GENERALIZED WHITTAKER'S EQUATIONS FOR HOLONOMIC MECHANICAL SYSTEMS

MUNAWAR HUSSAIN
Department of Mathematics
Government College
Lahore, Pakistan

(Received June 23, 1977)

ABSTRACT. In this paper the classical theorem "a conservative holonomic
dynamic system is invariantly connected with a certain differential form"
is generalized to group variables. This general theorem is then used to
reduce the order of a Hamiltonian system by the use of the integral of energy.
Equations of motion of the reduced system so obtained are derived which are
the so-called generalized Whittaker's equations. Finally an example is given
as an application of the theory.

KEY WORDS AND PHRASES. Generalized Whittaker's equations, Holonomic Systems.

AMS(MOS) SUBJECT CLASSIFICATION (1970). 70F20

1. INTRODUCTION

It is known [4] that canonical equations for a conservative holonomic
system whose Hamiltonian is \(H \) are obtained by forming the first Pfaff's system
of differential equations of the differential form,

\[
p_i \, dq_i - H \, dt, \quad (i = 1, 2, \ldots, n),
\]
where \(p_1, p_2, \ldots, p_n \) are the generalized momenta corresponding to the generalized coordinates \(q_1, q_2, \ldots, q_n \) of the system and summation over a repeated suffix is implied. This result leads to the theorem "A dynamical system is invariantly connected with the differential form \(p_1 dq_1 - H dt \)." Further this theorem has been used to reduce the order of the system by means of the integral of energy. Canonical equations of the reduced system so obtained are known as Whittaker's equations. In what follows in this section we state a few basic results from the theory of group variables in order to generalize the above mentioned results.

Consider a conservative holonomic system having \(n \) degrees of freedom and whose position is specified by group variables \(x_1, x_2, \ldots, x_n \). Let \(\eta_1, \eta_2, \ldots, \eta_n \) be the parameters of real displacement and \(X_1, X_2, \ldots, X_n \) be the corresponding displacement operators expressed by the relations

\[
X_i = \frac{\partial}{\partial x_j} \xi_i, \quad (i, j = 1, 2, \ldots, n) \tag{1}
\]

where \(\xi_i \) are functions of \(x_1, x_2, \ldots, x_n \), then for an arbitrary function \(f(x_1, x_2, \ldots, x_n, t) \) the infinitesimal change \(df \) is expressed by

\[
df = \left[X_o(\xi) + \eta_i X_i(\xi) \right] dt \tag{2}
\]

where \(X_o = \frac{\partial}{\partial t} \). The \(X \)'s satisfy the relations

\[
(X_o, X_i) = 0, \quad (X_i, X_j) = C_{ijk} X_k \quad (k=1,2,\ldots,n). \tag{3}
\]

Putting \(f = x_j \) in (2), we get

\[
\frac{dx_j}{dt} = \dot{x}_j = \eta_i \xi_i \quad \tag{4}
\]

Since the operators \(X_i \) are independent therefore the matrix \(|J| \) is non-singular and consequently (4) yields

\[
\eta_i = A_{ij} x_j \tag{5}
\]
Let \(L \) be the Lagrangian of the system then the canonical equations of the system as obtained in [1,2] are
\[
\eta_i = \frac{\partial H}{\partial y_i}, \quad \frac{dy_i}{dt} = c_{ijk} \eta_j y_k - x_i(H),
\]
where \((i,j,k = 1,2,\ldots,n)\),
\[
y_i = \frac{\partial L}{\partial \dot{x}_i}
\]
and
\[
H(x_1, x_2, \ldots, x_n; y_1, \ldots, y_n) = \eta_i y_i - L
\]
is the Hamiltonian of the system and is equal to the total energy of the system.

2. DERIVATION OF CANONICAL EQUATIONS FROM A CERTAIN DIFFERENTIAL FORM.

In order to establish the invariant relation between the system (6) and a certain differential form we prove the following theorem:

THEOREM. The system of equations (6) is equivalent to the first Pfaff's system of differential equations of the differential form \((\eta_i y_2 - H)dt \).

