EXISTENCE OF GLOBAL SOLUTION FOR A DIFFERENTIAL SYSTEM WITH INITIAL DATA IN L^p

PETER BATES, FENGXIN CHEN, and PING WANG

(Received 15 October 1997)

ABSTRACT. In this paper, we study the system governing flows in the magnetic field within the earth. The system is similar to the magnetohydrodynamic (MHD) equations. By establishing a new priori estimates and following Calderón's procedure for the Navier Stokes equations [1], we obtained, for initial data in space L^p , the global in time existence and uniqueness of weak solution of the system subject to appropriate conditions.

Keywords and phrases. Fluid, magnetic field, global solution.

1991 Mathematics Subject Classification. 35K55, 35Q35, 76D99.

1. Introduction. We consider in this work the following differential system arising from geophysics (cf. Hide [7]), which governs the flow of an electrically-conducting fluid in the presence of a magnetic field, when referred to a frame which rotates with angular velocity Ω relative to an inertial frame

$$\frac{\partial v}{\partial t} + (v \cdot \nabla)v = v\Delta v - \frac{1}{\rho}\nabla p - 2\Omega \times v - \frac{1}{\rho\mu}(\nabla \times b) \times b + f(x),$$
$$\frac{\partial b}{\partial t} = \lambda\Delta b - \nabla \times (v \times b) - \frac{1}{\mu}\nabla q + g(x),$$
$$(1.1)$$
$$\operatorname{div} v = 0, \qquad \operatorname{div} b = 0,$$

where v is the Eulerian flow velocity, ρ is the density, b is the magnetic field, p is the pressure, v, μ are, respectively, constants of kinematical viscosity, magnetic permeability, $\lambda = \eta/\mu$ with electrical resistivity η , and f(x), g(x) are volume forces.

The initial conditions are as follows:

$$v(x,0) = v_0, \qquad b(x,0) = b_0 \quad \text{for } x \in \mathbb{R}^n.$$
 (1.2)

The existence of solutions of system (1.1) and (1.2) in L^2 has been proved in [9]. Some regularity properties and large time behaviors of the solutions for a similar system, the MHD equations, are obtained in Sermange [10] and Temam [12]. More recently, we obtained in [2] the local in time existence and uniqueness of weak solutions of the system in L^p with p > n.

Motivated by Calderón's work on the Navier Stokes equations [1], we consider in this paper the initial value problem for the above system in the infinite cylinder $S = (0, \infty) \times \mathbb{R}^n$ with initial data v_0 , $b_0 \in L^p$ with $p \le n$.

This article is arranged in the following order: in Section 2, we introduce some notations and definitions. Applying Calderón's partition lemma, we introduce in Section 3 Leray's approximating system for our problem. In Section 4, we state and briefly prove some lemmas similar to those for Navier-Stokes equations. Finally, in Section 5, by establishing a priori estimates for our system and adapting Calderón's technique, we prove the global in time existence and uniqueness of weak solution of (1.1) and (1.2) for initial data in L^p .

2. Notations and definition of weak solution. In this section, we introduce some notations and the definition of a weak solution of the differential system (1.1) and (1.2).

Denote by $L^{p,q}(S_T)$ the standard functional space consisting of Lebesgue measurable vector functions $u = (u_1, u_2, ..., u_n)$ with the following property:

$$\|u\|_{p,q} = \sum_{j=1}^{n} \left[\int_{0}^{T} \left(\int_{\mathbb{R}^{n}} |u_{j}(x,t)|^{p} dx \right)^{q/p} \right]^{1/q} < \infty,$$
(2.1)

where $S_T = (0, T) \times R^n$. Let $u^* = \sup_t |u|$ and define $||u^*||_p (T) = (\int (\sup_{0 < t < T} |u|)^p dx)^{1/p}$. Let $\mathcal{L}^{p,q}(S_T) = L^{p,q}(S_T) \times L^{p,q}(S_T)$ with the standard product norm $||(v, b)||_{p,q} = ||v||_{p,q}$ $+ ||b||_{p,q}$ and $L^p(R^n) = L^p(R^n) \times \cdots \times L^p(R^n)$ with the norm $||g||_p = \sum_{i=1}^n ||g_i||_p$ for $g \in L^p(R^n)$.

Let $\mathcal{G}(R^n)$ denote the space of rapidly decreasing functions on R^n , $\mathcal{G}'(R^n)$ the space of temperated distributions, and \mathfrak{D}_T the space of functions $\phi(x,t) = (\phi_1(x,t),..., \phi_n(x,t))$ with the properties: $\phi_i \in \mathcal{G}(R^{n+1}), \phi_i(x,t) = 0$ for $t \ge T$; div $\phi = \sum_{i=1}^n D_{x_i} \times \phi(x,t) = 0$ for all t.

DEFINITION 2.1. A function u = (v, b) is a weak solution of (1.1) and (1.2) with initial divergence free data $(v_0, b_0) \in L^p(\mathbb{R}^n) \times L^p(\mathbb{R}^n)$ if the following conditions hold

- (1) $u(x,t) \in \mathcal{L}^{p,q}(S_T)$ for some p,q with $p,q \ge 2$;
- (2) for $\phi, \psi \in \mathcal{D}_T$,

$$\int_{0}^{T} \int_{\mathbb{R}^{n}} \langle v, (v\Delta + D_{t})\phi \rangle dx dt + \int_{0}^{T} \int_{\mathbb{R}^{n}} \langle v, (\nabla\phi)v \rangle dx dt + \int_{0}^{T} \int_{\mathbb{R}^{n}} \langle v, 2\Omega, \times\phi \rangle dx dt - \frac{1}{\rho\mu} \int_{0}^{T} \int_{\mathbb{R}^{n}} \langle b, (\nabla\phi)b \rangle dx dt = -\int_{\mathbb{R}^{n}} \langle v_{0}, \phi(x, 0) \rangle dx + \int_{0}^{T} \int_{\mathbb{R}^{n}} \langle f(x, t), \phi \rangle dx dt; \int_{0}^{T} \int_{\mathbb{R}^{n}} \langle b, (\lambda\Delta + D_{t})\psi \rangle dx dt + \int_{0}^{T} \int_{\mathbb{R}^{n}} \langle v, (\nabla\psi)b \rangle dx dt - \int_{0}^{T} \int_{\mathbb{R}^{n}} \langle b, (\nabla\psi)v \rangle dx dt = -\int_{\mathbb{R}^{n}} \langle b_{0}, \psi(x, 0) \rangle dx + \int_{0}^{T} \int_{\mathbb{R}^{n}} \langle g(x, t), \psi \rangle dx dt;$$
(2.2)

(3) for almost every $t \in [0,T]$, divv(x,t) = divb(x,t) = 0 in the distributional sense.

Following Fabes et al. [4], we can find a divergence free matrix fundamental solution $E_{i,j}$ for the *n*-dimensional heat equation. We define matrices $(E_{i,j}^k)$, k = 1, 2 as follows:

EXISTENCE OF GLOBAL SOLUTION ... 825

$$E_{i,j}^{k} = \delta_{i,j}\Gamma_{k}(x,t) - R_{i}R_{j}\Gamma_{k}(x,t), \qquad (2.3)$$

where

$$\Gamma_1 = \frac{e^{-|x|^2/4\nu t}}{(4\pi\nu t)^{n/2}}, \qquad \Gamma_2 = \frac{e^{-|x|^2/4\lambda t}}{(4\pi\lambda t)^{n/2}}, \tag{2.4}$$

 R_j is the *j*th Riesz transform, namely, R_j is a singular integral operator on $L^p(\mathbb{R}^n)$, 1 , defined as

$$R_{j}(f) = \text{P.V.C}_{j} \int_{\mathbb{R}^{n}} (x_{j} - y_{j}) |x - y|^{-n-1} f(y) \, dy.$$
(2.5)

Now, we define an integral operator A(v, w) for $v = (v_1, ..., v_n)$, $w = (w_1, ..., w_n)$. Denote

$$B_k(v,w)(x,t) = \int_0^t \int_{\mathbb{R}^n} \langle v(y,s), \nabla E^k(x-y,t-s) \rangle w(y,s) dy ds; \quad \text{for } k = 1,2.$$
(2.6)

$$D(v)(x,t) = \int_0^t \int_{\mathbb{R}^n} \langle v(y,s), 2\Omega \times E^1(x-y,t-s) \rangle dy \, ds.$$
(2.7)

For $u_1 = (v_1, b_1)$, $u_2 = (v_2, b_2)$, let

$$A(u_1, u_2) = \begin{pmatrix} B_1(v_1, v_2) - \frac{1}{\rho\mu} B_1(b_1, b_2) \\ \frac{1}{2} \Big[B_2(v_1, b_1) - B_2(b_1, v_1) + B_2(v_2, b_2) - B_2(b_2, v_2) \Big] \end{pmatrix}.$$
 (2.8)

3. Approximating system. The following result was obtained in [2].

THEOREM 3.1. Let v_0 , $b_0 \in L^r$, $1 \le r < \infty$, be divergence free weakly. $u(x,t) = (v(x,t), b(x,t)) \in \mathcal{L}^{p,q}(S_T)$, $p,q \ge 2$, $p < \infty$, is a weak solution of (1.1) and (1.2) with initial value (v_0, b_0) if and only if u is a solution of the following integral equation:

$$u + A(u, u) + D(u) = u^{0} + f^{0}, \qquad (3.1)$$

where

$$u^{0} = \begin{pmatrix} \int_{\mathbb{R}^{n}} \Gamma_{1}(x - y, t) v_{0}(y) dy \\ \int_{\mathbb{R}^{n}} \Gamma_{2}(x - y, t) b_{0}(y) dy \end{pmatrix},$$

$$f^{0} = \begin{pmatrix} \int_{0}^{t} \int_{\mathbb{R}^{n}} E^{1}(x - y, t - s) f(y, s) dy ds \\ \int_{0}^{t} \int_{\mathbb{R}^{n}} E^{2}(x - y, t - s) g(y, s) dy ds \end{pmatrix}.$$
 (3.2)

We need the following lemmas obtained by Calderón [1].

LEMMA 3.1. Let $f \in L^p(\mathbb{R}^n)$, 2 , be a given vector function such that div <math>f = 0 in the distributional sense. Then, for each s > 0, f can be expressed as g + h, where

$$||g||_{n} \le cs^{1-(p/n)} ||f||_{p}^{p/n}, \quad \operatorname{div} g = 0,$$

$$||h||_{2} \le cs^{1-(p/2)} ||f||_{p}^{p/2}, \quad \operatorname{div} h = 0,$$

(3.3)

where the constant c depends only on n and p.

LEMMA 3.2. Let T(u,v) = B(u,v) + l(u) + F(B(u,v)) is bilinear and l(u) is linear) satisfy

$$||T(u,v)|| \le c_1 ||u|| ||v|| + c_2 ||u|| + ||F||$$
(3.4)

with the same norm in a Banach space. Then the quadratic operator T(u, v) maps the ball { $||u|| \le s_1$ } into itself if s_1 is the smallest root of

$$c_1 s^2 + (c_2 - 1)s + ||F|| = 0, (3.5)$$

provided that c_1, c_2 *, and* ||F|| *satisfy*

$$(1-c_2)^2 > 4c_1 ||F||, \quad c_1 > 0, \ 0 \le c_2 < 1.$$
 (3.6)

If $2s_1c_1 + c_2 < 1$, T(u, v) is a contraction mapping in the ball of radius s_1 . In particular, T(u, v) is a contraction mapping in the ball of radius s_1 if

$$2c_1 \|F\| \left((1-c_2)^2 - 4c_1 \|F\| \right)^{-1/2} + c_2 < 1.$$
(3.7)

Consider the following system in v_1 , v_2 , b_1 , b_2 , p_1 , p_2 , q_1 , and q_2

$$L_{1}v_{1} + (\nabla v_{1})v_{1} - \frac{1}{\rho\mu}(\nabla b_{1})b_{1} + \nabla p_{1} = 0,$$

$$L_{1}v_{2} + (\nabla v_{2})v_{2} + (\nabla v_{2})v_{1} + (\nabla v_{1})v_{2} - \frac{1}{\rho\mu}(\nabla b_{2})b_{2} + (\nabla b_{2})b_{1} + (\nabla b_{1})b_{2} + \nabla p_{2} = 0,$$

$$L_{2}b_{1} + (\nabla b_{1})v_{1} - (\nabla v_{1})b_{1} + \nabla q_{1} = 0,$$

$$L_{2}b_{2} + (\nabla b_{2})v_{2} + (\nabla b_{2})v_{1} + (\nabla b_{1})v_{2} - (\nabla v_{2})b_{2} - (\nabla v_{2})b_{1} - (\nabla v_{1})b_{2} + \nabla q_{2} = 0,$$

$$\operatorname{div} v_{i} = 0, \quad \operatorname{div} b_{i} = 0, \quad i = 1, 2,$$

$$v_{i}(x, 0) = h_{i}(x), \quad b_{i}(x, 0) = k_{i}(x), \quad i = 1, 2,$$
(3.8)

where $L_1 = \partial/\partial t - \nu \Delta$, $L_2 = \partial/\partial t - \lambda \Delta$. We have the following definition.

DEFINITION 3.1. The vector $((v_1, v_2), (u_1, u_2))$ is said to be a weak solution of (3.8) if $((v_1 + v_2), (b_1 + b_2))$ is a weak solution of (1.1) and (1.2) with initial data $(h_1 + h_2, k_1 + k_2)$.

It then follows from Theorem 3.1 that

THEOREM 3.2. The vector functions $((v_1, v_2), (b_1, b_2)) \in \mathcal{L}^{p,q}(S_T)^4$, $2 \le p$, $q \le \infty$, are weak solutions of (3.8) if and only if they are solutions of the following integral equations:

$$v_{1} + B_{1}(v_{1}, v_{1}) - \frac{1}{\rho\mu}B_{1}(b_{1}, b_{1}) = v_{1}^{0},$$

$$v_{2} + B_{1}(v_{2}, v_{2}) + B_{1}(v_{1}, v_{2}) + B_{1}(v_{2}, v_{1}) - \frac{1}{\rho\mu}[B_{1}(b_{2}, b_{2}) + B_{1}(b_{1}, b_{2}) + B_{1}(b_{2}, b_{1})] = v_{2}^{0},$$

$$b_{1} + B_{2}(v_{1}, b_{1}) - B_{2}(b_{1}, v_{1}) = b_{1}^{0},$$

$$b_{2} + B_{2}(v_{2}, b_{2}) + B_{2}(v_{1}, b_{2}) + B_{2}(v_{2}, b_{1}) - [B_{2}(b_{2}, v_{2}) + B_{2}(b_{1}, v_{2}) + B_{2}(b_{2}, v_{1})] = b_{2}^{0},$$
(3.9)

where

$$v_i^0 = \Gamma_1 * h_i, \qquad b_i^0 = \Gamma_2 * k_i, \quad i = 1, 2.$$
 (3.10)

Now, let us introduce Leray's approximating system. Let $\alpha(x)$ be a C^{∞} nonnegative, compact supported function on \mathbb{R}^n with integral equal to 1, $\alpha_{\varepsilon}(x) = \varepsilon^{-n}\alpha(\varepsilon^{-1}x)$. Denote the modifying function of u(x,t) by $u^{\#}(x,t)$, i.e., $u^{\#} = \alpha_{\varepsilon} * u$. For each ε , consider the following approximating system

$$L_1 v_1 + (\nabla u) v_1^{\#} - \frac{1}{\rho \mu} (\nabla b_1) b_1^{\#} + \nabla p_1 = 0$$
(3.11)

$$L_{1}v_{2} + \nabla(v_{1} + v_{2})v_{2}^{\#} + (\nabla v_{2})v_{1}^{\#} - \frac{1}{\rho\mu}((\nabla b_{2})b_{2}^{\#} + (\nabla b_{2})b_{1}^{\#} + (\nabla b_{1})b_{2}^{\#}) + \nabla p_{2} = 0,$$
(3.12)

$$L_2 b_1 + (\nabla b_1) v_1^{\#} - (\nabla v_1) b_1^{\#} + \nabla q_1 = 0, \qquad (3.13)$$

$$L_{2}b_{2} + (\nabla b_{2})v_{2}^{\#} + (\nabla b_{2})v_{1}^{\#} + (\nabla b_{1})v_{2}^{\#} - (\nabla v_{2})b_{2}^{\#} - (\nabla v_{2})b_{1}^{\#} - (\nabla v_{1})b_{2}^{\#} + \nabla q_{2} = 0,$$
(3.14)

div
$$v_i = 0$$
, div $b_i = 0$, $i = 1, 2$, (3.15)

$$v_i(x,0) = v_i^{'^{\#}}(x), \qquad b_i(x,0) = b_i^{'^{\#}}(x), \quad i = 1,2,$$
(3.16)

where $v'_i, b'_i, i = 1, 2$, are partitions of initial data v_0, b_0 , respectively, in the sense of Lemma 3.1, i.e., $v_0 = v'_1 + v'_2$, $b_0 = b'_1 + b'_2$. From Lemma 3.1, we have

$$\begin{aligned} \|v_{1}^{'\#}\|_{n} &\leq \|v_{1}^{'}\|_{n} \leq cs^{1-(p/n)} \|v_{0}\|_{n}, \\ \|v_{2}^{'\#}\|_{2} &\leq \|v_{2}^{'}\|_{2} \leq cs^{1-(p/2)} \|v_{0}\|_{2}, \\ \|b_{1}^{'\#}\|_{n} &\leq \|b_{1}^{'}\|_{n} \leq cs^{1-(p/n)} \|b_{0}\|_{n}, \\ \|b_{2}^{'\#}\|_{2} &\leq \|b_{2}^{'}\|_{2} \leq cs^{1-(p/2)} \|b_{0}\|_{2}. \end{aligned}$$

$$(3.17)$$

4. Some lemmas. In this section, we present some lemmas without providing much of the details of their proofs for the arguments involved are similar to those used in [1]. First, we consider (3.11), (3.13), and (3.15) with corresponding data $v_1(x,0) = v_1'^{\#}$,

 $b_1(x,0) = b_1^{'\#}$. The problem is equivalent to the following integral equations (cf. [2])

$$v_1 + B_1(v_1, v_1^{\#}) - \frac{1}{\rho \mu} B_1(b_1, b_2^{\#}) = v_1^{0^{\#}},$$

$$b_1 + B_2(v_1, b_1^{\#}) - B_2(b_1, v_1^{\#}) = b_1^{0^{\#}},$$
(4.1)

where $v_1^{0\#}$, $v_2^{0\#}$ are defined by (3.10) with h_i , k_i being replaced by $v_1'^{\#}$, $b_1'^{\#}$, respectively. Denote $u_1 = (v_1, b_1)$, the solution of (4.1). Define, for s > 0, and a function $w, w^s = w$ if |w| < s, w = 0 otherwise. We have the following lemma: **LEMMA 4.1.** The system (4.1), including the limit case, i.e., when $u_1 = u_1^{\#}$, $(v_1^0, b_1^0) = (v_1^{0\#}, b_1^{0\#})$, admits a unique solution $u_1 = (v, b)$, for all t, satisfying

$$||u_1^*||_n(\infty) \le c S^{1-(p/n)} ||u_1^0||_p^{p/n},$$
(4.2)

provided that $s^{1-(p/n)} \|u_1^0\|_p^{p/n} < \varepsilon_0$ *, where* $u_1^0 = (v_1^0, b_1^0)$ *, and*

$$||u_1^*||_p(\infty) \le c \max\left(s^{1-(p/n)} ||u_1^0||_p^{p/n}, ||(u_1^0)^s||_p\right),\tag{4.3}$$

provided that $\max(s^{1-(p/n)} ||u_1^0||_p^{p/n}, ||(u_1^0)^s||_p) < \varepsilon_0$, where $(u_1^0)^s = ((v_1^0)^s, (b_1^0)^s)$, ε_0 is a fixed and a small constant and c depends only on ε_0 .

PROOF. The proof is a direct extension of that of [1, Lem. III.1].

LEMMA 4.2. Let $u'_1 = (v'_1, b'_1)$ be chosen such that $||(v'_1, b'_1)||_p$ is so small that the existence of solution u_1 is assured by Lemma 4.1 and such that, for all t,

$$||u_1^*||_n < a_0 < c_0^{-1}, \tag{4.4}$$

where c_0 is an independent constant. Suppose that $u_2 = (v_2, b_2)$ is a solution of (3.12), (3.14), (3.15), and (3.16) and suppose that ∇v_2 , ∇b_2 , $(\partial/\partial t)v_2$, $(\partial/\partial t)b_2 \in L^2(S_T)$. Then u_2 satisfies the following estimate:

$$\|u_{2}(t)\|_{2}^{2} + 2(1 - c_{0}a_{0})\int_{0}^{t}\|\nabla u_{2}\|\|_{2}^{2}dt \le \|u_{2}(0)\|_{2}^{2},$$
(4.5)

where

$$|u_{2}|_{2}^{2} = \left(\|v_{2}\|_{2}^{2} + \frac{1}{\rho\mu} \|b_{2}\|_{2}^{2} \right),$$

$$|\|\nabla u_{2}\||_{2}^{2} = \left(\nu \|\nabla v_{2}\|_{2}^{2} + \frac{1}{\rho\mu} \|\nabla b_{2}\|_{2}^{2} \right).$$
(4.6)

PROOF. Multiplying (3.12) and (3.14) by v_2 , b_2 , respectively and integrating over \mathbb{R}^n , we get

$$\frac{1}{2} \frac{d \|v_2\|^2}{dt} + v \|\nabla v_2\|_2^2 + ((\nabla v_1)v_2^{\#}, v_2) \\ - \frac{1}{\rho \mu} \Big[((\nabla b_1)b_2^{\#}, v_2) + ((\nabla b_2)b_1^{\#}, v_2) + ((\nabla b_2)b_2^{\#}, v_2) \Big] = 0,$$
(4.7)

$$\frac{1}{2} \frac{d\|b_2\|^2}{dt} + \lambda \|\nabla b_2\|_2^2 + ((\nabla b_1)v_2^{\#}, b_2) \\ - \left[((\nabla v_1)b_2^{\#}, b_2) + ((\nabla v_2)b_2^{\#}, b_2) - ((\nabla v_2)b_1^{\#}, b_2) \right] = 0.$$
(4.8)

Note that, for functions *a*, *b*, *c*, and exponents *r*, *n*, 2 such that (1/r) + (1/n) + (1/2) = 1, we have

$$\left| \left((\nabla a)b,c \right) \right| \le \|\nabla a\|_2 \|b\|_r \|c\|_n.$$
(4.9)

Multiplying (4.8) by $(1/\rho\mu)$ and adding the resulting equation to (4.7), we obtain

$$\frac{1}{2} \frac{d}{dt} | (v_2, b_2) |^2 + | \| (\nabla v_2, \nabla b_2) \| |_2^2
\leq c_1 (\| v_1 \|_n + \| b_1 \|_n) (\| \nabla v_2 \|_2^2 + \| \nabla b_2 \|^2)
\leq c_2 (\| v_1 \|_n + \| b_1 \|_n) | \| (v, b) \| |_2^2.$$
(4.10)

It is then standard to obtain (4.5).

Now, let us consider the existence of a weak solution of (3.12), (3.14), (3.15), and (3.16). It is easy to see that the system is equivalent to the following

$$v_2 + \mathcal{B}_1(u_1, u_2) = v_2^{0\#},$$

$$b_2 + \mathcal{B}_2(u_1, u_2) = b_2^{0\#},$$
(4.11)

where

$$\mathfrak{B}_{1}(u_{1}, u_{2}) = B_{1}(v_{2}, v_{2}^{\#}) + B_{1}(v_{1}, v_{2}^{\#}) + B_{1}(v_{2}, v_{1}^{\#}) - \frac{1}{\rho\mu}B_{1}(b_{2}, b_{2}^{\#}) + B_{1}(b_{1}, b_{2}^{\#}) + B_{1}(b_{2}, b_{1}^{\#}),$$

$$\mathfrak{B}_{2}(u_{1}, u_{2}) = B_{2}(v_{2}, b_{2}^{\#}) + B_{2}(v_{1}, b_{2}^{\#}) + B_{2}(v_{2}, b_{1}^{\#}) - B_{2}(b_{2}, v_{2}^{\#}) + B_{2}(b_{1}, v_{2}^{\#}) + B_{2}(b_{2}, v_{1}^{\#}).$$

$$(4.12)$$

LEMMA 4.3. If T is suitably small, then there exists a solution u_2 of (4.11) such that

$$||u_2^*||_2(T) < \infty. \tag{4.13}$$

PROOF. Applying the standard estimate on E^i , the definition of B_i (cf. (2.6)) and the Hardy-Littlewood-Sobolov potential inequality we can prove that

$$||\mathfrak{B}_{i}(u_{1},u_{2})||_{2}(T) \leq c \left(\varepsilon^{-n/2} ||u_{2}^{*}||_{2}(T) + ||u_{1}^{*}||_{n}(T)\right) ||u_{2}^{*}||_{2}(T), \quad i = 1, 2.$$
(4.14)

Taking $\varepsilon^{-n/2}T^{1/2}$ and $\|u_1^*\|_n$ small enough, we can apply Lemma 3.2 to obtain the existence of u_2 .

Using the arguments in the proofs of Lemmas [1, III.3, III.4], one can similarly prove the next two lemmas.

LEMMA 4.4. Let $u_1(x,t) = (v_1,b_1)$ be the solution obtained in Lemma 4.1 solving (4.1). Then, for all T > 0 and all $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$, we have

$$||D^{\alpha}u_{1}||_{n}(S_{T}) < \infty,$$

$$||D_{t}D^{\alpha}u_{1}||_{n}(S_{T}) < \infty.$$
(4.15)

LEMMA 4.5. Consider the following integral equations of unknown $u_2 = (v_2, b_2)$:

$$v_2 + \mathcal{B}_1(u_1, u_2) = F_1(x, t),$$

$$b_2 + \mathcal{B}_2(u_1, u_2) = F_2(x, t),$$
(4.16)

where \mathfrak{B}_i , i = 1, 2 are defined in (4.12), u_1 is the solution of (4.1), and F_1 , F_2 are functions satisfying

$$||D^{\alpha}F_{i}||_{2}(S_{T}) < \infty, \qquad ||D_{t}D^{\alpha}F_{i}||_{2}(S_{T}) < \infty.$$
 (4.17)

If we denote T > 0 the existence interval for t of solution of (4.16) by the standard fixed point argument, then

$$||D^{\alpha}u_{2}||_{2}(S_{T}) < \infty,$$
 (4.18)

$$||D_t D^{\alpha} u_2||_2(S_T) < \infty.$$
(4.19)

Using the above estimates, we can prove the following theorem.

LEMMA 4.6. The solution obtained in Lemma 4.3 can be extended to all time t > 0 and it satisfies (4.5) for all t.

PROOF. We only give a sketch of the proof here. The existence time *T* obtained in Lemma 4.3 by the standard fixed point argument depends only on the L^2 norm of the initial data and $||u_1^*||_n$. Lemma 4.2 implies that $||u_2(t)||_2$ is uniformly bounded by the corresponding norm of the initial data when u_2 satisfies the regularity conditions of Lemma 4.2, which is guaranteed by Lemmas 4.4 and 4.5. Therefore, (4.5) holds for all *t* by moving from [0,T] to [T,2T] to [2T,3T] and so on. And then the interval of existence can be extended to $(0, \infty)$.

5. The global existence theorem. In this section, we establish some a priori estimate for the solution of (4.11) and obtain, by following Calderón's procedure [1], the global existence and uniqueness of solution of (1.1) and (1.2).

To adapt Leray's argument [8] to prove Lemmas 5.2 and 5.3 that we state later, we need to establish the following a priori estimate.

LEMMA 5.1. For a C^{∞} function $\beta(x)$ satisfying $\beta(x) = 1$, if |x| > N; $\beta(x) = 0$, if |x| < N/2, and $\|\nabla \beta\| \le C/N$, the solution u_2 of (4.11) satisfies the following inequality

$$\frac{1}{2} \int_{\mathbb{R}^{n}} \beta(x) \left[|v_{2}|^{2} + \frac{1}{\rho\mu} |b_{2}|^{2} \right] dx + \int_{0}^{t} \int_{\mathbb{R}^{n}} \beta(x) \left[v |\nabla v_{2}|^{2} + \frac{1}{\rho\mu} |\nabla b_{2}|^{2} \right] dx dt$$

$$\leq \frac{1}{2} \int_{\mathbb{R}^{n}} \beta(x) \left[|v_{2}(0)|^{2} + \frac{1}{\rho\mu} |b_{2}(0)|^{2} \right] dx + C \left(\frac{1+t}{N} \right) |u_{2}(0)|^{2}_{2} dx dt \quad (5.1)$$

$$+ \frac{C}{N} ||u_{1}||_{n,\infty}(T) |u_{2}(0)|^{2}_{2} + C ||\beta u_{1}||_{n,\infty}(T) |u_{2}(0)|^{2}_{2},$$

where $|u_2|_2$ is defined by (4.6).

PROOF. Multiplying equations (3.12) and (3.14) by βv_2 and βb_2 , respectively, and integrating over \mathbb{R}^n , we get

$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^{n}} \beta(x) |v_{2}|^{2} dx v (\nabla v_{2}, \nabla(\beta v_{2})) + ((\nabla v_{1})v_{2}^{\#}, \beta v_{2})
+ ((\nabla v_{2})v_{2}^{\#}, \beta v_{2}) + ((\nabla v_{2})v_{1}^{\#}, \beta v_{2})
- \frac{1}{\rho \mu} \Big[((\nabla b_{1})b_{2}^{\#}, \beta v_{2}) + ((\nabla b_{2})b_{2}^{\#}, \beta v_{2}) + ((\nabla b_{2})b_{1}^{\#}, \beta v_{2}) \Big]
- \int_{\mathbb{R}^{n}} (\nabla \beta, v_{2})p_{2} dx = 0,$$
(5.2)

$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^{n}} \beta(x) |b_{2}|^{2} dx + \lambda (\nabla b_{2}, \nabla (\beta b_{2})) + ((\nabla b_{1})v_{2}^{\#}, \beta b_{2})
+ ((\nabla b_{2})v_{2}^{\#}, \beta b_{2}) + ((\nabla b_{2})v_{1}^{\#}, \beta b_{2})
- \left[((\nabla v_{1})b_{2}^{\#}, \beta b_{2}) + ((\nabla v_{2})b_{2}^{\#}, \beta b_{2}) + ((\nabla v_{2})b_{1}^{\#}, \beta b_{2}) \right]
+ \int_{\mathbb{R}^{n}} (\nabla \beta, b_{2})q_{2} dx = 0.$$
(5.3)

Let us now separately estimate terms on the left-hand sides of (5.2) and (5.3). First, we deal with the terms on the left side of (5.2). For the second term, we have

$$\nu(\nabla v_2, \nabla(\beta v_2)) \ge \nu \int_{\mathbb{R}^n} \beta |\nabla v_2|^2 dx - \nu(\nabla v_2, \nabla \beta v_2)$$

$$\ge \nu \int_{\mathbb{R}^n} \beta |\nabla v_2|^2 dx - \frac{C}{N} \|\nabla v_2\|_2 \|v_2\|_2.$$
(5.4)

For the third term, we apply Hölder's inequality for exponents, *r*, 2, *n*, to get

$$((\nabla v_1)v_2^{\#}, \beta v_2) = -((\nabla (\beta v_2))v_2^{\#}, v_1) = -((\nabla \beta v_2)v_2^{\#}, v_1) - ((\nabla v_2)v_2^{\#}, \beta v_1)$$

$$\leq \frac{C}{N} \|v_1\|_n \|v_2\|_r \|v_2^{\#}\|_2 + \|\beta v_1\|_n \|\nabla v_2\|_2 \|v_2^{\#}\|_r$$

$$\leq \frac{C}{N} \|v_1\|_n \|\nabla v_2\|_2^2 + \|\beta v_1\|_n \|\nabla v_2\|_2^2,$$

$$(5.5)$$

where 1/r = (1/2) - (1/n). For the fourth term, integration by parts, Hölder's inequality, and then Sobolov's inequality yield

$$\left| \left((\nabla v_2) v_2^{\#}, \beta v_2 \right) \right| = \left| \frac{1}{2} ((v_2 \nabla \beta) v_2^{\#}, v_2) \right| \\ \leq \frac{C}{N} \| v_2 \|_2 \Big(\| \nabla v_2 \|_2^2 + \| v_2 \|_2^2 \Big).$$
(5.6)

For the fifth term, we have

$$\left| \left((\nabla v_2) v_1^{\#}, \beta v_2 \right) \right| \le \|\beta v_1\|_n \|\nabla v_2\| \|v_2\|.$$
(5.7)

The estimates on the sixth and eighth terms can be obtained, respectively, as

$$\left|\frac{1}{\rho\mu}((\nabla b_{1})b_{2}^{\#},\beta v_{2})\right| \leq \frac{C}{N}\|b_{1}\|_{n}\|\nabla v_{2}\|_{2}\|b_{2}\|_{2} + C\|\beta b_{1}\|_{n}\|\nabla v_{2}\|_{2}\|\nabla b_{2}\|_{2},$$

$$\left|\frac{1}{\rho\mu}((\nabla b_{2})b_{1}^{\#},\beta v_{2})\right| \leq C\|\beta b_{1}\|_{n}\|\nabla b_{2}\|_{2}\|\nabla v_{2}\|_{2}.$$
(5.8)

We do not need to estimate the seventh term because it will be canceled with part of the seventh term in (5.3).

Now, let us check terms on the left-hand side of (5.3). Similarly, for the second term, we have

$$\lambda(\nabla b_2, \nabla(\beta b_2)) \ge \lambda \int_{\mathbb{R}^n} \beta |\nabla b_2|^2 \, dx - \frac{C}{N} \|\nabla b_2\|_2 \|b_2\|_2.$$
(5.9)

For the third term, we have

$$\left((\nabla b_1)v_2^{\#},\beta b_2\right) \leq \frac{C}{N} \|b_1\|_n \|\nabla v_2\|_2 \|\nabla b_2\|_2 + \|\beta b_1\|_n \|\nabla v_2\|_2 \|b_2\|_2.$$
(5.10)

For the fourth term, we get

$$\left|\left((\nabla b_2)v_2^{\#},\beta b_2\right)\right| \leq \frac{C}{N} \|b_2\|_2 \Big(\|\nabla b_2\|_2^2 + \|b_2\|_2^2\Big).$$
(5.11)

For the fifth and sixth terms, we have, respectively,

$$\left| \left((\nabla b_2) v_1^{\#}, \beta b_2 \right) \right| \le \|\beta v_1\|_n \|\nabla b_2\| \|b_2\|,$$

$$\left| \left((\nabla v_1) b_2^{\#}, \beta b_2 \right) \right| \le \frac{C}{N} \|v_1\|_n \|\nabla b_2\|_2 \|b_2\|_2 + C \|\beta v_1\|_n \|\nabla b_2\|_2 \|b_2\|_2.$$

$$(5.12)$$

The seventh term

$$\left|-\left((\nabla v_{2})b_{2}^{\#},\beta b_{2}\right)-\left((\nabla b_{2})b_{2}^{\#},\beta v_{2}\right)\right| \leq \frac{C}{N}\|v_{2}\|_{2}\left(\|\nabla b_{2}\|^{2}+\|b_{2}\|_{2}^{2}\right).$$
(5.13)

A multiple of the second term on the left-hand side of the above inequality cancels out the seventh term on the left-hand side of (5.2). The estimate on the eighth term can be obtained as

$$\left| \left((\nabla v_2) b_1^{\#}, \beta b_2 \right) \right| \le C \|\beta b_1\|_n \|\nabla v_2\|_2 \|\nabla b_2\|_2.$$
(5.14)

Now, multiplying (5.3) by $1/\rho\mu$, adding the resulting equation to (5.2), and applying the above estimates yield

$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^{n}} \beta(x) \left(|v_{2}|^{2} + \frac{1}{\rho\mu} |b_{2}|^{2} \right) + \int_{\mathbb{R}^{n}} \beta(x) \left(v |\nabla v_{2}|^{2} + \frac{1}{\rho\mu} |b_{2}|^{2} \right) dx
\leq \frac{C}{N} \|u_{1}\|_{n} \|\nabla u_{2}\|_{2} \|u_{2}\|_{2} + C \|\beta u_{1}\|_{n} \|\nabla u_{2}\|_{2} \|\nabla u_{2}\|_{2}
+ \int_{\mathbb{R}^{n}} (\nabla \beta, v_{2}) p_{2} dx + \int_{\mathbb{R}^{n}} (\nabla \beta, v_{2}) q_{2} dx.$$
(5.15)

We use Riesz transformation to express p_2 and q_2 as

$$p_{2} = R_{i}R_{j}\left(v_{1i}(v_{2})_{j}^{\#} + v_{2i}(v_{2})_{j}^{\#} + v_{2i}(v_{1})_{j}^{\#} - \frac{1}{\rho\mu}b_{1i}(b_{2})_{j}^{\#} + b_{2i}(b_{2})_{j}^{\#} + b_{2i}(b_{1})_{j}^{\#}\right),$$
(5.16)
$$q_{2} = R_{i}R_{j}\left(b_{1i}(v_{2})_{j}^{\#} + b_{2i}(v_{2})_{j}^{\#} + b_{2i}(v_{1})_{j}^{\#} - v_{1i}(b_{2})_{j}^{\#} - v_{2i}(b_{2})_{j}^{\#} - v_{2i}(b_{1})_{j}^{\#}\right).$$

Since R_i is a continuous map from L^p to itself for p > 1, we have

$$\left| \int_{\mathbb{R}^{n}} (\nabla \beta, v_{2}) p_{2} dx + \int_{\mathbb{R}^{n}} (\nabla \beta, v_{2}) q_{2} dx \right| \\ \leq \frac{C}{N} \|u_{1}\|_{n} \|\nabla u_{2}\|_{2} \|u_{2}\|_{2} + C \|\beta u_{1}\|_{n} \|\nabla u_{2}\|_{2} \|\nabla u_{2}\|_{2}.$$
(5.17)

Plugging this inequality into (5.15) and integrating over [0, t], we complete the proof of the lemma.

Applying Lemma 5.1 and following the procedure adapted in [1], we can similarly prove the next two lemmas.

LEMMA 5.2. (1) Let $u'_1(0) = (v'_1(0), b'_1(0))$ be the partition by Lemma 3.1 such that Lemma 4.2 holds. There is a T > 0, depending only on the norm of $u'_1(0)$,

$$||u_1'(0)|| = ||u_1'(0)||_n + ||u_1'(0)||_{n/\beta}, \quad 0 < \beta < 1,$$
(5.18)

such that $u_1(x,t)$, as a family depending on parameter ε and 0 < t < T, is compact in L^n ; (2) the size of T is determined by

$$T^{(1-\beta)/2}\left(s^{1-(\beta p/n)} \| u(0) \|_{p}^{\beta p/n} + s^{1-(\beta/n)} \| u(0) \|_{p}^{p/n}\right) < \varepsilon_{0};$$
(5.19)

(3) the following inequalities hold

$$\begin{aligned} ||u_{1}^{*}||_{n} &\leq c_{1}(\varepsilon_{0}) \left(s^{1-(\beta p/n)} ||u(0)||_{p}^{\beta p/n} + s^{1-(p/n)} ||u(0)||_{p}^{p/n} \right), \\ ||u_{1}^{*}||_{p} &\leq c_{2}(\varepsilon_{0}) \left(s^{1-(\beta p/n)} ||u(0)||_{p}^{\beta p/n} + ||u^{s}(0)||_{p} \right). \end{aligned}$$

$$(5.20)$$

LEMMA 5.3. The solution $u_2(x,t) = (v_2, b_2)$ of (3.12), (3.14), (3.15), and (3.16), as a family depending on the parameter ε , contains a subfamily that converges in L^2 of any subset S_T , for n = 3, 4, T > 0.

We are now ready to state and prove the main result of this paper.

THEOREM 5.1. Assume that the initial data $(v_0, b_0) \in L^p(\mathbb{R}^n)$, 2 , <math>n = 3, 4, div $v_0 = \text{div } b_0 = 0$. Then there exists a weak solution u(x,t) = (v(x,t), b(x,t)) of (1.1) and (1.2) for all time t, such that, for 0 < t < T, where T can be arbitrarily large, we have

$$\|u\|_{p,2} < C, \tag{5.21}$$

where the constant *C* depends on *T*, $||u_0||_p$.

PROOF. From Lemmas 5.2 and 5.3, we have a sequence of solutions u_{1m} , u_{2m} of (3.11), (3.12), (3.13), (3.14), (3.15), and (3.16) such that u_{1m} , u_{2m} converge in $L^n(S_T)$, $L^2(S_T)$ to u_1 , u_2 , respectively. Sending m to ∞ , we see that $u_1 + u_2$ is a weak solution of (3.9) for some T > 0.

By Lemma 5.2, we have

$$||u_{1m}^*||_p \le c_2(\varepsilon_0) \Big(s^{1-(\beta p/n)} ||u(0)||_p^{\beta p/n} + ||u^s(0)||_p \Big), \quad [0,T].$$
(5.22)

Fatou's theorem implies that

$$||u_1^*||_{p,2} \le T^{1/2} c_2(\varepsilon_0) \Big(s^{1-(\beta p/n)} ||u(0)||_p^{\beta p/n} + ||u^s(0)||_p \Big), \quad [0,T].$$
(5.23)

Now, for u_{2m} , from a priori estimate for u_{2m} , we have

$$\|u_{2m}\|_{p,2} \le c_1 (\|\nabla u_{2m}\|_{2,2} + \|u_{2m}\|_2) \le c_2 \|u_{2m}(0)\|_2 \le c_2 s^{1-(p/2)} \|u(0)\|_p^{p/2}.$$
(5.24)

Fatou's theorem implies that

$$||u_2||_{p,2} \le c_2 s^{1-(p/2)} ||u(0)||_p^{p/2}.$$
(5.25)

(5.23) and (5.25) implies (5.21).

Due to a priori estimates, we can extend the interval of existence of solution u from [0,T] to $[T,T_1]$, from $[T,T_1]$ to $[T_1,T_2]$, and so on in such a way that, in each step,

we make sure that $T_{k+1} - T_k > \delta_0$ —a fixed constant. Therefore, we obtain the weak solution *u* for all *t*.

For $n \ge 3$, adapting Calderón's approach [1], one can also prove the global existence result for system (1.1) and (1.2) as long as the L^n norm of the initial data is suitably small.

REFERENCES

- C. P. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in L^p, Trans. Amer. Math. Soc. **318** (1990), no. 1, 179-200. MR 90k:35199. Zbl 707.35118.
- [2] F. Chen, P. Wang, and C. Qu, On the differential system governing flows in magnetic field with data in L^p, Internat. J. Math. Math. Sci. 21 (1998), no. 2, 299–30. Zbl 908.35058.
- [3] P. Constantin and C. Foias, *Navier-Stokes equations*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1988. MR 90b:35190. Zbl 687.35071.
- [4] E. B. Fabes, B. F. Jones, and N. M. Riviere, *The initial value problem for the Navier-Stokes equations with data in L^p*, Arch. Rational Mech. Anal. 45 (1972), 222-240. MR 47 5463. Zbl 254.35097.
- [5] J. K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 89g;58059. Zbl 642.58013.
- [6] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, Heidelberg, New York, 1981. MR 83j:35084. Zbl 456.35001.
- [7] R. Hide, On planetary atomospheres and interiors, Mathematical Problems in the Geophysical Sciences I (Providence, RI) (W. H. Reid, ed.), Amer. Math. Soc., 1971, pp. 229-353.
- [8] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248.
- C. Qu, S. Song, and P. Wang, On the equations for the flow and the magnetic field within the earth, J. Math. Anal. Appl. 187 (1994), no. 3, 1003–1018. MR 95k:86009. Zbl 812.76091.
- M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math. 36 (1983), no. 5, 635-664. MR 85k:76042. Zbl 524.76099.
- [11] R. Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1983. MR 86f:35152. Zbl 522.35002.
- [12] _____, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, Heidelberg, Berlin, 1988. MR 89m:58056. Zbl 662.35001.

BATES AND CHEN: DEPARTMENT OF MATHEMATICS, BRIGHAM YOUNG UNIVERSITY, PROVO, UTAH 84602, USA

WANG: DEPARTMENT OF MATHEMATICS, PENN STATE UNIVERSITY, SCHUYLKILL HVEN, PA 17972, USA

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www .hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http:// mts.hindawi.com/ according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru