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Let I'(Z,[i]) be the zero divisor graph for the ring of the Gaussian integers modulo n. Several
properties of the line graph of I'(Z,[i]), L(I'(Z,[i])) are studied. It is determined when L(I'(Z,[i]))
is Eulerian, Hamiltonian, or planer. The girth, the diameter, the radius, and the chromatic and
clique numbers of this graph are found. In addition, the domination number of L(I'(Z,[i])) is
given when n is a power of a prime. On the other hand, several graph invariants for I'(Z,[i]) are
also determined.

1. Introduction

The study of zero divisor graphs of commutative rings reveals interesting relations between
ring theory and graph theory; algebraic tools help understand graphs properties and vise
versa. In 1988, Beck [1] defined the concept of zero divisor graph of a commutative ring R,
where the vertices of this graph are all elements in the ring and two vertices x, i are adjacent
if and only if xy = 0. Anderson and Livingston [2] modified the definition of zero divisor
graphs by restricting the vertices to the nonzero zero divisors of the ring R. Further study
of zero divisor graphs by Anderson et al. [3] investigated several graph theoretic properties,
such as the number of cliques in I'(R). They also gave some cases in which I'(R) is planer. On
the other hand, they answered the question when I'(R;) = I'(R;) for some specified types of
rings R; and R,. Akbari and Mohammadian [4] improved on those results. I'(R) for rings R
which satisfy certain conditions are discussed by Anderson and Badawi [5]. The zero divisor
graph of the ring of integers modulo n was extensively studied in [6-10].

In 2008, Abu Osba et al. [11] introduced the zero divisor graphs for the ring of
Gaussian integers modulo n, I'(Z,[i]), where they studied several graph properties and
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determined several graph invariants for I'(Z,[i]). Further properties of the zero divisor
graphs for the ring of Gaussian integers modulo n are investigated in [12].

In this paper, we study the line graph of I'(Z,[i]). We organized our work as follows:
some basic definitions and terminology are given in Section 2. In Sections 3 and 4, we answer
the question when is the line graph L(I'(Z, [i])) Eulerian, Hamiltonian, or planer. In Section 5,
the chromatic and clique numbers of L(I'(Z,[i])) are found. While the diameter, the girth and
the radius of L(I'(Z,[i])) are determined in Sections 6 and 7, respectively. Finally, the last two
sections discuss the domination number of I'(Z,[i]) and L(I'(Z,[i])) as well as the indepen-
dence and clique numbers of I'(Z,[i]).

2. Preliminaries

The set of Gaussian integers is defined by Z[i] = {a+bi: a,b € Z and i = v-1}.
A prime Gaussian integer is one of the following:

(i) (1+14)or (1-1),
(ii) g, where g is a prime integer and g = 3(mod4),
(iii) a + bi, a — bi, where a® + b> = p, p is a prime integer and p = 1(mod4).

It is clear that Z,[i] is a ring with addition and multiplications modulo n. Throughout
this paper, p will be used to denote a prime integer which is congruent to 1 modulo 4, while
q will denote a prime integer which is congruent to 3 modulo 4. Since Z,[i] is finite, each ele-
ment in Z,[i] is either a zero divisor or a unit. Also, since Z[i] is a unique factorization do-
main, each integer n can be uniquely factorized as n = H;‘:lm'jmj where Jr]’.s are Gaussian prime
integers and m;.s are positive integers.

The zero divisor graph of a commutative ring R denoted by I'(R), is the graph whose
vertices is the set of all nonzero zero divisors of R, and edge set E(I'(R)) = {xy : x,y €
V(I'(R)) and xy = 0}. The line graph L(G) of a graph G is defined to be the graph whose ver-
tices are the edges of G, with two vertices being adjacent if the corresponding edges share a
vertex in G. For I'(Z,[i]), if n = 2, then this graph is one vertex, while if n = g, then I'(Z, [i]) =
Ky. Throughout this paper, all rings, R, are commutative with unity.

For a connected graph G, the distance, d(u,v), between two vertices u and v is the
minimum of the lengths of all # — v paths of G. The eccentricity of a vertex v in G is the maxi-
mum distance from v to any vertex in G. The radius of G, rad(G), is the minimum eccentricity
among the vertices of G. The diameter of G, diam(G), is the maximum eccentricity among the
vertices of G. The girth of G, g(G), is the length of a shortest cycle in G. The center of G is the
set of all vertices of G with eccentricity equal to the radius. If G has a walk that traverses each
edge exactly once goes through all vertices and ends at the starting vertex, then G is called
Eulerian. A graph is called Hamiltonian if there exists a cycle containing every vertex. The
chromatic number of a graph G, x(G), is the minimum k such that G is k-colorable (i.e., can
be colored using k different colors such that no two adjacent vertices have the same color).
The clique number, w(G), of a graph G is the maximum order among the complete subgraphs
of G. A subset D of the vertex set V(G) is said to be independent if no two vertices in this set
are adjacent. The independence number of G, (G), is the maximum cardinality of all inde-
pendent sets in G. A subset D of the vertex set V(G) of a graph G is a dominating set in G if
each vertex of G, not in D, is adjacent to at least one vertex of D. The minimum cardinality of
all dominating sets in G, y(G), is called the domination number of G. Edge dominating sets
are defined analogously. The minimum cardinality of all edge dominating sets in G, y(G),
is called the edge domination number of G. The minimum cardinality of all independent
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edge dominating sets, i(G), is called the independence edge domination number of G. The
maximum vertex degree of a graph G will be denoted by A(G).

3. When Is L(I'(Z,[i])) Eulerian?

Now it is characterized when the line graph L(I'(Z,[i])) is Eulerian. Before proceeding, we
prove the following lemma.

Lemma 3.1. (i) Every vertex of I'(Z,[i]) has even degree if and only if n = 2, p or n is a composite in-
teger which is a product of distinct odd primes.

(ii) If n = ™, m > 2 and n# q*, then T(Z,[i]) has a vertex of odd degree and another of even
degree.

(iii) Every vertex of T(Z,[i]) has odd degree if and only if n = g°.

Proof. (i) Since the graph G is Eulerian if and only if each vertex has an even degree by
Theorem 29 of [11], the result holds.
(ii) Assume that n = #™, t is prime, m > 2 and n # g*. Then we have three cases.

Case I (t =2). Then deg(1 +i) = 1 and deg(2™! + 2m1j) = 22m-1 _ 2,

Case II (t is an odd prime and m > 2). By Theorem 23 of [11], I'(Z,[i]) has a vertex of degree
t2k-1 —1, where 1 < k < m/2 and a vertex of degree t** — 2, where m/2 < k < m.

CaseIIl (t = p = a®+b? and m = 2). Since deg(a+ib) = |[(p(a—ib))|-1and |(p(a—ib))| divides
|Zp2|, |{p(a—ib))|is odd and hence deg(a+ib) is even. Then by using part (i), the result holds.

(iii) (=) Letn = H;.‘Zla;"j, k >2,and X; = (x;), where

1, ift=j,
xt = (31)

0, otherwise.

Now if all a;.s are odd primes, then deg(x;) = n/ (a;nj) -1 and if a; = 2, then deg(x;) =
(n/2m) - 1.
(&) Note that, I'(Zz2[i]) = K,2_1. So, deg(v) = g* -2 for every vertex v in I['(Zp, [i]). O

Since L(I'(R)) is Eulerian if and only if deg(v) is even for every v € I'(R) or deg(v) is
odd for every v € I'(R), [9], together with Lemma 3.1 and Theorem 26 of [11], the following
theorem is obtained.

Theorem 3.2. (i) L(I'(Z,[i])) is Eulerian graph if and only if n = 2, p, g%, or n is a composite integer
which is a product of distinct odd primes.
(ii) L(I'(Z,[i])) is Eulerian graph does not necessarily imply that I'(Z,[i]) is Eulerian.

4. When Is L(I'(Z,[i])) Hamiltonian or Planner?

First we determine which graphs, I'(Z,[i]), are Hamiltonian. Before this paper comes to
the light, a recent article by Abu Osba et al. [12] reached to similar results concerning
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Hamiltonian I'(Z,[i]). However, we present our proof since it is simpler and shorter. The
proof makes use of the following theorem.

Theorem 4.1 (see [4]). Let R be a finite principal ideal ving, if I'(R) is Hamiltonian, then it is either
a complete graph or a complete bipartite graph.

Theorem 4.2. The graph T(Z,[i]) is Hamiltonian if and only if n = p or g*.

Proof. Since Z,[i] is a finite principal ideal ring, I'(Z,[i]) is a complete graph or a complete
bipartite graph if I'(Z,[i]) is Hamiltonian. But the graph I'(Z,[i]) is complete if and only if
n = g, and it is complete bipartite if and only if n = p or g192, where g1 < gz, [11]. On the
other hand, a complete bipartite graph K, , is Hamiltonian if and only if m = n. So the result
holds. O

Note that I'(Zg, 4, [i]) is not Hamiltonian and hence the converse of Theorem 4.1 is not
true.

Next, we move to the line graphs L(I'(Z,[i])). Before proceeding, we present the
following theorem.

Theorem 4.3. (i) If G is a graph of diameter at most 2 with |V (G)| > 4, then L(G) is Hamiltonian,
see [13].
(ii) The line graph of an Eulerian graph is both Hamiltonian and Eulerian, see [14].

If n=p, 2™, or g", where m > 2, then diam (I'(Z,[i])) < 2. On the other hand, ifn = 2,p
or n is a composite odd integer which is a product of distinct primes, then I'(Z,,[i]) is Eulerian,
[11]. Thus the following corollary is obtained.

Corollary 4.4. (i) If n =p, 2™, or g™, where m > 2, then L(I'(Z,[i])) is Hamiltonian.
(ii) If n is a composite odd integer which is a product of distinct primes, then L(I'(Z,[i])) is
both Eulerian and Hamiltonian.

Now, we discuss planarity of the graph L(I'(Z,[i])).

A graph G is planar if it can be drawn in the plane without any edge crossing. The fol-
lowing theorem gives necessary and sufficient conditions on a graph G so that the line graph
L(G) is planer.

Theorem 4.5 (see [15]). A nonempty graph G has a planer line graph L(G) if and only if
(i) Gis planer,
(ii) A(G) <4,

(iii) if deg,(v) = 4, then v is a cut vertex.

Recall that I'(Z,[i]) is planer if and only if n = 2 or n = 4, [11]. But L(I'(Z4[i])) is not
planer since A(I'(Z4[i])) = 7 > 4. Therefore, we get the following theorem.

Theorem 4.6. The graph L(I'(Z,[i])) is never planer.
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5. The Chromatic and Clique Numbers of L(I'(Z,[i]))

If R is a finite ring, then y'(I'(R)) = A(I'(R)), unless I'(R) is complete graph of odd order, [4].
Note that, the only complete graph I'(Z,[i]) occurs when n = g>. However, in this case the
order of the graph is ¢> — 1 which is even, so y/(['(Z4[i])) = A(T(Zx[i])). Moreover, since
the edge coloring of any graph leads to a vertex coloring of its line graph, we obtain
x(L(T(Zx[i]))) = AT(Zy[i])). Clearly, x(G) > w(G). On the other hand, the line graph of
G has a complete subgraph of order A(G). Thus w(L(T(Z,[i]))) > A(I'(Z,[i])). Observe that
if n = 2™ or g",m > 2, then I'(Z,[i]) has a vertex which is adjacent to every other vertex in
[(Zu[i]). While if n = p™, m > 1, then Zpn[i] = Zyn x Zym. Thus AT (Zyn[i])) = p*™1 — 1. This
leads to the following theorem.

Theorem 5.1.

22m=l 2 ifn=2"m>2,
W(L(T(Za[i]))) = x(LT(Zy[i]))) = { 4" % -2, ifn=q",m>2, (5.1)

pzm_l—l, ifn=p",m2>1.

Finally, if n = 2mH]T_:1p;i H;zlqj]_[]s-zlqls.f , where s; > 2 and m,r; > 1, then the clique
number and the chromatic number for the graph L(I'(Z,[i])) is given by the following
theorem.

Theorem 5.2. n = 2’"1‘[;.:1p]r." Hﬁ.zlqj]_[;:lq;j , where m,rj > 1and s; > 2, then

WL @) = YL = (2 - O[T -1) -1 62

j=1 j=1

Proof. The result follows by computing A(I'(Z,[i])), since AT(Z,[i])) = w(L(I'(Z,[i]))) =
X(LT(Zn[i])))- O

6. The Diameter of L(I'(Z,[i]))

Now, we will find the diameter of the line graph L(I'(Z,[i])).
First, we will prove that diam (L(I'(Z,[i]))) =2 whenn =2" orn = g".

Lemma 6.1. (i) If n =2™,m > 2, then there are no a + bi, c + di € Z,[i], where a, b, ¢, d are odd in-
tegers such that (a + bi)(c + di) = 0(mod4).

(ii) If n = q™, m > 2 then there are no a+bi, c+di € Z,[i] where a, b, ¢, d are relatively prime
with q, such that (a + bi)(c + di) = 0(modg).

Proof. (i) Assume that (a + bi)(c + di) = 0(mod4). Then ac - bd = 0(mod4) and ad + bc =
0(mod 4). Since a, b, ¢, d are odd integers, a = 2a;+1,b = 2b;+1, ¢ =2¢1+1,and d = 2d; +1 for
some ay, by, c1,dy € Z.50 ac—bd = ay +c1 + by + dy =0(mod2). And ad + bc=a; +c1 + by +
dy = 1(mod?2), a contradiction.
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(ii) Assume that (a + bi)(c + di) = 0(modg). Then ac — bd = 0(modgq) and ad + bc =
0(modgq). Since a, b, c,d are relatively prime with g, we have a = qa; + a», b = gb1 + by, ¢ =
gci + ¢ and d = qdy + da, where 0 < ay, by, ¢, d> < q. So

ac —bd = ayc; — byd, =0(modg), (6.1)

ad + bc = axd, + byc, = 0(modg). (6.2)

Multiplying (6.1) by c; and (6.2) by d, and adding gives a;(c,? + dy*) = 0(modgq). Then g|a,
or g|(cy® + dy?). Since a; < g, q|(c22 + dy?). Therefore, c,® + d,? = 0(mod g), and hence ¢, = d; =
0(modg), a contradiction. O

So, we conclude the following.

Theorem 6.2. If n =2" or g™ and m > 2, then diam(L(I'(Z,[i]))) = 2.
Proof. (i) Suppose that n =2™,m > 2. Then,

(1) x = a2! + b2%i where a,b are odd and t#k or t = k > [m/2] implies that ann(x) =
{c2" +d2%i: ¢ and d are odd and r,s > m — min{t,k}},

(2) x = 2'(a+bi) where a, b are odd and t < [m/2], then ann(x) = {c2"+d2% : c and d
are odd and 7,5 > m -t} U {2 (c + di) : c and d are odd}.

Moreover, d([2!(a; + byi), 2" (c1 + dii)], [2°(az + bai), 25 (cy + doi)]) = 2if t < s <
[m/2].Since [2°(ay + byi), 2™ (c1 + dyi)] € V(L(T(Z,[i]))).

(ii) Suppose that n = g™, m > 2. Let x = aq' + bg*i and a,b € U(Z,). Then ann(x) =
{cq" + dg°i : r,s > m — min{t, k}}. Moreover, d([a14™ + b1g°'i,c14" + dlqkli], [a2g™ + bag™i,
c2g" + dag*?i]) = 2 since rq,51,t2, ko > [m/2] implies that [a;1g" + b1g*i, 29" + dag®?i] €

V(L(T(Za[i])))- O

From Theorems 3.1 and 3.3 of [9], 2 < diam(L(I'(Z,[i]))) < 3. In L(I'(Zp[i])), where
p=a*+b>andm>2,d([p,p™ '], [(a+ib)", (a—-ib)"]) = 3. So, diam(L(I(Z,~[i]))) = 3.

Theorem 6.3. (i) If n = st, where s,t are two distinct primes and s#p or t#p, then
diam(L(T'(Z,[i]))) = 2.
(i) If n = st* are two distinct primes and s,t #p, then diam (L(T'(Z,[i]))) = 2.

Proof. First note that diam(L(I'(R))) > 2, [9] and for n = nmyn, with g.c.d(ny,n2) = 1, Z,[i] =
L, [i] % Zn, [].

(i) Case I If n = gp or n = 2p where p = a® + b?, then V(L(T(Z,[i]))) = {[(w, a(a +
bi)), (0, p(a - bi))]} U {[(0, a(a + bi)), (u, f(a - bi))]} U {[(«,0), (0,v)]}.
Case II: If n = 2q or n = q1g, then

V(L(T(Zn[i]))) = {[(,0),(0,0)] : u,v #0}. (6.3)

(i) Note that V(L(I'(Za[i]))) = {[(, at), (0, )]} U {[(,0), (0,0)] : w,0,&, p#0}. O
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Theorem 6.4. (i) If n = sp?, where s is prime and p = a* + b?, then diam(L(T'(Z,[i]))) = 3.
(i) If n = pl"ph, where py = a2 + b%, p» = a3 + b2 and m,1 > 1, then diam(L(T'(Z,[i]))) = 3.
(i) If n = p™t, where p = a®> +b*>, m > 1,1 > 2, and gcd(p,t) = 1, then

diam(L(T'(Z,[i]))) = 3.
(iv) If n = s™t! where s, t are distinct primes and m,1 > 2, then diam(L(T'(Z,[i]))) = 3.

Proof. (i) Let oy = [(0, (a+bi)), (1, (a=bi)?)] and 03 = [(0, (a—bi)(a+bi)), (1, (a—bi)(a+bi))].
Then d(Ul,Uz) =3.
(i) Let v = [((a1+b1i)™, (as+bai)), ((a1=bri)™, (az=bni)")]. Then d(v, [(1,0), (0, 1)]) = 3.
(iii) Let v = [((a + bi)™, 1), ((a - bi)™, #-1)]. Then d(v, [(1,0), (0,1)]) = 3.
(iv) Let v = [(s,t), (s™71,#1)]. Then d(v, [(1,0), (0,1)]) = 3. O

Theorem 6.5. (i) If Ry, Ry, R3 are fields and R = Ry x Ry x R3, then diam (L(I'(R))) = 2.

(ii) If Ry, Ro, Rs are finite rings and R; is not a field for some i € {1,2,3} and R = Ry x Ry x Rs,
then diam (L(I'(R))) = 3.

(iii) If R = HleRi where k > 4, then diam (L(T'(R))) = 3.

Proof. (i) Let [(a1, a2, a3), (b1, b2, b3)][(c1, ¢2,¢3), (d1,d2,d3)] € E(L(T(R))). Since Ry, Ry, R are
fields, (a1, az, az) or (b1, by, bs) has exactly two components equal 0. W.L.O.G. let (ay, a, a3) =
(a1,0,0) and a; #0. Since ¢1d; =0, ¢1 =0 or dy = 0. Say ¢; = 0, then [(a1, az, a3), (c1,¢2,¢3)] €
E(L(T(R))). So, diam(L(T'(R))) = 2.

(ii) Suppose that R; is not a field. Let x,y € Rj such that xy = 0. Then d([(x,0,1),
(v,1,0)],[(0,1,1),(1,0,0)]) = 3.

(iii) Let x = (xj), where x; = 1 if j = 1,2 and 0 otherwise, y = (y;), where y; = 1 if j =
3,4 and 0 otherwise, z = (z;), where z; = 1 if j = 2,3 and 0 otherwise and w = (w;), where
w; =1if j =1,4 and 0 otherwise. Then d([x,y], [z, w]) = 3. O

Summarizing the above results, we get the following theorem.

Theorem 6.6. (i) diam(L(I'(Z,[i]))) = 2 ifand only if n = p,2q, 192, 919293, 2G1G2, 44, 2q2,2p, qp
orn=2",q" withm > 2.
(ii) diam(L(T'(Z,[i]))) = 3 otherwise.

7. The Girth and the Radius of L(I'(Z,[i]))

In this section, we give a complete characterization of the girth and the radius of L(I'(Z,[i])).
Since for any commutative ring R, L(I'(R)) is a tree if and only if I'(R) = K; or K, [9],
L(I'(Z,[i])) is never a tree. On the other hand, if L(I'(R)) contains a cycle, then g(L(I'(R))) < 4
where equality holds only if R = Z3 x Z3, [9].
Consequently, the following result holds.

Theorem 7.1. g(L(I'(Z,[i]))) = 3.

Next, we prove that the radius of the line graph L(I'(Z,[i])) equals 2.
Since diam(L(I'(R))) < 3, [9] and rad (G) < diam(G) for any graph G, rad(L(I'(R))) <3.

Lemma 7.2. If there exists a vertex v € L(I'(Z,[i])) with eccentricity 2, then rad(L(T'(Z,[i])) =2

Proof. Note that, L(I'(Z,[i])) has no spanning star graph, since if a,b € V(I'(Z,[i])) such that
a#band ab =0, then d([a, b], [ai, bi]) > 1. O
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Theorem 7.3. If n=2",n=q", m>2orn=p", m21, then rad(L(I'(Z,[i]))) = 2.
Proof. (1) If n=2",m > 2, then d([2"! +2™71§,2], [x,y]) < 2 for all [x,y] € V(L(T(Z,[i]))).

(2) Ifn=g"m>2,thend([q"},q],[x,y]) <2 forall [x,y] € V(L(T'(Zy[i])))-

(3) Ifn=p™,m>1,then d([(a+bi)"(a-bi)"",(a-bi)"(a+bi)" ], [x,y]) <2 forall
[x,y] € V(LI (Zn[i])))-
O

Theorem 7.4. If n = r™t, wherer =2,q,orpand m > 1, g.c.d(r,t) = 1, then rad(L(I'(Z,[i]))) = 2.

Proof. (1) If r = 2 or g, then d([(r™1,0), (r,1)], [(x,y), (t,s)]) < 2 for all [(x,y),(t,s)] €
V(L(T(Za[i])))-

) Ifr = p = a + b2, then d([((a + bi)™(a - bi)™,0), ((a - bi)™(a + bi)™,0)],
[(x,y), (t,9)]) <2forall [(x,y),(ts)] € V(LT(Za[i]))).

O
Summarizing the above results, we get the following.

Theorem 7.5. The radius of the line graph L(I'(Z,[i])) equals 2.

8. The Domination Number of I'(Z,[i])

Pervious results concerning the domination number of I'(Z,[i]) are very restricted; Abu Osba
et al. [11] answered the question “when is the domination number 1 or 2?”. Here we find the
domination number of the graph I'(Z,[i]). Two independent proofs reflecting two different
viewpoints are given, the first proof depends on ring theory. While the second proof is con-
structive in the sense that it does not only give the domination number of I'(Z,[i]), but also
gives a minimum dominating set of this graph. This dominating set, as we will see, reveals to
have interesting properties.

Theorem 8.1 (see [16]). Let R be a finite commutative ring with identity that is not an integral do-
main. If I'(R) is not a star graph, then the domination number equals the number of distinct maximal
ideals of R.

Theorem 8.2. Ifn = H;‘:lyr;nj , where k > 1 and .71']'.5 are distinct gaussian prime and m}s are positive
integers and n#2 or q. Then y(T'(Z,[i])) = k, if nis odd, and y (T (Z,[i])) = k - 1, if n is even.

Proof. (I) (1) If n = 2™, then (1 + i) is the unique maximal ideal of Z,[i].

(2) If n = g™, then (g) is the unique maximal ideal of Z,[i].

(3) If n = p™ where p = a? + b?, then (a + bi) and (a — bi) are the only distinct
maximal ideals of Z,[i].

@) Ifn = ]_[;leyz';n" is odd then (ur;) x Hlelt#j(Z[i]/(Jr[”‘)) are the only maximal
ideals of Z,[i].

5)Ifn = H;‘:lyr]’.n’ is even then oy = (1 +i),m = (1 -1i) and (or;) x Hf:u#j(Z[i]/
(or;™)) where j # 2 are the only distinct maximal ideals of Z,[i]. Finally, since I'(Z,[i]) is never
a star graph [11], the result holds. O
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Proof. (II) We have two cases.

Case I: nis odd. Then it is easy to see that D={P; = 7" )" . ..ﬂ';n"fl st 1< j <k}
is a dominating set of I'(Z,[i]). To show that D is a minimum dominating set, assume that D,
is a minimum dominating set such that there is no x = sP;, g.c.d(s, ;) = 1 belongs to D; for
some 1 < j < k. Then T; = {rj, 27} C Ds. So, (D1 —Tj) U {P;} is a dominating set of I'(Z,[i]),
a contradiction.

Case II: nis even. Then oy = (1 +1i),5» = (1 —i). Similar to case I, we can see that D =
{P; = ﬂ'rlyrzrnz...yr;ylj_l . :1<j <k, j#2}is aminimum dominating set of I'(Z,[i]). O

If a dominating set D induces a complete graph, then, D is called clique dominating
set, the clique domination number is the cardinality of a minimum clique dominating set,
and is denoted by y.(G), if every vertex in D is adjacent to another vertex in D, then D is
called total dominating set. The minimum cardinality of a total dominating set is called total
domination number and is denoted by y:(G). For any graph G, y(G) < 1:(G) < ya(G). Since
the suggested dominating set, D, for I'(Z,[i]) in the second proof of Theorem 8.2 induces a

complete graph, then y(I'(Z,,[i])) = y:(I'(Z,[i])) = ya(L'(Z,[i])).

9. The Domination Number of L(I'(Z,[i]))

In this section we determine the domination number of L(I'(Z,[i])) when n = t" and t is
prime.

The study of the domination number of the line graph of G leads to the study of edge
or line domination number of G, that is, y(L(G)) = y'(G). On the other hand, for any graph G,
Y/ (G) = y'(G), [17]. Further, if G is the complete bipartite graph K, s, then y'(G) = min(r, s),
thus we have the following.

Lemma 9.1. (i) y(L(T(Z[i]))) = v (T(Z,[i])) = y'(T(Z,[i])) =p - 1.
(i1) Y (LT (Zgyq, [11))) = ¥i (T (Zg,q,[1])) = ¥ (U (Zg,4,[1])) = q1, where g1 < qo.

Now, we study the domination number of the line graph of I'(Z, [i]) when n is a power
of a prime. The first theorem treats the case n = 2™,m > 2. Here we make use of the fact that
[(Zyn[i]) 2 T(Zyem), [12].

Theorem 9.2. Forn =2",m > 2,
YLEEID) = L) =y T = 5@ -1 ©1)

Proof. Forj=1,2,...,2m-1,let A; = {a2>"7 : a € {1,3,...,2/-1}}. Note that the sets A; form
a partition to the vertices of I'(Zy). Let S = UiZ; Ajand T = U?Z’nﬁl Aj. Then the set S induces
a complete subgraph of I'(Z,2») and the set T form an independent set of it. And each vertex
in Ay is adjacent to each vertex in U]Z.Z’l’k A;.T'(Zyn) has no other edges. Let D C E(I'(Zyn)) be
a dominating set of vertices for L(I'(Zy2»)) with minimum cardinality. Since, the set S induces
a complete subgraph of I'(Z) of order 2" — 1, then y(L(I'(Zy[i]))) > [(1/2)(2™ - 1)]. On
the other hand, since D dominates all edges in the complete graph (S), D also dominates
every edge joining S to T, recall that T forms an independent set and so y(L(I'(Z2»[i]))) =

[(1/2)(2™ -1)]. O
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The proof of Theorem 9.2. shows the set T is an independent set with maximum cardi-
nality in I'(Zo» [i]), while the set S induces a complete subgraph with maximum order.
So, the following corollary is obtained.

Corollary 9.3. Forn=2",m > 2,
(i) w(l(Zy[i])) = 2™ -1,

(i) p(T(Zali]) = 272" - 1).

As another consequence to the proof of the preceding theorem, the following corollary,
which gives the degree sequence for I'(Z,~[i]), is obtained.

Corollary 9.4. Forj=1,2,...,2m~1, the graph T (Zom [i]) has exactly 21~! vertices of degree 221 -2
if 1 < j < mand 2771 vertices of degree 2*™ 7 —1ifm+1<j<2m-1.

Proof. For eachv € Aj, where1 < j < m,v? =0,s0deg(v) = | Uii"l_j Ag|-1=2?"7-2. And for
eachv € A, wherem+1<k <2m—1,0*#0, so deg(v) = | Ui’:{] Ag| =227 1. O

Furthermore, The proof of the above theorem shows that the eccentricity of 22" is 1
and the eccentricity of any other vertex in I'(Z2») is 2, since the vertex 2 is adjacent only to
the vertex 22", and for any x € V(I'(Zan[i])), 2-2>""1—x, is a path of length 2. This leads to
the following corollary.

Corollary 9.5. The center of the graph T(Zom[i]) is the set {21 (1 +1)}.

Next, we we find the domination number of the line graph L(I'(Z,[i])) when n = g™,
m> 2.

Lemma 9.6. (i) For m > 2,

(1) If Axj = {ag* + bgli : a € U(Zgrc),b € U(Zgn1)}, then |Ax;| = (9 - 1)%g*" %12 when
1<k, j<m=1,|Ayl=q"7  —q" 7 and |Agm| = g™ — g™ when k,j #m,

(2) I S = (Upm/212k jem Akj) = Amm, then |S| = g*mA -1,

(ii) For m 2 3, if T = Uy j<fmy21-1 Akj, then [T| = g2 (g - 1)%,

Theorem 9.7. If n = g, m > 2, then y(L(I'(Z,[i]))) = v (T (Z,[i])) = y/(T(Z,[i])) = (1/2)(g™ -
1) if m is even and (1/2)(g*"™/? + 1) if m is odd.

Proof. Let Ayj, S,and T be defined as given in Lemma 9.6. Clearly, the set S induces a complete
subgraph of I'(Z,[i]) with maximum order if m is even and S U {g!"/?} induces a complete
subgraph of I'(Z,[i]) with maximum order if m is odd. On other hand if m > 3, then T form
an independent set with maximum cardinality. Moreover, if a vertex v belongs to the set Ay,
then v is adjacent to every element in Ax; where m — min{r,s} <k,j < mand k, j #m at the
same time. I'(Z,[i]) has no other edges. O

As a consequence of the proof of Theorem 9.7, we conclude the following.
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Corollary 9.8. If n = g™, m > 2, then
(i) w(T(Z,[i])) = g™ - 1 if m is even and g*!"™/?) if m is odd,
(il) (LT (Za[i1))) = 1 if m = 2and P(LT(Za[i]))) = /2 (g™ = 1)% if m > 3.

Corollary 9.9. Let n = g™, m > 2, and v = aq” + bq®i where a,b € U(Z,). Then

deg(v) = (92)

g?mintrs) 1, ifrors< [g]

Corollary 9.10. Let n = g™, m > 2. Then

(i) the eccentricity of each v € A(n-1)(m-1) is 1 and the eccentricity of any other vertex v €
[(Znli]) is 2,
(ii) the center of the graph I'(Z,[i]) is the set An-1)(m-1),
(iii) the radius of the graph I'(Z,[i]) equals 1,
(iv) the diameter of the graph I (Z,[i]) equals 2, for m > 3.
Finally, we find the domination number of the line graph L(I'(Z,[i])) when n = p™,
m>2.
Recall that Zpn[i] = Zyn x Zpn. Let, Ayj = {(ap*,bpl) : a € U(Zyn+),b € U(Zyn-i)}.
Clearly, the sets Axj,0 < k,j < m and not both k, j = m or 0, partition the vertices of I'(Zyn x
Lgm).

Lemma 9.11. (i) For m > 2:
(1) i S = (Upnyatct jom Aky) — Amm, then s = |S] = p2n/2l 1,
(2) if L1 = Uocksim/21-1 Akm and Ly = Unekemsa1-1 Amk, then 1 = |Li| = |Lo| = p™ — pl™/2),
(ii) for m > 3:

() if B= U UL, A, then b = [B| = (p™ — p™ ) ([m/2] = 1) — (p™~! - plm/2)y,

k=1 j=m-k
(2) 1'fT = UOSk,jS[m/Z]fl Akj — AO,O/ then t = |T| - (pm—l _ plm/2J)2 + Z(P _ 1)(p2m—2 _
pZm—[m/Z]—l)

(iii) for m > 4: ‘
Wi = Uppo U A, Wa = Ul U Axj and W = Wy U W), then w =

(W] =2p"((p!""2 = 1) = [m/2] (p - 1)).

Theorem 9.12. Let n = p™,m > 2 and s,l and b be defined as given in Lemma 9.11, then
Y(L(N(Za[i]))) = y'(T(Zali])) = y{(T(Zali])) = (s/2) + 1+ bif mis even and (s/2) +1+b+1if m
is odd.

Proof. Using the same notations of Lemma 9.11. Note that the set S induces a complete sub-
graph of I'(Z,[i]), Ks. Thus, any edge dominating set for I'(Z,» x Z,») must contain s/2 edges
to dominate K. If m > 3, the set L = L U L, induces a complete bipartite graph Kj; with
bipartite sets L1 and L,. This contributes [ edges in the dominating edge set for I'(Zyn x Zym).
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Edges joining vertices in K to vertices in K, are covered by the same edge dominating
sets for K;; and K. Moreover, vertices in Axg and Aok, where 1 < k < m—1, are only adjacent to
some vertices in K, and K.

On the other hand, if m > 3, the set T is an independent set. Fortunately, vertices in T
are only adjacent to vertices in S. So, any edge dominating set for K, also dominates edges
between Sand T.

Now, for each 1 < k < [m/2] =1, and m — k < j < m, the set Ax; U Ajx induces a com-
plete bipartite graph with bipartite sets Ax; and Ajk. In order to dominate this collection of
complete bipartite graphs induced by Ax; U Ajx we need b edges in the edge dominating set
for ['(Zym x Zyn). Fortunately, this dominating set with b elements also dominates all edges in
E(I'(Zpm x Zyn)) which are incident to any edge in this collection.

Finally, observe that if m > 4, then vertices in W are only adjacent to some vertices in
K as well as in the collection of the complete bipartite graphs. The graph I'(Zyn x Zpn) has
no other edges. O

The above proof shows that S induces a complete graph in I'(Zyn x Z,m). In fact, K, is a
complete subgraph with maximum order in case m is even, while if m is odd we can add one
additional vertex of some Ay;, where either k or j, say k, is |[m/2| while j is greater than
|[m/2]. On the other hand, the set TU W U Ukm:_[lm /2] (Ao U Agk) U Ay is a maximum inde-
pendent set of order t+w+r, where r = | Ukm:_[;/zl (AroUAgk)UAnol = " (p-1)(2plm™/2 -1).

Thus, using the same notation of Lemma 9.11 and the proof of the above theorem, we
obtain the following corollary.

Corollary 9.13. If n = p™, then
(i) w((Zy[i])) = sif mis even and s + 1 if m is odd, for m > 2,
(ii) pL(T(Zali]))) = 1, if m = 2, J(L(TL(Zu[i]))) = v + 1, if m = 3, and P(L(T(Z4[i]))) =

r+t+w, form>3.

Corollary 9.14. If n = p™, m > 2, then

(i) E = {v € V(I'(Zui])) : v = (u,w) where either u or w € U(Zpn)} has eccentricity 3,
while all other vertices has eccentricity 2,
(ii) the center of the graph T'(Z,[i]) is the set C = {v € V(I'(Z,[i])) : v = (u, w), where both
uand w € Z(Zyn)} -1{(0,0)},
(iii) the radius of the graph I'(Z,[i]) equals 2,
(iv) the diameter of the graph I (Z,[i]) equals 3.

Proof. (i) First, note that I'(Z,~[i]) has no vertex of eccentricity 1, otherwise y (I'(Z,~[i])) = 1.
Letu,w,a,p € U((Zyn)) and 1 < 1,5 <m—1.1f (x, y) is adjacent to both (up”, f) and (a, wp”),
then x = y = 0. So, d((up”, B), (o, wp®)) = 3, and hence, the eccentricity of each vertex in E is 3.
If (up”,vy), (wp*,x) are nonadjacent, then (p™!,0) is adjacent to both vertices. Similarly, if
(x,up”), (y, wp®) are nonadjacent, then (0, p™!) is adjacent to both vertices. O
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