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ABSTRACT. The apunov mapping on n x n matrices over C is defined by ZA(X
AX + XA*" a matrix is stable iffall its characteristic values have

negative real parts" and the inertia of a matrix X is the ordered triple

In(X) (,w,6) where is the number of eigenvalues of X whose real parts

are positive, the number whose real parts are negative, and 6 the number

whose real parts are 0. It is proven that for any normal, stable matrix A

and any hermitian matrix H, if In(H) (,w,6) then In(A(H)) (w,,6).

Further, if stable matrix A has only simple elementary divisors, then the

image under ZA of a positive-definite hermitian matrix is negative-definite

hermitian, and the image of a negative-definite hermitian matrix is posi-

tive-definite hermitian.
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For many years stable matrices have interested applied mathematicians

because, for a system of linear homogeneous differential equations whose

coefficients are constant, a stable matrix of coefficients is a necessary

and sufficient condition that the solution be asymptotically stable.

Recently, algebraists too have become interested in stable matrices.

Definition: A square matrix is stable all its characteristic values

have negative real parts.

(In this article, the entries of all matrices are complex numbers

unless stated otherwise.)

A classical test for stability of matrices is Lyapunov’s theorem, whose

statement is facilitated by some notation:

S set of all nxn stable matrices

H set of all nxn hermitian matrices

i H set of all nxn skew-hermitian matrices

H set of all nxn positive-definite hermitian matrices

N set of all nxn negative-definite hermitian matrices

fA(X) AX+XA*, where A and X are nxn matrices and A* is the con-

jugate transpose of A.

(It is trivial to verify that fA(’), the Lyapunov mapping, is a linear

transformation on the linear space Mn of nxn matrices.)

Lyapunov’s theorem is usually expressed as statement a) of

Theorem I: The following three statements are equivalent:

a) A S there exists G H such that A(G) -I;
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b) A S for every Glen there exists G H such that fA(G) GI there

exists GlNand there exists G N such that fA(G) GI [Taussky, 1964; p. 6,

thms 2-3];

c) Let C al+S (a real and < 0, S i H) and D diag(dI dn) with di

real (i=l n). Then CD $ di > 0 for all i. [Taussky, 1961, J. Math

Anal. & App.].

The equivalences are proven (essentially) in Taussky’s articles. An

analytic proof a) is in Bellman, pp. 242-245, and a topological proof in

Ostrowski & Schneider.

Theorem i suggests that the operator fA(’) might give rise to other

tests for stability; such usefulness is limited, however, by the following

Theorem 2: The range of A(H) as a function of H N and A S is that

subset of H with 0 (where denotes the number of characteristic vectors

with negative real parts). [Stein, p. 352, thm 2].

Some useful theorems result if further restrictions are imposed on A

besides stability. These theorems are obtained via a topological route and

require additional concepts.

Definition: The inertia of an nxn matrix X is the ordered triple of

integers ((X), (X), (X)) In(X) where (X) is the number of characteris-

tic values of X whose real parts are positive, (X) the number whose real

parts are negative, and (X) the number whose real parts are 0. If nxn

matrices M and N possess the same inertia, this will be denoted by MN.
Let M and N be nxn hermitian matrices. M and N are congruent (denoted

M N) 3 P non-singular such that M P*NP.

Recall that all norms in the set of all nxn matrices Mn induce the same

topology. In Mn so topologized, matrices M and N are connected there

exists a connected set containing both M and N. The relationship of being

connected is an equivalence relation, which will be denoted by u M and N

are arc-wise connected there exists a continuous function f from the real

interval [0,I] into Mn such that f(0) M and f(1) N. This, too, is an

equivalence relation in Mn and will be denoted by,a

The preceding concepts are brought together by the following theorem:

Theorem 3: In the set Nn of all non-singular nxn matrices with the

relative topology induced by any norm, A UB and Aa B (A, B Nn).

[Schneider" pp. 818-819, lemmata I & 2]. Let denote the set of all nxn

hermitian matrices of rank r. In with the relative topology induced by

any norm the four equivalence relations N,u ,a c coincide. [Schneider"

p. 820].

The relationship between algebraic features of hermitian matrices and

topological features expressed by theorem 3 makes it possible to discover

the variation in signature induced by the Lyapunov mapping fA(’) whenever A

S is normal and H

Theorem 4: If A

(,,), In(fA(H)) (,,).

Proof: Let A be normal, {ai} be its characteristic values, H H

In(H) (,,$), and fA(H) AH+HA* C.

Since A is normal, it is unitarily similar to a diagonal matrix: VAV*

diag(aI an) V unitary. Also a basis for n-dimensional space can be
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formed from the characteristic vectors of A, {i}-
For any i, iC i(AH+HA*) iaiH + iHA* iH(ail + A*). The

number of independent iC is the rank of C" it is also the rank of H(ail +

A*) rank of H (since aiI+ A* is non-singular, for the characteristic

values of -A* are l-aq) and (ai) n (-ai) -9 because real part of i
real part of ai < 0 (i=l n).) Therefore, rank (H) rank (ZA(H)).

Because A is a linear transformation of Mn onto itself, it is con-

tinuous. If A is restricted to H Mn it is continuous and onto H.
Therefore, ZA maps topologically connected components of H onto components

of H since rank is preserved by ZA. But by theorem 3 topologically

connected components coincide with inertial components. Therefore, IA maps

In(H) on In(C).

H H and since VHV* is congruent to H, In(VHV*) In(H). Hence,

In(ZA(VHV*)) In(XA(H)) In(C).

Let D ZA(VHV* A(VHV*) + (VHV*)A*. Then V*DV (V*AV)H + H(V*A*V).

Because D H, In(ZVAV,(H)) In(V*DV) In(D) In(C).

H is congruent to K 19 @ oly @ 06, so In(K) In(H), whence

n(VAV,(K)) In(ZVAV,(H)) In(C). VAV,(K) is of the form

diag(aI an)(l @ -Iu @ 06) + (19 @ -lu @ 06) diag (i n)
2 diag (R(al) R(a=), R(a+l) R(a+y), 0 0),

where R(a) denotes the real part of complex number a, Im the mxm identity

matrix, and 0m the mxm zero matrix. Since R(ai) < 0 (i-i n),

In(VAV,(K)) (,,6). Therefore, In(C) (,,6). QED

The preceding theorem was based on the unitary similarity of A to a

diagonal matrix; this property was used first to show the invariance of rank

and then to display the inertia when both A and H were expressed in canoni-

cal form. The next theorem generalizes the last in that A need be similar

(not unitarily similar) to a diagonal matrix, but it is more restrictive of

the inertia of H.

Theorem 5: If A S has only simple elementary divisors, then ZA(H N

and ZA .
Proof: Since A has only simple elementary divisors, it is similar to a

diagonal matrix. As in the proof of the preceding theorem, rank (H)

rank (A(H)). Likewise, ZA maps In(H) on In(ZA(H)). By Lyapunov’s theorem

But by the(la), 3H H ZA(H) -I N. Therefore, A (H)

alternative version (Ib) of Lyapunov’s theorem,

The second equation follows from -IA(H) A(-H) I.

1.

QED
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