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Abstract. For a complete measure space (X,Σ,µ), we give conditions which force
Lp(X,µ), for 1 ≤ p < ∞, to be isometrically isomorphic to 	p(Γ) for some index set Γ
which depends only on (X,µ). Also, we give some new characterizations which yield the
inclusion Lp(X,µ)⊂ Lq(X,µ) for 0<p < q.
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1. Introduction. Suppose X is a nonempty set, Σ is σ -algebra of subsets of X, µ a
positive measure on Σ. For each positive number p, let Lp(X,µ) denote the space of all
real valued Σ-measurable functions f on X such that

∫
x | f |p dµ <∞, and L∞(X,µ)

denote the space of all essentially bounded, real valued Σ-measurable functions on
X. In [2, 3, 5] some characterizations of the positive measure µ on (X,Σ) for which
Lp(X,µ)⊆ Lq(X,µ), 0<p < q, are given. The purpose of this note is to give some new
characterizations of such measure µ which yield the inclusion Lp(X,µ)⊆ Lq(X,µ) for
0 < p < q. Our proofs are more transparent, direct, and work even if the measure µ
is not σ -finite. Further we show that in a situation when Lp(X,µ)⊆ Lq(X,µ) for some
pair p,q with 0 < p < q, then Lp(X,µ), for 1 ≤ p <∞, is isometrically isomorphic to
	p(Γ) for some index set Γ which depends only on the measure space (X,Σ,µ).

2. Preliminaries. Throughout the following (X,Σ,µ) is a positive measure space.
We assume that the measure µ is complete. For the sake of simplicity, we write Lp(µ)
for Lp(X,µ) and L∞(µ) for L∞(X,µ). A set A∈ Σ is called an atom if µ(A) > 0 and for
every E ⊂ A with E ∈ Σ, either µ(E) = 0 or µ(E) = µ(A). A measurable subset E with
µ(E) > 0 is nonatomic if it does not contain any atom.We say that two atomsA1 andA2

are distinct if µ(A1∩A2) = 0. We say that two atoms A1 and A2 are indistinguishable
if µ(A1∩A2) = µ(A1) = µ(A2). A measurable space (X,Σ,µ) is said to be atomic if
every measurable set of positive measure contains an atom. For more information on
measurable spaces and related topics we refer to [1, 2, 4]. We collect some interesting
and useful properties of atomic and nonatomic sets in the following proposition.

Proposition 2.1. Let (X,Σ,µ) be a complete measure space.
(a) If {An} is a sequence of distinct atoms, then there exists a sequence {Bn} of disjoint

atoms such that for each n, Bn ⊆An and ∪∞n=1An =∪∞n=1Bn.
(b) If {An} is a sequence of distinct atoms, and A is an atom contained in ∪An, then

there exists a uniquem such that A is indistinguishable from Am.
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(c) If A is a nonatomic set of positive measure, then there exists a sequence {En} of
disjoint measurable subsets of A of positive measure such that µ(En)→ 0 as n→∞.
(d) If f ∈ Lp(µ) andA is an atom inΣ, then f is constant almost everywhere (a.e.) onA.

Proof. (a) Let B1 =A1 and Bn =An\∪n−1k=1Ak. Obviously Bi’s are disjoint and∪An =
∪Bn. Also µ(Bn) = µ(An\∪n−1k=1 Ak) is either zero or is equal to µ(An). If µ(Bn) = 0,
then µ(An)= µ(An∩(∪n−1k=1Ak))≤

∑n−1
k=1 µ(An∩Ak). Since Ak’s are distinct atoms, this

implies µ(An)= 0 which is absurd. Hence µ(Bn)= µ(An).
(b) Suppose A is contained in ∪An. From part (a) of the proposition, there exists

a sequence {Bn} of disjoint atoms such that Bn ⊆ An for each n and ∪An = ∪Bn.
Obviously

µ(A)=
∞∑
n=1
µ(A∩Bn). (2.1)

Clearly µ(A∩Bn) is either zero or µ(A) for eachn. Hence by (2.1), there exists a unique
m such that µ(A∩Bm) = µ(A). Since A and Bm are indistinguishable, Bm ⊂ Am, it
follows that A and Am are indistinguishable.
(c) Suppose A is a nonatomic set of positive measure and µ(A) = δ. There exists

a measurable subset E1 of A such that 0 < µ(E1) < δ/2. Since A\E1 is nonatomic,
there exists a measurable subset E2 of A\E1 such that 0< µ(E2) < δ/4. Having chosen
E1,E2, . . . ,En−1, choose a measurable subset En of A\(E1∪E2∪···∪En−1) such that
µ(En) < σ/2n. Obviously En’s are disjoint and µ(En)→ 0 as n→∞.
(d) Since A is an atom, it is enough to show that if f is integrable then f is constant

a.e. on A. Choose a real number c such that cµ(A) = ∫Af(x)dµ. Let B = {x ∈ A |
f(x)≠ c}. We claim µ(B)= 0. Obviously B = {x ∈A | f(x) < c}∪{x ∈A | f(x) > c}.
First, we show that µ({x ∈A | f(x) > c})= 0. We can use a similar argument to show
that µ({x ∈ A | f(x) > c}) = 0. We note that {x ∈ A | f(x) > c} = ∪∞i=1Bi∪B0, where
Bi = {x ∈ A | c+1/(1+ i) ≤ f(x) < c+ (1/i)} and B0 = {x ∈ A | f(x) ≥ c+1}. Ob-
viously all Bi’s are disjoint. Since A is an atom, at most one of the Bi’s can have a
positive measure. If Bk is of positive measure for some k, 0 ≤ k < ∞, then cµ(A) =∫
Af(x)dµ(x)=

∫
Bk f (x)dx ≥ (c+(1/(k+1)))µ(A). This is absurd. Therefore, µ(Bi)=

0 for all i≥ 0. Hence {x ∈A | f(x) > c} is of measure zero. This completes the proof.

The following lemmas are quite useful in the proof of the main result.

Lemma 2.2. Let (X,Σ,µ) be a complete measure space.
(a) If {Bn} is a sequence of measurable sets of positive measure and µ(Bn) → 0 as
n→∞, then there exists a sequence {Cn} of disjoint measurable sets of positive measure
such that µ(Cn)→ 0 as n→∞.
(b) If {En} is a sequence of disjoint measurable sets of positive measure such that
µ(En)→ 0 as n→∞, then for any positive number m> 1 there exists a subsequence
{Eni} of {En} and an increasing sequence {ki} of positive integers such that µ(Eni) ∈
((1/ki)m,(1/ki)m−1].

Proof. (a) Without loss of generality, we may assume that µ(Bn) < 1 for each
n. If for some positive integer k, Bk is nonatomic, by using an argument similar to
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that of Proposition 2.1(c), we can construct a sequence Cn of disjoint measurable
sets of positive measure such that µ(Cn) → 0 as n → ∞. Suppose that Bk is atomic
for each positive integer k, let A1 be an atom contained in B1. Since µ(Bn) → 0 as
n →∞, µ(A1∩Bk) can be positive only for finitely many k > 1. Let n1 be the small-
est positive integer such that µ(A1 ∩ Bn1) = 0. Now choose an atom A2 contained
in Bn1 . Obviously A2 is indistinguishable from A1. Also, µ(A2∩Bk) can be positive
for at most finitely many k greater than n1. Let n2 be the smallest positive integer
greater than n1 such that µ(A2∩Bn2)= 0. Now choose an atom A3 contained in Bn2 .
Clearly A3 is indistinguishable from A1 and A2. Continuing in this fashion, we get a
sequence {Ak} of atoms which are indistinguishable and Ak ⊆ Bnk−1 for each k ≥ 2.
By Proposition 2.1(a), we may choose a sequence {Ek} of disjoint atoms such that
Ek ⊆Ak. Clearly, 0< µ(Ek)= µ(Ak)≤ µ(Bnk−1). This completes the proof of part (a).
(b) Let {En} be a sequence of measurable sets of positive measure such that µ(En)→

0 as n → ∞. Without loss of generality, we may assume that {µ(En)} is a strictly
decreasing sequence. Let m > 1. Let k0 > 2 be a positive integer such that 1/2 <
(k/(k+1))m−1 for all k ≥ k0. Clearly (1/(	+1)m,1/(	+1)m−1]∩((1/	)m,(1/	)m−1]
is nonempty for each 	 ≥ k0. Since µ(En) is decreasing to zero, the set {µ(En) |n≥ 1}
must have a nonempty intersection with an interval ((1/k)m,(1/k)m−1] for some
k ≥ k0. Let k1 be the smallest positive integer greater than k0 such that {µ(En) |
n ≥ 1}∩((1/k1)m,(1/k1)m−1] ≠∅. Let n1 be the smallest positive integer such that
µ(En1) ∈ ((1/k1)m,(1/k1)m−1]. Next choose the smallest integer k2 greater than k1
such that {µ(En) |n>n1}∩((1/k2)m,(1/k2)m−1]≠∅. Let n2 be the smallest integer
greater than n1 such that µ(En2) ∈ ((1/k2)m,(1/k2)m−1]. Continuing inductively in
this way, we can choose strictly increasing sequences of positive integers {ki} and
{ni} such that µ(Eni) ∈ ((1/ki)m,(1/ki)m−1]. This completes the proof of part (b).

