1/m + n/2m)

1 +
√
n
(
lnn + βn

)
/m +

(
lnn + βn

)
(1/nm − 1/m + n/2m)

=
βn + o(1)
1 + o(1)

−→ β,

(4.8)

which concludes the proof.
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[10] P. Erdős and A. Rényi, “On the evolution of random graphs,” Publication of the Mathematical Institute
of the Hungarian Academy of Sciences, vol. 5, pp. 17–61, 1960.

[11] Y. Shang, “Typical vertex degrees in dense generalized random intersection graphs,” Mathematica
Applicata, vol. 23, no. 4, pp. 767–773, 2010.

[12] D. Stark, “The vertex degree distribution of random intersection graphs,” Random Structures &
Algorithms, vol. 24, no. 3, pp. 249–258, 2004.

[13] M. Behrisch, “Component evolution in random intersection graphs,” Electronic Journal of Combina-
torics, vol. 14, no. 1, p. R17, 2007.

[14] Y. Shang, “Degree distributions in general random intersection graphs,” Electronic Journal of Combina-
torics, vol. 17, no. 1, p. R23, 2010.

[15] A. D. Barbour, L. Holst, and S. Janson, Poisson Approximation, vol. 2 of Oxford Studies in Probability,
Oxford University Press, New York, NY, USA, 1992.

[16] T. Lindvall, Lectures on the Coupling Method, Dover, Mineola, NY, USA, 2002.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


