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Abstract. A general inequality is proved using the definition of convex functions. Many
major inequalities are deduced as applications.
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1. Introduction. Kapur and Kumer (1986) have used the principle of dynamical
programming to prove major inequalities due to Shannon, Renyi, and Hölder. See [1].
In this note, we prove a general inequality using convex functions. As a result, the
inequalities of Shannon, Renyi, Hölder, and others are all deduced.
Let I be an interval in R, f : I →R is said to be convex if and only if, for all x, y ∈ I,

all λ, 0≤ λ≤ 1,

f
[
λx+(1−λ)y]≤ λf(x)+(1−λ)y. (1)

Here, we give the following new definitions:
(a) Let f and g be two functions and let I be an interval in R for which f ◦g is

defined, then f is said to be g-convex if and only if, for all x, y ∈ I, all λ,
0≤ λ≤ 1,

f
[
λg(x)+(1−λ)g(y)]≤ λf ◦g(x)+(1−λ)f ◦g(y). (2)

(b) If the inequality is reversed, then f is said to be g-concave.
If g(x)= x, the two definitions of g-convex and convex functions become identical.

Theorem 1.1. Let f be g-convex, then
(i) if g is linear, then f ◦g is convex, and
(ii) if f is increasing and g is convex, then f ◦g is convex.
Proof.

(i)

f ◦g[λx+(1−λ)y]= f [λg(x)+(1−λ)g(y)]
≤ λf ◦g(x)+(1−λ)f ◦g(y). (3)

(ii)

f ◦g[λx+(1−λ)y]≤ f [λg(x)+(1−λ)g(y)]
≤ λf ◦g(x)+(1−λ)f ◦g(y). (4)
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Lemma 1.1. Let f be g-convex and let
∑n
i=1 ti = Tn = 1, ti ≥ 0, i= 1,2, . . . ,n, then

f
( n∑
i=1
ti g

(
xi
))≤ n∑

i=1
ti f ◦g

(
xi
)
. (5)

Proof.

f
( n∑
i=1
tig

(
xi
))=f(Tn−1

n−1∑
i=1

ti
Tn−1

g
(
xi
)+tng(xn)

)

≤Tn−1f
(n−1∑
i=1

ti
Tn−1

g
(
xi
))+tn f ◦g(xn)

=Tn−2f
(
Tn−2
Tn−1

n−2∑
i=1

ti
Tn−2

g
(
xi
)+ tn−1

Tn−1
g
(
xn−1

))+tn f ◦g(xn)

≤Tn−2f
(n−2∑
i=1

ti
Tn−2

g
(
xi
))+tn−1f ◦g(xn−1)+tn f ◦g(xn)

...

≤
n∑
i=1
ti f ◦g

(
xi
)
.

(6)

Lemma 1.2. For any function g, the exponential function f(x)= ex is g-convex.
Proof. Define

F(x)= λeg(x)+(1−λ)eg(y)−eλg(x)+(1−λ)g(y). (7)

Let

G(t)= (1−λ)+λt−tλ, t > 0. (8)

It follows that

G′(t)= λ(1−tλ−1), G′′(t)= λ(1−λ)tλ−2. (9)

Thus, G′(t) = 0 when t = 1 and G′′(1) = λ(1− λ) > 0. Hence, G has its minimum
value 0 at t = 1 and this implies G(t)≥ 0, t > 0. The result follows by putting F(x)=
eg(y)G(eg(x)−g(y)).

Corollary 1.3. The function f(x) = ln(x) is concave for if h(x) = ex , then, by
Lemma 1.2, h is f -convex. Hence,

eλ(lnx)+(1−λ) lny ≤ λelnx+(1−λ)elny = λx+(1−λy). (10)

It follows that

λ lnx+(1−λ) lny ≤ ln
[
λx+(1−λ)y]. (11)

2. Main inequality

Theorem 2.1.
n∑
j=1

m∏
i=1

(
pij

)qi/∑mi=1 qi ≤
∑m
i=1

∑n
j=1pijqi∑m
i=1qi

. (12)

Proof. If f(x)= ex and g(x)= lnx, then f is g-convex. By Lemma 1.2, we have



INEQUALITIES VIA CONVEX FUNCTIONS 545

m∏
i=1

(
pij

)qi/∑mi=1 qi = eln(∏mi=1(pij)qi
/∑m

i=1 qi
)

= e
∑m
i=1 ln(pij)

qi

/∑m
i=1 qi = e

∑m
i=1(qi

/∑m
i=1 qi) lnpij

≤
m∑
i=1

(
qi∑m
i=1qi

)
elnpij =

∑m
i=1qipij∑m
i=1qi

.

(13)

Therefore,
n∑
j=1

m∏
i=1

(
pij

)qi/∑mi=1 qi ≤
∑n
j=1

∑m
i=1pijqi∑m
i=1qi

=
∑m
i=1

∑n
j=1pijqi∑m
i=1qi

. (14)

3. Applications

Theorem 3.1 (Shannon’s inequality). Given
∑m
i=1ai = a,

∑m
i=1bi = b, then

a ln
(
a
b

)
≤

m∑
i=1
ai ln

(
ai
bi

)
, ai, bi ≥ 0. (15)

Proof. Applying Theorem 2.1 by putting

pij = biai , j = 1, qi = ai,
m∑
i=1
ai = a,

m∑
i=1
bi = b, (16)

we have

m∏
i=1

(
bi
ai

)ai/∑mi=1ai
≤
∑m
i=1bi∑m
i=1ai

. (17)

That is
m∏
i=1

(
bi
ai

)ai/a
≤ b
a
. (18)

It follows that

a
b
≤

m∏
i=1

(
ai
bi

)ai/a
. (19)

Hence, we get

a ln
(
a
b

)
≤

m∑
i=1
ai ln

(
ai
bi

)
. (20)

Theorem 3.2 (Renyi’s inequality). Given
∑m
i=1ai = a,

∑m
i=1bi = b, then, for α > 0,

α �= 1,

1
α−1

(
aαb1−α−a)≤ m∑

i=1

1
α−1

(
aαi b

1−α
i −ai

)
, ai, bi ≥ 0. (21)

Proof. Applying Theorem 2.1 with i = 2, p1j = cj , p2j = dj , q1 = λ, q2 = 1−λ,
0< λ< 1, we have

m∑
j=1
cλj d

1−λ
j ≤

m∑
j=1

(
λcj+(1−λ)dj

)
. (22)
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On putting cj = (aj
/∑m

j=1aj) and dj = (bj
/∑m

j=1bj), inequality (22) implies

m∑
j=1
aλjb

1−λ
j ≤

( m∑
j=1
aj

)λ( m∑
j=1
bj

)1−λ
, (23)

and this gives

aλb1−λ

λ−1 ≤ 1
λ−1

m∑
j=1
aλjb

1−λ
j . (24)

Thus, for the case 0<α< 1, the theorem follows from inequality (24) by setting λ=α.
Now, inequality (23) implies( m∑

j=1
aλjb

1−λ
j

)1/λ( m∑
j=1
bj

)1−1/λ
≤

m∑
j=1
aj. (25)

Let aλjb
1−λ
j = ej , λ= 1/α, then inequality (25) gives

1
α−1

( m∑
j=1
ej

)α( m∑
j=1
bj

)1−α
≤ 1
α−1

m∑
j=1
eαj b

1−α
j . (26)

This completes the proof of the theorem.

Theorem 3.3 (Generalization of Hölder’s inequality).
n∑
j=1

m∏
i=1

(
pij

)qi ≤ m∏
i=1

( n∑
j=1
pij

)qi
,

m∑
i=1
qi = 1. (27)

Proof. Applying Theorem 2.1 with pij
/∑n

j=1pij instead of pij, we get
n∑
j=1

m∏
i=1

(
pij∑n
j=1pij

)qi
≤

m∑
i=1

( n∑
j=1

(
pij∑n
j=1pij

))
qi =

m∑
i=1
qi = 1, (28)

which implies
n∑
j=1

m∏
i=1

(
pij

)qi ≤ m∏
i=1

( n∑
j=1
pij

)qi
. (29)

Theorem 3.4 (Arithmetic-Geometric-Mean inequality).( m∏
i=1
xi

)1/m

≤ 1
m

m∑
i=1
xi. (30)

Proof. Applying Theorem 2.1, with j = 1, pij = xi, qi = 1.
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