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It was proved (Bessy et al., 2010) that for r > 1, a tournament with minimum semidegree at least
2r — 1 contains at least » vertex-disjoint directed triangles. It was also proved (Lichiardopol, 2010)
that for integers g > 3 and r > 1, every tournament with minimum semidegree at least (g — 1)r — 1
contains at least » vertex-disjoint directed cycles of length g. None information was given on these
directed cycles. In this paper, we fill a little this gap. Namely, we prove that ford > 1and r > 1,
every tournament of minimum outdegree at least ((d*> + 3d + 2)/2)r — (d* + d + 2)/2 contains
at least r vertex-disjoint strongly connected subtournaments of minimum outdegree d. Next, we
prove for tournaments a conjecture of Stiebitz stating that for integers s > 1 and t > 1, there
exists a least number f(s,t) such that every digraph with minimum outdegree at least f(s,t) can
be vertex-partitioned into two sets inducing subdigraphs with minimum outdegree at least s and
at least t, respectively. Similar results related to the semidegree will be given. All these results
are consequences of two results concerning the maximum order of a tournament of minimum
outdegree d (of minimum semidegree d) not containing proper subtournaments of minimum
outdegree d (of minimum semidegree d).

1. Introduction and Definitions

The definitions which follow are those of [1].

Let D be a digraph. V(D) is the vertex set of D and the order of D is the cardinality of
V(D). #(D) is the set of the arcs of T. Two vertices x and y of D are adjacent, if at least one
of the ordered pairs (x, y) and (y, x) is an arc of D. We say that a vertex y is an outneighbor
of a vertex x (inneighbour of x) if (x,y) (resp. (y,x)) is an arc of D. Nj (x) is the set of the
outneighbors of x and N (x) is the set of the in-neighbors of x. The cardinality of N},(x) is
the outdegree dJ,(x) of x and the cardinality of N (x) is the indegree d,(x) of x. When no
confusion is possible, we omit the subscript D. We denote by 6* (D) the minimum outdegree
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of D and by 67 (D) the minimum indegree of D. The minimum semidegree of D is §°(D) =
min{6*(D),6 (D)}.

An oriented graph, is a digraph D such that for any two distinct vertices x and y of D,
at most one of the couples (x, y) and (y, x) is an arc of D.

A tournament is an oriented graph T such that any two distinct vertices x and y of T
are adjacent. If A and B are subsets of V(T), an arc from A to B is an arc (x, y) with x € A and
y € B. We denote by a(A, B) the number of the arcs from A to B.

It is known and easy to prove that if 7 is the order of T, then n > 26°(T) + 1 and
8%(T) < d*(x) <n—-1-6%T) for every vertex x of T.

For a subset S of V(T), T[S] is the subtournament induced by the vertices of S. For a
vertex x of T, T — x is the subtournament induced by the vertices of T distinct from x.

For d > 1, a regular tournament of degree d is a tournament T with d}(x) = d.(x) = d
for every vertex x of T. It is known and easy to prove that the order of T is 2d + 1.

A path or a cycle of a tournament T always means a directed path or a directed cycle
of T and disjoint cycles means vertex-disjoint cycles. A triangle is a directed cycle consisting
of three vertices

For distinct vertices x and y of T, an (x, y)-path is a directed path starting from x and
ending at y. The tournament T is said to be strongly connected, or briefly strong, if for any
distinct vertices x and y, there exists an (x, y)-path. It is well known (Camion Theorem) that a
tournament T is strong if and only if it contains a Hamiltonian cycle. The strong connectivity
of T is the smallest nonnegative integer k(T') such that there exists a subset of k(T') vertices of
V(T) disconnecting T. For k > 1, a k-strong tournament is a tournament of strong connectivity
at least k.

If V1 and V) are two vertex-disjoint subsets of V(T), we say that V; dominates V,, if
for every pair {x,y} with x € V; and y € V,, (x,y) is an arc of T (which means that there
is no arc from V, to V;). If T; and T, are two tournaments with disjoint vertex sets, Ty — 1>
is the tournament whose vertex set is V(T;) U V(T,) and whose arcs are those of T} and T,
and the ordered pairs (x,y) with x € V(T1) and y € V(Ty). It is known and easy to prove
that a tournament T is nonstrong if and only if there exists a partition A, B of V(T') such that
T=T[A] — T[B].

A minimum outdegree minimal tournament is a tournament T such that every proper
subtournament of T has minimum outdegree at most 6*(T)-1.If 6*(T) = d, we say that T is a
minimum outdegree d minimal tournament. Similarly, one can define the notion of minimum
indegree minimal tournament. A minimum semidegree minimal tournament is a tournament T
such that every proper subtournament of T has minimum semidegree at most 6°(T) — 1. If
6°%(T) = d, we say that T is a minimum semidegree d minimal tournament.

In a recent paper, Bessy et al. (see [2]) proved that for » > 1, a tournament with
minimum outdegree and minimum indegree both greater or equal to 2r — 1 contains at least r
vertex-disjoint directed triangles. In a more recent paper (see [3]), the author generalized this
result, by proving that for given integers g > 3 and r > 1, every tournament with minimum
outdegree and minimum indegree both greater or equal to (g—1)r—1 contains at least r vertex-
disjoint directed cycles of length g. None information was given on these directed cycles. In
this paper, we fill a little this gap. More precisely, we prove:

Theorem 1.1. For d > 2 and for r > 1, every tournament T of minimum outdegree at least ((d* +
3d +2)/2)r — (d* + d + 2) /2 contains at least r vertex-disjoint strong subtournaments of minimum
outdegree d.
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Concerning the minimum semidegree, we prove the following.

Theorem 1.2. For d > 2 and for r > 1, every tournament T of minimum semidegree at least (d* +
3d + 2)r — d* — 2d — 2 contains at least r vertex-disjoint subtournaments of minimum semidegree d.

In [4], Stiebitz proposed the following conjecture.

Conjecture 1. For given integers s > 1and t > 1, there exists a least number f (s, t) such that the
vertices of any simple digraph with minimum outdegree at least f (s, t) can be partitioned into
two sets inducing subdigraphs with minimum outdegree at least s and at least ¢, respectively.

A natural generalization given by Alon (Problem 1 in [5]) is as follows.

Conjecture 2. For an integer k > 2 and for given positive integers dj, . .. d, there exists a least
number F(ds, ... dk) such that the vertices of any simple digraph D with minimum outdegree
atleast F(d, ...dx) can be partitioned into k sets Vi, ... Vi such that 6" (D[V;]) > d; for1 <i <
k.

It is easy to prove by induction that the existence of f(s,t) implies the existence of
F(dy,...dx). In this paper, we prove that Stiebitz’s conjecture is true for tournaments (with a
supplementary constraint), namely, we prove the following.

Theorem 1.3. For given integers s > 1 and t > 1, the vertices of any tournament T with minimum
outdegree at least (s*+3s +2) /2 +t can be partitioned into two sets inducing subtournaments Ty and
T, with Ty strongly connected and of minimum outdegree at least s and with T, of minimum outdegree
at least t.

This result will allow us to prove, for tournaments, the generalized conjecture of
Stiebitz. Relatively to the minimum semidegree, we state the following.

Theorem 1.4. For given integers s > 1 and t > 1, the vertices of any tournament T with minimum
semidegree at least s* + 3s + 2 + t can be partitioned into two sets inducing subtournaments Ty and T,
with Ty of minimum semidegree at least s and with T, of minimum semidegree at least t.

Here also, a generalization is possible.

2. Results on Minimum Outdegree and Minimum Semidegree
Minimal Tournaments

We begin with the following theorem,
Theorem 2.1. For d > 1, any minimum outdegree d minimal tournament, is strong.

Proof. Suppose the opposite. Then there exists a partition (A,B) of V(T) such that A
dominates B. Then T[B] is a proper subtournament of T of minimum outdegree at least d,
which is impossible. O

We continue with the following,

Theorem 2.2. For d > 1, any tournament of minimum outdegree at least d contains a minimum
outdegree d minimal subtournament.
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Figure 1: Minimum outdegree 2 minimal tournament Tj.

Proof. Let s be the smallest order of the subtournaments of T having minimum outdegree at
least d. There exists a subtournament T” of T of order s and of minimum outdegree at least d.
Clearly, T' is a minimum outdegree d minimal subtournament. O

Concerning the order of a minimum outdegree d minimal tournament, we state the
following,

Theorem 2.3. For d > 1, if T is a minimum outdegree d minimal tournament of order n, one has
n<(d?>+3d+2)/2.

Proof. Let M be the set of the vertices of T of outdegree d and let m be its cardinality. For
every vertex x of T, the tournament T — x has minimum outdegree d — 1, and this means
that x has at least one in-neighbor in M. Then, the number of the arcs from M to V(T) \ M
is at least n — m. On the other hand, the number of the arcs from M to V(T) \ M is exactly
md — (m(m — 1)) /2. It follows md — (m(m - 1)) /2 > n — m, hence m*> — (2d + 3)m + 2n < 0.
This implies (2d + 3)* - 8n > 0, hence n < (2d + 3)*/8 and since 7 is an integer, we get
n < ((2d +3)* -1)/8, thatisn < (d? +3d +2) /2. O

We note that (2d +3 — \/(2d +3)* = 8n)/2 < m < (2d + 3 — \/(2d + 3)* — 8n) /2. When
d =2, we getn < 6. It is easy to prove that there are four minimum outdegree 2 minimal
tournaments: the regular tournament T; of order 5 (Figure 1), and three nonisomorphic
tournaments 1>, T3, and T, of order 6 (Figure 2). The outdegree sequence of T is (2, 2,2, 3,3, 3),
and the outdegree sequence of the tournaments T3 and Ty is (2,2,2,2,3,4). We observe that
T5 and T; are not 2-connected (the two others yes).

We claim that for every integer d > 1 the bound of Theorem 2.3 is reached. To be more
precise, we claim that for every integer d > 1, there exists a minimum outdegree d minimal
tournament of order (d? + 3d +2)/2 and of strong connectivity 1. We are going to prove this,
by induction on d. Clearly, the assertion is true for d = 1. Suppose that the assertion is true
up to therow d — 1, d > 2. Let then T,;_; be a minimum outdegree d — 1 minimal tournament
of order ((d—1)?+3(d—1) +2)/2 = (d® + d) /2. Let T,; be the tournament defined as follows.

(i) The vertices of T, are the vertices of T;1 and d + 1 additional vertices x and
Yi,Y2,---,Yd-

(ii) The arcs of T, are the arcs of T,_1, the couples (x,y;), 1 < i < d, the couples (z, x)
with z € V(T4-1), the couples (y;, z) with1 < i < d and z € V(T4-1) and the arcs
of an arbitrary tournament with A = {y,...,y4} as vertex set. It is easy to see that
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Figure 2: Minimum outdegree 2 minimal tournaments T, T3, and Tj.

T4 is a minimum outdegree d minimal tournament of order (d* + d)/2 +d + 1 =
(d* + 3d + 2)/2 and of strong connectivity 1 (because x disconnects T,). So the
assertion is true for d and consequently the result is proved.

In fact, there are minimum outdegree d minimal tournaments of strong connectivity
1 of order smaller than (d? + 3d + 2)/2. Indeed, if we take a regular tournament of degree
d — 1, with the above construction, we get a minimum outdegree d minimal tournament of
connectivity 1 and of order 2(d — 1) + 1 + d + 1 = 3d. We think that 3d is the minimum order
of a minimum outdegree d minimal tournament of connectivity 1.

By minimum outdegree d critical tournament, we mean a tournament T of minimum
outdegree d such that for every vertex x of T, the tournament T — x has minimum out degree
d — 1. It is clear that a minimum outdegree d minimal tournament is minimum outdegree
critical. By the way, we observe that in the proof of Theorem 2.3, we use only the fact that T
is minimum outdegree d critical and as the obtained upper bound is reached, another proof
using the fact that T is minimum outdegree d minimal cannot improve this upper bound.
However, we claim that for d > 3, the notion of minimum outdegree d minimal tournament
does not coincide with the notion of minimum outdegree d critical tournament. Indeed, let T’
be a regular tournament of degree d and consider a vertex x of T'. We define the tournament
T in the following way.