PROOF. We put
\[
\theta_d = (\eta_i y_i - H)dt
\]
or using (5), we obtain
\[
\theta_d = y_i A_{ij} \delta x_j - H \delta t
\]
therefore
\[
\theta_d = y_i A_{ij} \delta x_j - H \delta t
\]
where \(d\) and \(\delta\) denote two independent variations in each of the variables \(x_1, x_2, \ldots, x_n, y_1, \ldots, y_n, t\). The bilinear coreariant of (8) is given by
\[
\delta \theta_d \cdot d \delta = \delta y_i [A_{ij} dx_j - y_i \frac{\partial H}{\partial y_i} dt] + \delta x_k [y_i \frac{\partial A_{ij}}{\partial x_k} dx_j - y_i \frac{\partial H}{\partial x_k} dt - \delta y_i A_{jk} - y_i \frac{\partial A_{ij}}{\partial x_j}]
+ \delta t[\frac{3H}{\partial t} dt]
\]
where we have used the relations
\[d\delta x_i = \delta d x_i \quad (i = 1,2,\ldots,n) \]
\[d\delta t = \delta dt. \]
Equating to zero the coefficients of \(\delta x_1, \delta x_2, \ldots, \delta x_n, \delta y_1, \ldots, \delta y_n, \delta t \) in (10), we get the first Pfaff's system of equation in the form
\[A_{ij} dx_j Y_1 dt - 0, \quad (i = 1,2,\ldots,n) \]
\[y_1 \frac{\partial A_{1j}}{\partial x_k} dx_j - \frac{\partial H}{\partial y_1} dt - dy_1 A_{1k} - y_1 \frac{\partial A_{1k}}{\partial x_j} dx_j = 0 \]
\[dH = \frac{\partial H}{\partial t} dt, \quad (i = 1,2,\ldots,n). \]
By virtue of (5), the equations (11) assume the form
\[y_i = \frac{\partial H}{\partial y_i}, \quad (i = 1,2,\ldots,n). \]
With the help of (4), the equations (12) become
\[\frac{dy_i}{dt} = y_k \eta_m \frac{\partial A_{mj}}{\partial x_k} \xi_j \xi_i - y_k \eta_m \frac{\partial A_{mk}}{\partial x_j} \xi_j \xi_i - \xi_i \frac{\partial H}{\partial x_k} \]
which, by means of the relations (1) and (3), finally takes the form
\[\frac{dy_i}{dt} = y_j y_k \eta C_{jk1} - x_i(H). \]
The relation (13) is a consequence of (14) and (15) and skew symmetric property of \(C_{jik} \) with respect to the first two indices. Since the equations (14) and (15) are identical with (6) the theorem is thus proved.

3. GENERALIZED WHITTAKER'S EQUATIONS:

Assume that \(H \) does not involve the time explicitly and
\[H + h = 0, \]
is the integral of energy of the system. Let the equation (16) be solved for the variable \(y_1 \) so that it is algebraically equivalent to
\[K(x_1,\ldots, x_n, y_2,\ldots, y_n, t, h) + y_1 = 0. \]
The differential form associated with the system is
\[(n_1 \ y_1 + n_2 \ y_2 + \ldots + n_n \ y_n + h) dt, \]
where the variables \(x_1, \ldots, x_n, y_1, \ldots, y_n, h \) are connected by (17); the differential form can therefore be written as
\[(n_2 \ y_2 + n_3 \ y_3 + \ldots + n_n \ y_n + h) dt - n_1 K dt \]
(18)
where we can regard \((x_1, \ldots, x_n, y_2, \ldots, y_n, h, t)\) as the \(2n+1\) variables in the phase space. If we express (18) in the form
\[n_1 dt \left[n_2 y_2 + \ldots + n_n y_n + \frac{1}{n_1} h - K \right] \]
(19)
and put
\[n_1 dt = d\tau \]
then we take \(\tau \) as the new time variable and \(\frac{1}{n_1}, n_1' = 1, n_2' = \frac{n_2}{n_1}, \ldots, n_n' = \frac{n_n}{n_1} \)
as the parameters of real displacement, the corresponding displacement operators and new momenta are respectively \(X_0, X_1, \ldots, X_n \) and \(h, y_1, \ldots, y_n \). Using the result of section (2), the differential equation corresponding to the form (19)
are
\[\eta'_p = \frac{\partial K}{\partial y_p} + \frac{\partial}{\partial \tau} \eta' y_k c_{pk} - x_p(K), \quad (p = 2, 3, \ldots, n) \]
(20)
\[\frac{dt}{d\tau} = \frac{\partial K}{\partial h}, \quad \frac{dh}{d\tau} = 0. \]
The last pair of equations can be separated from the rest of the system since the first \((2n-2)\) equations do not involve \(t \) and \(h \) is a constant. The equations (20) can be further simplified to take the form
\[\eta'_p = \frac{\partial K}{\partial y_p} + \frac{\partial}{\partial \tau} \eta' y_k c_{pk} = -K[c_{1p} + \eta' c_{rpl}] + y_r c_{1pr} + \eta'_r y_q c_{rqp} - x_p(K) \]
(21)
\((p, q, r = 2, 3, \ldots, n)\).
The original differential equations can therefore be replaced by the reduced system (21) which has only n-1 degrees of freedom. The equations (21) are the desired Whittaker's equations.

