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Let Γ = Cay(𝐺, 𝑆) and 𝐺 ≤ 𝑋 ≤ AutΓ. We say Γ is (𝑋, 1)-regular Cayley graph if 𝑋 acts regularly on its arcs. Γ is said to be core-
free if 𝐺 is core-free in some 𝑋 ≤ Aut(Cay(𝐺, 𝑆)). In this paper, we prove that if an (𝑋, 1)-regular Cayley graph of valency 5 is not
normal or binormal, then it is the normal cover of one of two core-free ones up to isomorphism. In particular, there are no core-free
1-regular Cayley graphs of valency 5.

1. Introduction

We assume that all graphs in this paper are finite, simple, and
undirected.

Let Γ be a graph. Denote the vertex set, arc set, and full
automorphism group of Γ by 𝑉Γ, 𝐴Γ, and AutΓ, respectively.
A graph Γ is called 𝑋-vertex-transitive or 𝑋-arc-transitive if
𝑋 acts transitively on 𝑉Γ or 𝐴Γ, where𝑋 ≤ AutΓ. Γ is simply
called vertex-transitive, arc-transitive for the case where 𝑋 =

AutΓ. In particular, Γ is called (𝑋, 1)-regular if𝑋 ≤ AutΓ acts
regularly on its arcs and then 1-regular when𝑋 = AutΓ.

Let 𝐺 be a finite group with identity element 1. For a
subset 𝑆 of 𝐺 with 1 ∉ 𝑆 = 𝑆

−1

:= {𝑥
−1

| 𝑥 ∈ 𝑆}, the Cayley
graphCay(𝐺, 𝑆) of𝐺 (with respect to 𝑆) is defined as the graph
with vertex set 𝐺 such that 𝑥, 𝑦 ∈ 𝐺 are adjacent if and only
if 𝑦𝑥−1 ∈ 𝑆. It is easy to see that a Cayley graph Cay(𝐺, 𝑆) has
valency |𝑆|, and it is connected if and only if ⟨𝑆⟩ = 𝐺.

Li proved in [1] that there are only finite number of
core-free 𝑠-transitive Cayley graphs of valency 𝑘 for 𝑠 ∈

{2, 3, 4, 5, 7} and 𝑘 ≥ 3 and that, with the exceptions 𝑠 =

2 and (𝑠, 𝑘) = (3, 7), every 𝑠-transitive Cayley graph is a
normal cover of a core-free one. It was proved in [2] that
there are 15 core-free 𝑠-transitive cubic Cayley graphs up
to isomorphism, and there are no core-free 1-regular cubic
Cayley graphs. A natural problem arises. Characterize 1-
transitive Cayley graphs, in particular, which graphs are 1-
regular? Until now, the result about 1-regular graphs mainly

focused constructing examples. For example, Frucht gave the
first example of cubic 1-regular graph in [3]. After then,
Conder and Praeger constructed two infinite families of
cubic 1-regular graphs in [4]. Marušič [5] and Malnič et al.
[6] constructed two infinite families of tetravalent 1-regular
graphs. Classifying such graphs has aroused great interest.
Motivated by above results and problem, we consider 1-
regular Cayley graphs of valency 5 in this paper.

A graph Γ can be viewed as a Cayley graph of a group 𝐺

if and only if AutΓ contains a subgroup that is isomorphic to
𝐺 and acts regularly on the vertex set. For convenience, we
denote this regular subgroup still by 𝐺. If 𝑋 ≤ AutΓ contains
a normal subgroup that is regular and isomorphic to𝐺, then Γ

is called an X-normal Cayley graph of 𝐺; if 𝐺 is not normal in
𝑋 but has a subgroup which is normal in 𝑋 and semiregular
on𝑉Γwith exactly two orbits, then Γ is called anX-bi-normal
Cayley graph; furthermore if 𝑋 = AutΓ, Γ is called normal or
bi-normal. Some characterization of normal and bi-normal
Cayley graphs has given in [1, 2].

For a Cayley graph Γ = Cay(𝐺, 𝑆), Γ is said to be core-free
(with respect to 𝐺) if 𝐺 is core-free in some 𝑋 ≤ AutΓ; that
is, Core

𝑋

(𝐺) = ∩
𝑥∈𝑋

𝐺
𝑥

= 1.
The main result of this paper is the following assertion.