(i) The vertices of T are the vertices of T' and the additional vertices a, b and ¢ of a
directed triangle A.

(ii) V(A) is dominated by N7, (x), x is dominated by V(A). To each vertex of V(A) we
join exactly d — 2 outneighbors in N7, (x) so that every vertex of N7, (x) has at least
one in-neighbor in V(A) (this is possible when d > 3).

T has minimum outdegree d and the vertices x,a,b, and ¢ are of outdegree d. It
is easy to see that every vertex of T is dominated by a vertex of {x,a,b,c}. This means
that T is minimum outdegree d critical. Manifestly, since T' is a proper subtournament of
T of minimum outdegree d, T is not minimum outdegree d minimal. This corroborates
our statement. However, as for minimum outdegree minimal tournaments, we have the
following.

Theorem 2.4. For d > 1, any critically outdegree d tournament T is strong.

Proof. Suppose the opposite. Then there exists a partition (A,B) of V(T) such that A
dominates B. Then T[B] is a tournament of minimum outdegree at least d, which implies
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|B| > 2d +1 > d. Consider a vertex x of A. An in-neighbor of x is in A and then its outdegree
is greater than d. This means that T - x is a tournament of minimum outdegree d, which is
not possible. Consequently T is strong. O

For minimum semidegree minimal tournaments, the situation is a little different.
Already, we observe that a minimum semidegree minimal tournament is not necessarily
strong. Indeed, if T; is a minimum indegree d minimal tournament and if T, is a a minimum
outdegree d minimal tournament, vertex disjoint with T7, it is easy to prove that Ty — T is
a nonstrong minimum semidegree d minimal tournament. As for Theorem 2.2, we have the
following.

Theorem 2.5. For d > 1, any tournament of minimum semidegree at least d contains a minimum
semidegree d minimal subtournament.

Proof. Let s be the smallest order of the subtournaments of T having minimum semidegree at
least d. There exists a subtournament T” of T of order s and of minimum semidegree at least
d. Clearly, T is a minimum semidegree d minimal subtournament. O

As regards the maximum order, we state the following.

Theorem 2.6. For d > 2, if T is a minimum semidegree d minimal tournament of order n and of
minimum semidegree d, we have n < dz+3d+2.

Proof. We have n > 2d + 1 and if n = 2d + 1, the theorem is proved. So, we may suppose
n > 2d +1. For every vertex x of T, the tournament T — x has minimum semidegree d — 1. This
means that x has an in-neighbor of outdegree d or an outneighbor of indegree d (here “or”
is not exclusive). Denote by M; the set of the vertices of T of outdegree d and by M, the set
of the vertices of T of indegree d. Since n > 2d + 1, M; and M, are disjoint. Let m1; and m, be
the cardinalities of the sets My and M. If m; = 0 or if m, = 0, as in the proof of Theorem 2.3,
we get n < (d? + 3d + 2)/2 and then the theorem is proved. So, we may suppose m; > 1 and
my > 1. Denote by M3 the set of the vertices of T not in M; U M, and having at least one
in-neighbor in M, and by mj3 the cardinality of Ms. Let My = V(T) \ (M1 U M3 U M3) and
my = |My]|. Every possible vertex of M4 has a least one outneighbor in M.

We have a(M;, M3) > ms, and since a(M1, M3) = mid— (my(m1-1))/2-a(M;, M) —
a(My, My), it follows that

_mi(m - 1)

mid 5 - a(Ml,Mz) - ll(Ml,M4) > ms3. (2.1)
Similarly, we get
mad — w — a(My, M) — a(Ms, M) > ma. (2.2)

From (2.1) and (2.2), we get by addition (11 +my)d+(m1+my) /2~ (m3+m3) /2-2a(M;, M>) -
a(Mi, My) — a(M3, M) > n —m; — my. It is easy to prove that m% + m% > (my + m2)2/2.
It follows (my + my)(d + (1/2)) — (m1 + mz)?/4 — 2a(My, M) — a(M1, My) — a(Ms, M) >
n — (my + my), hence (my + mo)(d + (1/2)) = (my + m2)*/4 > n — (my + my). This yields
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(my +my)? — (4d + 6) (1 + my) +4n < 0. This implies (2d + 3)?> —4n > 0, hence n < (2d + 3)*/4
and since 7 is an integer, we get n < ((2d + 3)>=1)/4, thatis n < d? +3d + 2. O

Concerning the number m; + m, of the vertices x of T with either outdegree d or

indegree d, we have 2d+3-1/(2d + 3)2 —4n <my+my <2d+3-1/(2d + 3)2 —4n. Whend =2,
we get n < 12, and this bound is reached. Indeed if T; is a critically indegree d tournament of
order 6 and if T, is a a critically outdegree d tournament of order 6, then T; — T is a critically
semidegree d tournament of order 6.

3. Proofs of Theorems 1.1 and 1.2
3.1. Proof of Theorem 1.1

Since 6*(T) > d, by Theorem 2.2, T contains minimum outdegree d minimal subtournaments.
Let s > 0 be the maximum number of vertex-disjoint minimum outdegree d minimal subtour-
naments. Then there exist s vertex-disjoint minimum outdegree d minimal subtournaments
T1,...Ts, and by Theorem 2.3, these tournaments cover a set S with at most ((d?>+3d+2)/2)s
vertices of T. Suppose that s < r. A vertex x of V(T) \ S has at most ((d*> + 3d + 2)/2)s
outneighbors in S. It follows that x has at least ((d* +3d +2)/2)r - (d* +d +2) /2 - ((d*> +3d +
2)/2)s > d outneighbors in V(T) \ S. This means that the subtournament induced by V(T) \ S
has minimum outdegree at least d and then by Theorem 2.2, it contains a minimum outdegree
d minimal subtournament. But by maximality of s, this is not possible. Consequently s > r
and therefore T contains r minimum outdegree d minimal subtournaments. Since these
tournaments are strong (Theorem 2.1), the result is proved.

3.2. Proof of Theorem 1.2

Since 6°(T) > d, by Theorem 2.4, T contains minimum semidegree d minimal subtour-
naments. Let s > 0 be the maximum number of vertex-disjoint minimum semidegree d
minimal subtournaments. Then there exist s vertex-disjoint minimum semidegree d minimal
subtournaments, and by Theorem 2.5, these tournaments cover a set S with at most (d*>+3d+
2)s vertices of T. Suppose that s < r. A vertex x of V(T) \ S has at most (d? + 3d + 2)s
outneighbors in S and at most (d* + 3d + 2)s in-neighbors in S. It follows that x has at
least (d*> +3d + 2)r —d? - 2d — 2 — (d* + 3d + 2)s > d outneighbors in V(T) \ S and at
least (d> + 3d + 2)r —d*> = 2d - 2 - (d*> + 3d + 2)s > d in-neighbors in V(T) \ S. This
means that the subtournament induced by V(T) \ S has minimum semidegree at least d and
then by Theorem 2.4, it contains a minimum semidegree d minimal subtournament. But by
maximality of s, this is not possible. Consequently s > r and therefore T contains * minimum
semidegree d minimal subtournaments, which proves the result.

4. Proofs of Theorems 1.3 and 1.4 and Generalizations

Since the proof of Theorem 1.4 is similar to that of Theorem 1.3, we prove only Theorem 1.3.

By Theorem 2.2, T contains a minimum outdegree s minimal subtournament T;, which
is strong by Theorem 2.1. By Theorem 2.3, the order of T; is at most (s> +3s+2)/2. Let T, be
the subtournament induced by V(T) \ V(T1). A vertex x of T, has at least (s*> + 3s +2)/2 +
outneighbors in V(T) and at most (s? + 3s +2) /2 outneighbors in V(T}). It follows that x has
at least t outneighbors in V(T3). This means that T, has minimum outdegree at least ¢, and
consequently the theorem is proved.
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This being established, an easy induction, gives the following.

Theorem 4.1. For an integer k > 2 and for given positive integers dy, .. .dx, the vertices of any
tournament T with minimum outdegree at least (d3 +3dy +2)/2 + -+ + (di_, +3dx_1 +2)/2 + dy,
can be partitioned into k sets Vi, ..., Vi so that 67 (T[V;]) > d; for 1 <i < k and T[V;] is strong for
1<i<k-1

Proof. The assertion is true for k = 2 because it is Theorem 1.3. Suppose that the assertion is
true up to the row k-1, k > 3 and let us study for k. So, let T be a tournament with minimum
outdegree at least (d; +3dy+2)/2+---+(df_, +3dk-1+2)/2+dk. By Theorem 1.3, V(T) can be
partitioned into two sets V; and V', so that T[V1] is strong, of minimum outdegree at least d;
and T’ = T[V'] is of minimum out degree at least (d3+3dy+2) /2+- - -+(df_+3d)_1+2) /2+dy. By
induction hypothesis V(I') = V' can be partitioned into k — 1 sets V,, ..., Vi so that T'[V;] =
T[V;] is of minimum outdegree at least d; for 2 < i < k and T'[V;] = T[Vi] is strong for
2 <i < k- 1. It follows, by considering also Vi, that the assertion is true for k and therefore
the result is proved. O

In fact, we are able to prove Conjecture 1 (and then Conjecture 2) for a larger class of
oriented graphs (including tournaments). Namely, we state the following.

Theorem 4.2. For given integers s > 1,t > 1 and r > O, let D be an oriented graph with minimum
outdegree at least ((s+ )2 +3(s+71)+2)/2+t+r and such that for every vertex x there exist at most
r vertices of D nonadjacent with x. Then the vertices of D can be partitioned into two sets inducing
oriented graphs Dy and D, with Dy of minimum outdegree at least s, and strongly connected when
r = 0, and with D, of minimum outdegree at least t.

Proof. When r = 0, D is a tournament and then the result is proved. Therefore we may
suppose r > 1. By orienting every nonedge of D, we obtain a tournament T having D as
spanning subdigraph. Since T has minimum out degree at least ((s+7)*43(s+7)+2) /2 + t + 1,
by Theorem 1.3, V(T) = V(D) can be partitioned into two sets inducing subtournaments T;
and T, with T; of minimum outdegree at least s+r and with T, of minimum outdegree at least
t+r. Since every vertex of V(D) has at most r outneighbors in T which are not outneighbors in
D, by deleting all the arcs of T; and T, which are not arcs of D, we get a spanning subdigraph
D; of Ty, induced in D by V (T1) = V(D;), with minimum outdegree at least s and a spanning
subdigraph D, of T,, induced in D by V(T,) = V(D;) and with minimum outdegree at least
t. Since V(Dy), V(D) is a partition of V(D), the theorem is proved. O

For example an oriented graph D of minimum outdegree at least 34 such that every
vertex is nonadjacent with at most 4 vertices is vertexdecomposable into two oriented graphs
of minimum out degree 2.

The proof of Theorem 1.4 (related to the semidegree) is similar to that of Theorem 1.3
and here also a generalization is possible.

5. An Open Problem of Thomassen
In [6], Reid proposed the following problem raised by Thomassen.

Problem 1. Let r and q be positive integers, does there exists a positive integer s = s(r,q) so that all
but a finite number of s-strong tournaments can be vertex-partitioned into an r-strong and a q-strong
subtournament?



International Journal of Combinatorics 9

By minimal k-strong tournament, we mean a k-strong tournament T such that
every proper subtournament of T has strongconnectivity at most k — 1. By critical k-
strong tournament, we mean a k-strong tournament T such that for every vertex x, the
subtournament T — x has strong connectivity at most k — 1. We think it is as follows.

Conjecture 3. For a given integer k > 0, there exists a function f (k) such that every minimal
k-strong tournament is of order at most f (k).

It is easy to prove that a positive answer to this conjecture would give a positive
answer to Thomassen’s open problem. It is known that the conjecture is false, when we
replace minimal k-strong tournament by critical k-strong tournament, but in spite of that,
we maintain our conjecture.
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