Lemma 2.3. If Lp(µ) ⊆ Lq(µ) for 0 < p < q, then there does not exist a disjoint
sequence {En} of measurable sets of positive measure such that µ(En)→ 0 as n→∞.

Proof. Suppose there exists a disjoint sequence {En} of measurable sets of posi-
tive measure such that µ(En)→ 0 as n→∞. Let

m= 3− 3p
p−q =−

3q
p−q . (2.2)

Clearlym> 1. By Lemma 2.2(b), there exists a subsequence {Eni} of {En} and a strictly
increasing sequence of positive integers {ki} such that µ(Eni)∈ ((1/ki)m,(1/ki)m−1].
Define a function f from X into real numbers by f(x) = (1/ki)3/(p−q) if x ∈ Eni and
f(x)= 0 for all x ∉∪∞i=1Eni . Then

∫
X
|f(x)|pdµ =

∞∑
i=1

∫
Eni
|f(x)|pdµ =

∞∑
i=1

(
1
ki

)3p/(p−q)
µ(Eni)

≤
∞∑
i=1

(
1
ki

)3p/(p−q)( 1
ki

)m−1
=

∞∑
i=1

(
1
ki

)2
<∞.

(2.3)
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On the other hand,

∫
X
|f(x)|qdµ =

∞∑
i=1

∫
Eni
|f(x)|qdµ =

∞∑
i=1

(
1
ki

)3q/(p−q)
µ(Eni)

≥
∞∑
i=1

(
1
ki

)3q/(p−q)( 1
ki

)m
=∞.

(2.4)

Thus f ∈ Lp(µ) but f ∉ Lq(µ). This completes the proof of the lemma.

3. Main results. For the sake of clarity, we first start with a definition. For any
nonempty set Γ , and p > 0, we define 	p(Γ) to be the set of all extended real val-
ued functions f on Γ such that f is nonzero only on a countable subset of Γ and∑
α |f(α)|p <∞.
When p ≥ 1, 	p(Γ) becomes a Banach space under the norm defined by ‖ f ‖	p(Γ)=
(
∑
α | f(α) |p)1/p . Now, we are ready to state the main result.

Theorem 3.1. Let (X,Σ,µ) be a complete measure space. The following six condi-
tions are equivalent:
(1) Lp(µ)⊂ Lq(µ) for some pair of real numbers p and q with 0<p < q.
(2) Lp(µ)⊂ L∞(µ) for some p > 0.
(3) Lp(µ)⊂ L∞(µ) for all positive numbers p.
(4) Lp(µ)⊂ Lq(µ) for all p and q with 0<p < q.
(5) There is no sequence {Bn} in Σ such that µ(Bn) > 0 for each n and µ(Bn)→ 0 as
n→∞.
(6) (X,Σ,µ) is atomic with infA∈Πµ(A) > 0, where Π is the set of all atoms in Σ.
Moreover, these statements imply that: for each positive number p ≥ 1, Lp(µ) is iso-

merically isomorphic to 	p(Γ) for some index set Γ which depends only on (X,Σ,µ).

Proof. Since the implication (4) �⇒(1) is obvious, in order to prove the equivalence
of the statements (1) through (6), it is enough to prove the following implications:
(1) �⇒(2), (2) �⇒(3), (3) �⇒(4), (4) �⇒(5), (5) �⇒(6), and (6) �⇒(2).
(1) �⇒(2): suppose that Lp ⊂ Lq for some pair p,q with 0<p < q. We claim Lp ⊂ L∞.

Suppose there is an f in Lp which is not essentially bounded. Then there exists a
strictly increasing sequence {nk} of positive integers such that for each k ≥ 1, the
set Ek =: {x ∈ X | nk ≤ |f(x)| < nk + 1} is of a positive measure. Obviously Ek’s
are disjoint. Since µ(Ek)n

p
k ≤

∫
x |f |pdµ ≤

∫
x |f |pdµ, it follows µ(Ek) → 0. This is a

contradiction in view of Lemma 2.2.
(2) �⇒(3): suppose that Lp(µ) ⊂ L∞(µ) for some p > 0. Let r be any positive real

number. We show Lr (µ) ⊂ L∞(µ). let f ∈ Lr (µ). If A = {x : |f(x)| > 1} is of measure
zero, then obviously f ∈ L∞(µ). Suppose that A is a positive measure. Let g = XAf ,
where XA is the characteristic function of the set A. Clearly, g ∈ Lr (µ) and |g| ≥ 1
a.e. Since |g|r/p ∈ Lp,|g|r/p ∈ L∞. Let M = ess sup|g|r/p . Let ε > 0. Choose δ > 0 such
that (M+δ)p/r −Mp/r < ε. Since {x : |g(x)| > Mp/r +ε} ⊆ {x : |g(x)| > (M+δ)p/r},
and µ({x : |g(x)|r/p >M+δ})= 0, it follows that ess sup|g| ≤Mp/r .
(3) �⇒(4): suppose that Lp ⊂ L∞ for all p > 0. Let g ∈ Lp . Write A= {x : |g(x)|> 1}. If
A is a nonatomic set of positive measure, by Proposition 2.1(c), A contains a disjoint
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sequence {En} of measurable subsets of A of positive measure such that µ(En)→ 0
as n → ∞. As is noted in the proof of Lemma 2.3, we can construct a function f in
Lp which is not in L∞. Hence A contains an atom. Since the measure of A is finite, in
view of Proposition 2.1(a), A cannot contain infinitely many atoms. Therefore, A can
be written as a finite disjoint union of atoms. Suppose that A=∪ni=1θi, where θi’s are
disjoint atoms. By Proposition 2.1(d), g is constant on each θi, Let gθi be the value of
g on θi. Then for any q > p,

∫
X
|g|q du=

∫
X−A

|g|q du+
∫
A
|g|q du

≤
∫
X−A

|g|p du+
n∑
i−1

∣∣gθi
∣∣qµ(θi)

≤
∫
X
|g|p du+

n∑
i−1

∣∣gθi
∣∣qµ(θi) <∞.

(3.1)

Hence Lp ⊂ Lq for q > p.
(4) �⇒(5): this follows from Lemmas 2.2(a) and 2.3.
(5) �⇒(6): Proposition 2.1(c) implies that the space (X,Σ,µ) is atomic. Since atoms

are of positive measure, obviously statement (5) implies that infA∈π µ(A) > 0.
(6) �⇒(2): Suppose (X,Σ,µ) is atomic with infA∈π µ(A) > 0. Let p > 0 and g ∈ Lp(µ).

Suppose B = {x|g(x)| > 1}. If µ(B) = 0, then clearly g ∈ L∞. Suppose µ(B) > 0. Ob-
viously µ(B) is finite. Since infA∈π µ(A) > 0, B cannot contain infinitely many atoms.
Therefore, B can be written as finite disjoint union of atoms. Since g is constant on
each atom, it follows that g ∈ L∞.
Finally, we show that for p ≥ 1, one of the statements (1) through (6) (and hence all

of them) imply statement (7). Let (X,Σ,µ) be a measure space such that Lp(µ)⊆ Lq(µ)
for some 1 ≤ p < q. Let {θi}i∈Γ be the collection of all atoms in X where Γ is some
index set. Let f ∈ Lp(µ) be an arbitrary nonzero element of f . By Proposition 2.1(d)
f is constant almost everywhere on any atom. We denote the value of f on an atom θ
lies in the support of f by fθ . Since the support of f is σ -finite, and by statement (5)
of the theorem any measurable set of finite measure is disjoint union of finitely many
atoms, the support of f can be written as countable union of atoms. Let {θn(f)} be
the set of all atoms that forms the support of f . We define F : Lp(µ)→ 	p(Γ) by

F(f)(γ)=


fθn

(
µ(θn)

)1/p, if θγ = θn(f) for some n,

0, if θγ �∈ {θn(f)}
(3.2)

for any nonzero f in Lp(µ). The function F is well defined since any two functions
that are equal in Lp(µ) are equal almost everywhere and thus share the same support.
It is straightforward to verify that F is a one-to-one linear operator from Lp(µ) into
	p(Γ). Let h ∈ 	p(Γ). Since h is nonzero only on a countable subset Γh of Γ , define f
on X as follows:

f(x)=




h(γ)(
µ(θγ)

)1/p , if x ∈ θγ, γ ∈ Γh,

0, if x �∈
⋃
γ∈Γh

θγ.
(3.3)
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Obviously, f ∈ Lp(µ) and F(f)= h. Thus F is an isomorphism from Lp(µ) onto 	p(Γ).
Further for any f ∈ Lp(µ),

‖F(f)‖p	p(Γ) =
∑
i

∣∣fθi(µ(θi))(1/p)∣∣p =
∑
i
|fθi |pµ(θi)

=
∑
i

∫
θi
|f(x)|pdµ =

∫
X
|f(x)|pdµ = ‖f‖p,

(3.4)

where the sum runs over i∈ Γ such that θi is in the support of f .
Therefore F is an isometry. This completes the proof of the theorem.
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