Theorem 1. Let Γ = Cay(𝐺, 𝑆) be an (𝑋, 1)-regular Cayley
graph of valency 5, where 𝐺 ≤ 𝑋 ≤ AutΓ. Let 𝑛(𝐺) be
the number of nonisomorphic core-free (𝑋, 1)-regular Cayley
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Table 1

Number 𝑋 𝐺 𝑛 (𝐺) 1-regular Remark
1 A

5

A
4

1 No Icosahedron
2 S

5

S
4

1 No

graph of valency 5 with the regular subgroup equal to 𝐺. Then
either

(i) Γ is an 𝑋-normal or𝑋-bi-normal Cayley graph or

(ii) Γ is a nontrivial normal cover of one line of Table 1.

In particular, there are no core-free 1-regular Cayley graphs of
valency 5.

By Theorem 1, we can get the following remark immedi-
ately.

Remark 2. Let Γ = Cay(𝐺, 𝑆) be an 1-regular Cayley graph of
valency 5. Then Γ is normal or bi-normal.

2. Examples

In this section we give some examples of graphs appearing in
Theorem 1.

Example 3. Let 𝑀 = ⟨𝑎⟩ ≅ Z
11

be a cyclic group. Assume
that 𝜏 ∈ Aut(𝑀) is of order 10 and𝑋 = 𝑀 : ⟨𝜏⟩ ≅ Z

11

: Z
10

.
Let

𝐺 = 𝑀 : ⟨𝜏
5

⟩ ≅ D
22

. (1)

Suppose that

𝑆 = 𝑔
⟨𝜏

2
⟩

= {𝑔, 𝑔
𝜏

2

, 𝑔
𝜏

4

, 𝑔
𝜏

6

, 𝑔
𝜏

8

} , (2)

where 𝑔 ∈ 𝐺 is an involution such that 𝑔 ̸= 𝜏
5. Let Γ =

Cay(𝐺, 𝑆) be the Cayley graph of the dihedral group 𝐺 with
respect to 𝑆. Then Γ is a connected (𝑋, 1)-regular Cayley
graph of valency 5. In particular, Γ is𝑋-normal.

Proof. Let

𝐺 = ⟨𝑎⟩ : ⟨𝑏⟩ = {1, 𝑎, 𝑎
2

, . . . , 𝑎
10

, 𝑏, 𝑎𝑏, 𝑎
2

𝑏, . . . , 𝑎
10

𝑏} ≅ D
22

,

(3)

where 𝑏 = 𝜏
5.

Noting 𝑜(𝑎) = 11, we may assume that 𝑎𝜏 = 𝑎
9. Since the

involution𝑔 ∈ 𝐺 is not equal to 𝑏, wemay let𝑔 = 𝑎
𝑖

𝑏 for some
1 ≤ 𝑖 < 11 such that (9, 𝑖) = 1. Then 𝑔

𝜏

2

= (𝑎
𝑖

𝑏)
𝜏

2

= 𝑎
81𝑖

𝑏 =

𝑎
4𝑖

𝑏, and so 𝑔
𝜏

2

𝑔
−1

= 𝑎
3𝑖

∈ ⟨𝑔
⟨𝜏

2
⟩

⟩ = ⟨𝑆⟩. Thus the element
𝑔
𝜏

2

𝑔
−1 is of order 11 as (3𝑖, 11) = 1. So ⟨𝑆⟩ = ⟨𝑔

⟨𝜏

2
⟩

⟩ = 𝐺; that
is, Γ = Cay(𝐺, 𝑆) is connected.

Obviously, 𝐺�𝑋 ≤ AutΓ and𝑋
1

= ⟨𝜏
2

⟩. However, |𝑋| =

55 = |𝐴Γ|; then Γ is an (𝑋, 1)-regular normal Cayley graph of
𝐺 of valency 5.

Example 4. Let 𝐺 = ⟨𝑎, 𝑏 | 𝑎
5

= 𝑏
2

= 1, 𝑎
𝑏

= 𝑎
−1

⟩ ≅ D
10

.
Set 𝑆 = {𝑏, 𝑎𝑏, 𝑎

2

𝑏, 𝑎
3

𝑏, 𝑎
4

𝑏} and Γ = Cay(𝐺, 𝑆). Then Γ ≅ K
5,5

andAutΓ = 𝑆
5

≀𝑆
2

. Let𝑋 = (Z
5

×Z
5

) : Z
2

≇ D
10

×Z
5

such that
𝐺 ≤ 𝑋 ≤ AutΓ. It follows that Core

𝑋

(𝐺) ≅ Z
5

. Then𝑋
𝛼

≅ Z
5

for 𝛼 ∈ 𝑉Γ, and furthermore Γ is (𝑋, 1)-regular. Obviously 𝐺

is not normal in 𝑋. However, Core
𝑋

(𝐺) ⊴ 𝑋 is semiregular
and has exactly two orbits on 𝑉Γ; then Γ is an (𝑋, 1)-regular
Cayley graph of valency 5. In particular, Γ is𝑋-bi-normal.

3. The Proof of Main Results

In this section, wewill prove ourmain results.We first present
some properties about normal Cayley graphs.

For a Cayley graph Γ = Cay(𝐺, 𝑆), we have a subgroup of
Aut(𝐺):

Aut (𝐺, 𝑆) = {𝜎 ∈ Aut (𝐺) | 𝑆
𝜎

= 𝑆} . (4)

Clearly it is a subgroup of the stabilizer in AutΓ of the vertex
corresponding to the identity 1 of 𝐺. Since Γ is connected,
Aut(𝐺, 𝑆) acts faithfully on 𝑆. By Godsil [7, Lemma 2.1], the
normalizer NAutΓ(𝐺) = 𝐺 : Aut(𝐺, 𝑆). So Γ = Cay(𝐺, 𝑆) is a
normal Cayley graph if and only if Aut(𝐺, 𝑆) = (AutΓ)

1

.
Let Γ = Cay(𝐺, 𝑆) be an (𝑋, 1)-regular Cayley graph of

valency 5 such that 𝐺 ≤ 𝑋 ≤ AutΓ. Then 𝑆 contains at least
one involution. Let K = Core

𝑋

(𝐺), which is the core of 𝐺 in
𝑋.

Lemma 5. Assume that K = 1. Then (𝑋, 𝐺) = (A
5

,A
4

) or
(S
5

, S
4

).

Proof. Let𝐻be the stabilizer in𝑋of the vertex corresponding
to the identity of 𝐺. Then 𝐻 ≅ Z

5

, 𝐻 ∩ 𝐺 = 1, and 𝑋 = 𝐺𝐻.
Let [𝑋 : 𝐺] be the set of right cosets of 𝐺 in 𝑋. Consider the
action of 𝑋 on [𝑋 : 𝐺] by the right multiplication. Then we
get that𝑋 is a primitive permutation group of degree 5 and𝐺

is a stabilizer of𝑋. Since Γ has valency 5, |𝐺| = |𝑉Γ| ≥ 6, and
so |𝑋| = |𝐺||𝐻| ≥ 30. Then we can show 𝑋 ≅ A

5

or S
5

, and
then 𝐺 = A

4

or S
4

, respectively.

Lemma 6. Suppose that 𝐺 = A
4

and 𝑋 = A
5

. Then Γ is the
icosahedron graph. Moreover, AutΓ = A

5

× Z
2

and Γ is not
1-regular.

Proof. Note that 𝑋 = 𝐺𝐻, where 𝑋 ≅ A
5

, 𝐺 ≅ A
4

, and
𝐻 ≅ Z

5

. Since𝑋 has no nontrivial normal subgroup, Γ is not
bipartite. So Γ is the icosahedron graph. Further by Magma
[8], AutΓ = A

5

× Z
2

, so Γ is not 1-regular.

Lemma 7. Suppose that 𝐺 = S
4

and𝑋 = S
5

. Then the graph Γ

is not 1-regular and there is only one isomorphism class of these
graphs.

Proof. Note that 𝐺 = S
4

, 𝑋 = S
5

, and 𝑋 = 𝐺𝐻. Let
𝐻 = ⟨𝜎⟩, where 𝜎 = (1 2 3 4 5). By considering the right
multiplication action of 𝑋 on the right cosets of 𝐺 in 𝑋, 𝐺
can be viewed as a stabilizer of 𝑋 acting on {1, 2, 3, 4, 5}.
Without lost generality, we may assume that 1 is fixed by
𝐺. Take an involution 𝜏 ∈ 𝑆. Then, by [2], 𝜏 ∈ S

5

\ NS
5

(𝐻)

and we can identify 𝑆 with 𝐻𝜏𝐻 ∩ 𝐺. Note that 𝜏 ∈ 𝐺 ≤ S
4
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and NS
5

(𝐻) = 𝐻 : Aut(𝐻) = ⟨(1 2 3 4 5)⟩ : ⟨(2 3 5 4)⟩ ≅

Z
5

: Z
4

; then 𝜏 is one of the following: (2 5), (3 5),
(2 3), (3 4), (4 5), (2 4), (2 3)(4 5), and (2 4)(3 5). Note
𝐻 = ⟨(1 2 3 4 5)⟩. Assume that 𝜏 = (2 5); by calculation,
we have (2 5) := ℎ

1

, 𝜏 ⋅ (1 2 3 4 5) = (1 2)(3 4 5) := ℎ
2

,
𝜏 ⋅ (1 3 5 2 4) = (1 3 5 4) := ℎ

3

, 𝜏 ⋅ (1 4 2 5 3) =

(1 4 2 3) := ℎ
4

, and 𝜏 ⋅ (1 5 4 3 2) = (1 5)(2 4 3) := ℎ
5

.
Then 𝐻(2 5)𝐻 = {𝐻ℎ

1

, 𝐻ℎ
2

, 𝐻ℎ
3

, 𝐻ℎ
4

, 𝐻ℎ
5

} = {(2 5),

(1 5)(2 3 4), (1 4 5 3), (1 2)(3 5 4), (1 3 2 4), (1 5)(2 4 3),

(1 4 2 3), (1 3 5 4), (1 2)(3 4 5), (2 5 3 4), (1 5 2 4),

(1 4 5)(2 3), (1 3), (1 3 5 2), (1 2 5)(3 4), (2 4), (1 5 4)(2 3),

(1 2 3)(4 5), (3 5), (1 5 2)(3 4), (1 4 2 5), (1 4), (1 3 2)(4 5),

(1 2 5 3), (2 4 3 5)}. Thus the corresponding 𝑆 is
{(2 5), (2 5 3 4), (2 4), (3 5), (2 4 3 5)} since 1

𝑠

= 1 for
each 𝑠 ∈ 𝐻(2 5)𝐻. By similar argument, for every 𝜏, we
can work out 𝑆 explicitly, which is one of the following four
cases: 𝑆

1

= {(2 5), (2 5 3 4), (2 4), (3 5), (2 4 3 5)}, 𝑆
2

=

{(2 3), (3 4), (4 5), (2 3 4 5), (2 5 4 3)}, 𝑆
3

= {(2 3)(4 5),

(2 3 5), (2 5 3), (2 4 5), (2 5 4)}, and 𝑆
4

= {(2 4)(3 5),

(2 4 3), (3 5 4), (2 3 4), (3 4 5)}.
Now let 𝐴 = AutΓ. We declare that 𝑋 ̸=𝐴. Assume that

𝑋 = 𝐴. Note that 𝐺 = N
𝐴

(𝐺) = 𝐺Aut(𝐺, 𝑆); then Aut(𝐺, 𝑆) =

1. Let 𝜎 = (2 5)(3 4). Since 𝜎 = (2 5 3 4)
(2 5)

⋅ (3 5) =

(3 4)
(2 3)

⋅(2 3 4 5) = (2 3)(4 5)⋅(2 5 3)⋅(2 5 4) = (2 4)(3 5)⋅

(2 4 3)⋅(3 5 4),𝜎 ∈ 𝐺 and 𝑆
𝜎

= 𝑆 for any possible 𝑆.Therefore
𝜎 ∈ Aut(𝐺, 𝑆), which leads to a contradiction. So the assertion
is right; that is, Γ is not 1-regular.

Let 𝐺
𝑖

= ⟨𝑆
𝑖

⟩ and Γ
𝑖

= Cay(𝐺
𝑖

, 𝑆
𝑖

) for 𝑖 ∈ {1, 2, 3, 4}.
Set 𝛾 = (2 4 5 3), then 𝑆

𝛾

1

= 𝑆
2

and 𝑆
𝛾

3

= 𝑆
4

. It follows
that 𝐺

𝛾

1

= 𝐺
2

and 𝐺
𝛾

3

= 𝐺
4

, namely, Γ
1

≅ Γ
2

and
Γ
3

≅ Γ
4

. Now we consider 𝐺
1

= ⟨𝑆
1

⟩. Note that (2 4) =

(2 5)
(2 4 3 5) and (3 5) = (2 5 3 4)

(2 5)

⋅ (2 5 3 4)
2, then 𝐺

1

=

⟨(2 5), (2 5 3 4)⟩. Since (2 5 4) = (2 3)(4 5) ⋅ (2 3 5), 𝐺
3

=

⟨𝑆
3

⟩ = ⟨(2 3)(4 5), (2 3 5)⟩. On the other hand, (2 5 3 4)
4

=

(2 5)
2

= ((2 5) ⋅ (2 5 3 4))
3

= 1 and (2 3 5)
3

=

((2 3)(4 5))
2

= ((2 3)(4 5) ⋅ (2 3 5))
3

= 1, then 𝐺
1

≅ S
4

and
𝐺
3

≅ A
4

. By the assumption, Γ
3

is not the graph satisfying
conditions. So far we get the result that there is only one
isomorphism class of graphs when 𝐺 = S

4

.

To finish our proof, we need to introduce somedefinitions
and properties. Assume that Γ is an𝑋-vertex transitive graph
with𝑋 being a subgroup ofAutΓ. Let𝑁 be a normal subgroup
of 𝑋. Denote the set of 𝑁-orbits in 𝑉Γ by 𝑉

𝑁

. The normal
quotient Γ

𝑁

of Γ induced by 𝑁 is defined as the graph with
vertex set 𝑉

𝑁

, and two vertices 𝐵, 𝐶 ∈ 𝑉
𝑁

are adjacent if
there exist 𝑢 ∈ 𝐵 and V ∈ 𝐶 such that they are adjacent in
Γ. It is easy to show that 𝑋/𝑁 acts transitively on the vertex
set of Γ

𝑁

. Assume further that Γ is 𝑋-edge-transitive. Then
𝑋/𝑁 acts transitively on the edge set of Γ

𝑁

, and the valency
val(Γ) = 𝑚val(Γ

𝑁

) for some positive integer𝑚. If𝑚 = 1, then
Γ is called a normal cover of Γ

𝑁

.

Proof of Theorem 1. Let Γ = Cay(𝐺, 𝑆) be an (𝑋, 1)-regular
Cayley graph of valency 5, where 𝐺 ≤ 𝑋 ≤ AutΓ. Then it
is trivial to see that Γ is connected. Let 𝑁 = Core

𝑋

(𝐺) be
the core of 𝐺 in 𝑋. Assume that 𝑁 is not trivial. Then either
𝐺 = 𝑁 or |𝐺 : 𝑁| ≥ 2. The former implies 𝐺 ⊴ 𝑋; that is, Γ

is an 𝑋-normal Cayley graph with respect to 𝐺. For the case
where |𝐺 : 𝑁| = 2, it is easy to verify Γ is an 𝑋-bi-normal
Cayley graph. Suppose that |𝐺 : 𝑁| > 2; namely, 𝑁 has at
least three orbits on 𝑉Γ. Since val(Γ) = 5 is a prime and Γ is
(𝑋, 1)-regular, Γ is a cover of Γ

𝑁

and 𝐺/𝑁 ≤ 𝑋/𝑁 ≤ AutΓ
𝑁

.
We have that Γ

𝑁

is a Cayley graph of 𝐺/𝑁 and Γ
𝑁

is core-free
with respect to 𝐺/𝑁. Now suppose that𝑁 is trivial, then Γ is
a core-free one. According to Lemmas 5, 6, and 7, there are
two core-free (𝑋, 1)-regular Cayley graphs of valency 5 (up
to isomorphism) as in Table 1. As far, Theorem 1 holds.
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