4. AN EXAMPLE

Consider a rigid body which is moving about one of its fixed points 0 under the action of gravity. We introduce a fixed frame of reference Oxyz such that Oz is vertically upwards and a moving frame Ox'y'z' which coincides with the principal axes of inertia of the body at 0. Let us choose the Eulerian angles θ, φ, ψ (θ is the angle of nutation, φ the angle of precession and ψ the angle of proper rotation) as the group variables which specify the position of the body at time t. Obviously the dynamical system under consideration is a conservative one and it has three degrees of freedom. Choosing the parameters of real displacement as the components of angular velocity along the moving axes, we have the relations

\[\eta_1 = \dot{\theta} \cos \psi + \dot{\phi} \sin \theta \sin \psi, \]
\[\eta_2 = -\dot{\theta} \sin \psi + \dot{\phi} \sin \theta \cos \psi, \]
\[\eta_3 = \dot{\psi} + \dot{\phi} \cos \theta. \]

Consequently the displacement operators \(X_1, X_2, X_3 \) are given by

\[
X_1 = \cos \psi \frac{\partial}{\partial \theta} + \csc \theta \sin \psi \frac{\partial}{\partial \phi} - \cot \theta \sin \psi \frac{\partial}{\partial \psi} \\
X_2 = -\sin \psi \frac{\partial}{\partial \theta} + \csc \theta \cos \psi \frac{\partial}{\partial \phi} - \cot \theta \cos \psi \frac{\partial}{\partial \psi} \\
X_3 = \frac{\partial}{\partial \psi}
\]

which satisfy the commutation relations

\[
(X_1, X_2) = X_1 X_2 - X_2 X_1 = X_3 \\
(X_2, X_3) = X_2 X_3 - X_3 X_2 = X_1 \\
(X_3, X_1) = X_3 X_1 - X_1 X_3 = X_2
\]

(22) (23)
The non-vanishing C's are therefore expressed by the relations

\[
\begin{align*}
C_{123} &= -C_{213} = 1, \\
C_{231} &= -C_{321} = 1, \\
C_{312} &= -C_{132} = 1.
\end{align*}
\] (24)

Let T and U denote the kinetic and potential energies of the system respectively, then

\[
\begin{align*}
T &= \frac{1}{2}(A \eta_1^2 + B \eta_2^2 + C \eta_3^2), \\
U &= -Mg(x \sin \theta \sin \psi + y \sin \theta \cos \psi + z \cos \theta)
\end{align*}
\] (25)

where A, B, C are the principal moments of inertia at O; \(x, y, z \) are the coordinates of the centre of gravity of the body with respect to the moving axis and M is the mass of the body. Using (25), we have the Lagrangian \(L \) and momenta \(y_1, y_2, y_3 \) expressed by the relations:

\[
L = T - U = \frac{1}{2} (A \eta_1^2 + B \eta_2^2 + C \eta_3^2) + Mg (x \sin \theta \sin \psi + y \sin \theta \cos \psi + z \cos \theta),
\]

\[
y_1 = A \eta_1, \quad y_2 = B \eta_2, \quad y_3 = C \eta_3.
\] (26)

In view of (26) the Hamiltonian \(H \) is given by

\[
H = \frac{1}{2}(\frac{y_1^2}{A} + \frac{y_2^2}{B} + \frac{y_3^2}{C}) - Mg(x \sin \theta \sin \psi + y \sin \theta \cos \psi + z \cos \theta)
\] (27)

Using (6), (22), (24), (26), and (27), canonical equations of the system are

\[
\begin{align*}
\eta_1 &= \frac{y_1}{A}, \quad \eta_2 = \frac{y_2}{B}, \quad \eta_3 = \frac{y_3}{C} \\
\frac{dy_1}{dt} &= \frac{B-C}{BC} y_2y_3 + Mg (y \cos \theta - z \sin \theta \cos \psi), \\
\frac{dy_2}{dt} &= \frac{C-A}{CA} y_3y_1 + Mg (-x \cos \theta + z \sin \theta \sin \psi) \\
\frac{dy_3}{dt} &= \frac{A-B}{AB} y_1y_2 + Mg \sin \theta (x \cos \psi - y \sin \psi).
\end{align*}
\] (28)
Now the relation (16) gives
\[
\frac{y_1^2}{A} + \frac{y_2^2}{B} + \frac{y_3^2}{C} = 2Mg(\bar{x} \sin \theta \sin \psi + \bar{y} \sin \theta \cos \psi + \bar{z} \cos \theta) + 2h = 0,
\]
and consequently
\[
y_1 = A[2Mg(\bar{x} \sin \theta \sin \psi + \bar{y} \sin \theta \cos \psi + \bar{z} \cos \theta) - \frac{y_2^2}{B} - \frac{y_3^2}{C} - 2h]^{\frac{1}{2}}.
\]
Comparing this relation with (17), we get
\[
K = - A[2Mg(\bar{x} \sin \theta \sin \psi + \bar{y} \sin \theta \cos \psi + \bar{z} \cos \theta) - \frac{y_2^2}{B} - \frac{y_3^2}{C} - 2h]^{\frac{1}{2}}.
\]
Therefore by the application of (21) the canonical equations of the system reduce to
\[
\eta_2' = \frac{\partial K}{\partial y_2}, \quad \eta_3' = \frac{\partial K}{\partial y_3},
\]
\[
dy_2 = y_3 - \eta_3' y_1 - x_2(K),
\]
\[
dy_3 = - y_2 + \eta_2' y_1 - x_3(K).
\]
Now
\[
\frac{\partial K}{\partial h} = - \frac{A}{K}, \quad \frac{\partial K}{\partial y_2} = - \frac{A}{K} y_2, \quad \frac{\partial K}{\partial y_3} = - \frac{A}{K} y_3,
\]
\[
\frac{dy_2}{dt} = \frac{dy_2}{dt} = \frac{\partial K}{\partial h} = - \frac{A}{K} \frac{dy_2}{dt},
\]
\[
\frac{dy_3}{dt} = \frac{dy_3}{dt} = \frac{\partial K}{\partial h} = - \frac{A}{K} \frac{dy_3}{dt},
\]
\[
x_2(K) = \frac{A}{K} \cdot Mg(\bar{x} \cos \theta + \bar{z} \sin \theta \sin \psi),
\]
\[
x_3(K) = \frac{A}{K} \cdot Mg(\bar{x} \cos \psi - \bar{y} \sin \psi) \sin \theta.
\]
Therefore equation (29) assume the form

\[\eta'_2 = -\frac{A}{BK} \eta_2, \quad \eta'_3 = -\frac{A}{CK} \eta_3 \]

\[\frac{dy_2}{dt} = \frac{K(A-C)y_3}{CA} + Mg(-\bar{x} \cos \theta + \bar{z} \sin \theta \sin \psi), \]

\[\frac{dy_3}{dt} = \frac{K(B-A)}{AB} y_2 + Mg \sin \theta(\bar{x} \cos \psi - \bar{y} \sin \psi). \]

These are the Whittaker's equations for the system under consideration.

REFERENCES

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk