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Andrijevic¢ (1986) introduced the class of semi-preopen sets in topological spaces. Since
then many authors including Andrijevi¢ have studied this class of sets by defining their
neighborhoods, separation axioms and functions. The purpose of this paper is to pro-
vide the new characterizations of semi-preopen and semi-preclosed sets by defining the
concepts of semi-precontinuous mappings, semi-preopen mappings, semi-preclosed map-
pings, semi-preirresolute mappings, pre-semipreopen mappings, and pre-semi-preclosed
mappings and study their characterizations in topological spaces. Recently, Dontchev
(1995) has defined the concepts of generalized semi-preclosed (gsp-closed) sets and gener-
alized semi-preopen (gsp-open) sets in topology. More recently, Cueva (2000) has defined
the concepts like approximately irresolute, approximately semi-closed, contra-irresolute,
contra-semiclosed, and perfectly contra-irresolute mappings using semi-generalized
closed (sg-closed) sets and semi-generalized open (sg-open) sets due to Bhattacharyya and
Lahiri (1987) in topology. In this paper for gsp-closed (resp., gsp-open) sets, we also intro-
duce and study the concepts of approximately semi-preirresolute (ap-sp-irresolute) map-
pings, approximately semi-preclosed (ap-semi-preclosed) mappings. Also, we introduce the
notions like contra-semi-preirresolute, contra-semi-preclosed, and perfectly contra-semi-
preirresolute mappings to study the characterizations of semi-pre-Tj,2 spaces defined by
Dontchev (1995).

2000 Mathematics Subject Classification: 54A05, 54C08, 54C10, 54D10, 54GO05.

1. Introduction. In the literature the notions of semi [14] (resp., pre [17], « [18])-
continuous mappings, semi [5] (resp., pre [17], « [18])-open mappings, semi [21] (resp.,
pre [12], & [18])-closed mappings, irresolute [10] (resp., preirresolute [23], x-irresolute
[16])-mappings were introduced and studied using semi [14] (resp., pre [17], « [20])-
open sets of and semi [6, 9] (resp., pre [12], « [16, 18])-closed subsets of X. In this
paper, we introduce the concepts of semi-precontinuous mappings, semi-preopen
mappings, semi-preclosed mappings, semi-preirresolute mappings, pre-semipreopen
mappings, and pre-semi-preclosed mappings and study their characterizations in
topological spaces using the semi-preopen sets and semi-preclosed sets due to
D. Andrijevic [3] (note that f-open sets in [1] are the same as the semi-preopen sets of
D. Andrijevic [3]). Recently, in [11], Julian Dontchev has defined the concepts of gener-
alized semi-preclosed (gsp-closed) sets and generalized semi-preopen (gsp-open) sets
in topology. In this paper, using these sets, we also introduce and study the concepts
of approximately semi-preirresolute mappings, and approximately semi-preclosed
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mappings. Also, we introduce the notions of contra-semi-preirresolute, contra-
semi-preclosed, and perfectly contra-semi-preirresolute mappings to study the char-
acterizations of semi-pre-T;,» spaces defined by Julian Dontchev in [11].

2. Preliminaries. Throughout the present paper, the sets X, Y, Z always mean topo-
logical spaces and f : X — Y represents a single-valued function on which no separa-
tion axioms are assumed unless explicitly stated. Let A be a subset of a space X. The
closure of A and the interior of A are denoted by cl A and int A, respectively. The sub-
set A of X is said to be (i) preopen [17] if A C intclA, (ii) semi-open [14] if A C clintA,
(iii) semi-preopen [3] if A C clintclA, and (iv) x-open [20] set if A C intclintA. The
family of all preopen (resp., semi-open, semi-preopen, and «-open) sets of X is de-
noted by PO(X) (resp., SO(X), SPO(X), and «(X)). The family of all preopen (resp.,
semi-preopen) sets of X containing a point x is denoted by PO(x) (resp., SPO(x)).
The complement of a semi-preopen (resp., preopen, semi-open, and x-open) set is
called semi-preclosed (resp., preclosed, semi-closed, and «-closed) set of X. The fam-
ily of all semi-preclosed subsets of X is denoted by SPF(X). A set M, C X is said to
be semi-preneighborhood [19] of a point x in X if and only if there exists a semi-
preopen set A containing x such that A C My, the union of all semi-preopen sets that
are contained in A is called the semi-preinterior [3] of A and is denoted by (A;) . in
[19] and the set n{F C X | A C F and F is semi-preclosed set in X} is called the semi-
preclosure [3] of A and is denoted by (As)* in [19]. A mapping f : X — Y said to be (i)
semi-continuous [14] if f~1(A) € SO(X) for every open set A in Y, (ii) pre-continuous
[17]1if f~1(A) € PO(X) for every open set A in Y, (iii) semi-open [5] if f(A) € SO(Y)
for every open set A in X, (iv) preopen [17] if f(A) € PO(Y) for every open set A in
X, (v) irresolute [10] if f~1(U) € SO(X) for every U € SO(Y), (vi) preirresolute [23] if
f~1(U) € PO(X) for every U € PO(Y), (vii) pre-semiopen [10] if f(A) € SO(Y) for every
A € SO(X), (viii) pre-semiclosed [22] if f(A) is a semi-closed set in Y, for every semi-
closed set A of X, (ix) semi-closed [6] if f(A) is semi-closed in Y for each closed set A
in X and X preclosed [16] if f(A) is preclosed in Y for every closed set A in X. More
recently in [9], M. Caldas Cueva has defined the following notions: amap f: X — Y is
called (i) approximately irresolute (written as ap-irresolute) if sclF < f~1(0), when-
ever O is a semi-open subset of Y, F is sg-closed subset of X, and F c f~1(0), (ii)
approximately semi-closed (written as ap-semiclosed) map if f(B) < sint A, whenever
A is a sg-open subset of Y, B is a semi-closed subset of X, and f(B) < A, (iii) contra-
irresolute if f~1(0) is semi-closed in X for each O € SO(Y), (iv) contra-presemiclosed
if f(B) € SO(Y) for each semi-closed set B of X, and (v) perfectly contra-irresolute if
the inverse of every semi-open set in Y is semi-clopen in X.

3. Semi-precontinuous functions. In this section, we introduce new weaker forms
of continuity using semi-preopen sets and obtain their properties.

DEFINITION 3.1. A function f: X — Y is called semi-precontinuous if the inverse
image of each open set in Y is a semi-preopen set in X.

NOTE 3.2. Every continuous function is a semi-precontinuous function but not the
converse; which is verified by the following example.
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EXAMPLE 3.3. Let X = {a,b,c}, 11 = {T,{a},{b},{a,b}, X}, Y = {1,2,3,4}, T2 =
{@,{1},{1,2},{1,2,3},Y}. Afunction f : X — Y is defined by f(a) =1, f(b) =3, f(c)=2.
Here SPO(T,) = {@,{a},{b},{a,b},{a,c},{b,c},X}. Then f is semi-precontinuous.
But f is not continuous since f~1({1,2}) = {a,c}, which is not a T;-open set.

THEOREM 3.4. Let f: X — Y be a single-valued function, where X and Y are topo-
logical spaces. Then the following are equivalent:
(i) The function f is semi-precontinuous.
(ii) For each point p € X and each open setV inY with f(p) € V, there is a SPO set
Uin X suchthatp € U, f(U) < V.
(iii) The inverse of each closed set is semi-preclosed.
(iv) For each x € X, the inverse of every neighborhood of f(x) is a semi-
preneighborhood of x.
(V) For each x € X and each neighborhood N, of f(x), there is a semi-
preneighborhood V of x such that f(V) < Ny.
(vi) For each subset A of X, f[(As)*] < cl[f(A)].
(vii) For each subsetB of Y, ((f~1(B))s)* = f~1(cl(B)).

PROOF. (i)<(ii). Let f(p) € V and V C Y an open set, then p € f~1(V) € SPO(T);
since f is semi-precontinuous. Let U = f~1(V), then p € U and f(U) C V.

Conversely, let V be openin Y and p € f~!(V) then f(p) €V, there exists a U, €
SPO(T) such that p € U, and f(U,) C V. Then p € U, C f~1(V) and f~1(V) = uU,,
but by Note 3.2, f~1(V) € SPO(T), which implies that f is semi-precontinuous.

(i)<(iii). Assume f is semi-precontinuous. Let B be a closed subset of Y. Then Y—B is
openinY and f~1(Y-B) = X—f~1(B) € SPO(T), which implies that f~1(B) is sp-closed.

Conversely, assume (iii). Let G be an open set in Y then Y — G is a closed set in
Y. Then f~1(Y - G) = X — f~1(G). Hence f~1(G) is SPO in X which implies that f is
semi-precontinuous.

(iii)=(iv). Assume (iii) for x € X, let V be the neighborhood of f(x) then f(x) € W C
V,where W = Y —F and F is closed in Y. Consequently, £~ (W) is a semi-preopen set
in X. Since f~1(W) = f~1(Y-F) = X— f~1(F), f~1(F) is sp-closed by hypothesis, and
x € f~Y (W) c f~1(V). Then by definition, f~!(V) is a semi-preneighborhood of X.

(iv)=(v). Let x € X and N, be aneighborhood of f(x).ThenV = f~1(Ny) is a sp-nhd
of x and f(V) = f(f~"(Ny)) C Ny.

(v)=(ii). For x in X, let W be an open set containing f (x). Then W is a neighborhood
V of x such that x € V and f(V) C W. Hence there exists a semi-preopen set A in X
such that x € A C V, consequently, f(A) C f(V) Cc W.

(iii) = (vi). Suppose that (iii) holds and let A be a subset of X. Since A C f~1(f(A)), we
have A ¢ f~1[cl(f(A))]. Now, cl f(A) is a closed set in Y and hence f~!{cl(f(A))} is
a sp-closed set containing A, consequently, (As)* € f~1{cl(f(A))}. Then, f[(As)*] C
FfHc(f(A))} c d[f(A)]. Conversely, suppose that (vi) holds for any subset A of
X. Let F be a closed subset of Y. Then,

FISTHE) ) T Cd(f(fTF)) CdF =F (3.1)

which implies that ((f~1(F)))* ¢ f~1(F). Consequently, the inverse of a closed set
is semi-preclosed.
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(vi)<(vii). Obvious. O

Recall that a subset A of X is called regular open if A =intclA, and that a mapping
f X — Y is called almost continuous [24] (written as a.c.S) if the inverse image of
each regular open set is open.

LEMMA 3.5. If f: X — Y is an open, a.c.S, and preirresolute map then f~1(B) €
SPO(X) for each B € SPO(Y).

PROOF. Suppose B is an arbitrary semi-preopen set in Y. Then there exists a pre-
open set V in Y such that V C B C clV. Now, by the a.c.Sness of f, we have f~1(V) c
FUB) ¢ fFUAV) = d(f~1(V)) [2]. Since f is preirresolute and V is a preopen
setin Y, f~1(V) € PO(X). Hence, f~1(V) c f~1(B) c (clf~1(V)) which implies that
F~1(B) € SPO(X). O

LEMMA 3.6. Iff:X — Y isan open, a.c.S, and preirresolute mapping then the inverse
image of each semi-preclosed set of Y is a semi-preclosed set in X.

The proof is similar to Lemma 3.5.

THEOREM 3.7. Let f: X — Y be a mapping. Then the following are equivalent:
(i) The mapping f is semi-precontinuous.
(i) For each subset G of Y, f~1(intG) C ((f1(G))s)*.

PROOF. (i)=(ii). Let G be any subset of Y. Then intG is an open set in Y and
f~1(intG) is a semi-preopen setin X, f is semi-precontinuous. As £~ (intG) c f~1(G),
then f~1(intG) € ((f"1(G))s) x. U

The following lemma is proved in [3].
LEMMA 3.8. If U is open and A is semi-preopen then U N A is a semi-preopen set.

LEMMA 3.9. Let A be a semi-preopen set in a space X and suppose A C B C cl A, then
B is a semi-preopen set.

PROOF. Since A is a semi-preopen set in X, then there exists a preopen set U in X
suchthatU c AcclU.As A C B,U c AcBimplies that U C B. Also,clAccl(clU)=clU,
and thus, B C clU. Hence U C B C clU, which implies that B is a semi-preopen set. [

THEOREM 3.10. If A C Xy C X and Xy € SPO(X). Then A € SPO(X) if and only if
A € SPO(Xp).

PROOF. Necessity: since A € SPO(X), then there exists a preopen set U C X such
that U C A C clU. Let cly and clx, denote, respectively, the closure operator in X and
Xo.Now, U C Xp as Xo CX. Then, U=UnXoCANXy CXonclyU,or U CAcCcly,U,
since U = Un Xy and U is preopen in Xy by [18, Lemma 2.3], then it follows that
A € SPO(Xp).

The converse is easy and hence is omitted. O

LEMMA 3.11 (see [19]). For every A € SPO(X), clA = clintcl A.

LEMMA 3.12. A is a semi-preopen set and A += &. Then, intclA = &.
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PROOF. Let A be a semi-preopen set such that A = &. Then by Lemma 3.11, clA =
clintclA. If intcl A = @ then clA = & implies A = &, which is in contradiction to the
hypothesis. Hence, intcl A = &. O

THEOREM 3.13. If f: X — Y is a semi-precontinuous map and X, is an open set in X,
then the restriction f /X : Xo — Y is semi-precontinuous.

PROOF. Since f is semi-precontinuous, for any open set Vin Y, f~1(V) is a semi-
preopen set in X. Hence by Lemma 3.8, f~' (V) n Xy is a semi-preopen set in X since
Xp is an open set. Therefore, by Theorem 3.10, (f/Xo) (V) = f~1(V) n Xo is a semi-
preopen set in Xy, which implies that f/X, is semi-precontinuous. O

We give the following definition.

DEFINITION 3.14. A cover u = {Uy | @ € A} of subsets of X is called a sp-cover if
Uy is semi-preopen for each «x € A.

Now, we prove the following theorem.

THEOREM 3.15. Let f : X — Y be a map and {Ay | x € A} a sp-cover of X. If
the restriction, f|/Ay : Ay — Y Is semi-continuous for each o« € A, then f is semi-
precontinuous.

PROOF. Suppose V is an arbitrary open set in Y. Then for each « € A, we have
(f/AL) 1 (V) = fFFL(V)n Ay € SPO(Ay) since f/Ay is semi-precontinuous. Hence by
Theorem 3.10, f~1(V) n Ay € SPO(X) for each & € A. But, we know that arbitrary
union of semi-preopen sets is a semi-preopen set, thus, we obtain that Ugeal[f (V)N
Ayl = f~1(V) € SPO(X). This implies that f is a semi-precontinuous map. |

LEMMA 3.16 (see [13]). Let {Xy | @ € A} be a family of topological spaces and T1A
a subset of TIX x, where I1X denotes the product space. Then,
(i) intITA, =ITintAy if Ax = X« except for a finite number of x € A and 1Ay = O,
(ii) clITAy =TIclAg.

Now, in view of Lemma 3.16, one can prove the following lemma.

LEMMA 3.17. Let X; and X» be topological spaces. If A; is a semi-preopen set in X;
foreachi=1,2, then A X A, is a semi-preopen set in the product space X, X X.

The following theorem proved in [22] is the generalization of Lemma 3.17.

THEOREM 3.18 (see [22]). Let {Xy | @ € A} be a family of topological spaces, X =
I1X, the product space, and A = H;‘:le(j X HD(MJ,X,X a nonempty subset of X, where
n is a positive integer. Then, Ag; € SPO(X,XJ,) for each j (1 < j < n) if and only if
A € SPO(X).

Next, we prove the following theorem.

THEOREM 3.19. Let X; and Y; be topological spaces and f; : X; — Y; be a semi-
precontinuous mapping for i = 1,2. Then a mapping f : X, X Xo — Y1 X Y>» defined by
putting f((x1), (x2)) is semi-precontinuous.
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PROOF. Let 01 x0» C Y; xY>, where O;isopeninY; fori=1,2. Then, f~1(0; x0>)
= f1(01) x f71(05). But f71(01),f 1(0>) are semi-preopen sets in X; and X», re-
spectively, then f~1(0;) x f71(0>) is semi-preopen in X; X X» by Lemma 3.17. Now,
if O is any open set in Y; x Yz, then f~1(0) = f~1(UO), where O is of the form
Ou; XOg,.Then f71(0) = Uuf~1(0«), which is a semi-preopen set since arbitrary union
of semi-preopen sets is a semi-preopen set. Hence by arguing as above, f~1(0; x O3)
is a semi-preopen set in X; X X». Hence f is semi-precontinuous. O

The following theorem is the generalization of Theorem 3.19, which can be proved
in view of Theorems 3.18 and 3.19.

THEOREM 3.20. Let{Xy | x € A} and {Yy | x € A} be any two families of topological
spaces with the same index set A. For each x € A, let fy: Xy — Y« be a mapping, then
a mapping f :TIXy — 1Yy defined by f((xy)) = (fa(Xx«)) is Semi-precontinuous if and
only if fy is semi-precontinuous for each «x € A.

4. Semi-preopen functions. We give the following definition.

DEFINITION 4.1. A function f: (X,T) — (Y, 0) is called semi-preopen if the image
of each open set in X is a semi-preopen set in Y.

Note that every open map is semi-preopen but not the converse, which is shown by
the following example.

EXAMPLE 4.2. Let X = {p,q,v}, T ={J,{p},{p,q},X}, Y ={a,b,c}, o0 = {J, {a},
{b}{a,b},Y}. Then it is clear that T and o are topologies on X and Y, respectively. If
f:(X,T) - (Y,0)is amap defined by f(p) = a, f(q) = c¢,and f(r) = b.Itis clear that
f is a semi-preopen mapping but it is not open mapping since f({p,q}) = {a,c} ¢ o.
Also, note that every preopen (resp., semi-open) map is a semi-preopen map.

We recall that a mapping f : X — Y is called semi-preopen (in the sense of
Cammaroto and Noiri [8]) if f(U) € SPO(Y) for each U € SO(X). Clearly, every semi-
preopen map (in the sense of Cammaroto and Noiri [8]) is a semi-preopen map as
given by Definition 4.1.

We recall the following lemma.

LEMMA 4.3 (see [8]). The following are equivalent for a subset A of a space X:
(i) A eSPO(X).
(ii) A c cl(int(cl(A))).

(iii) A C sint(scl(A)).

THEOREM 4.4. A mapping f : X — Y is semi-preopen if and only if for every subset
ACX, f(intA) C sint(scl(A)).

PROOF. Let f be a semi-preopen map. We have f(intA) C f(A) for each A C X
and by hypothesis f(intA) is a semi-preopen set in Y and by Lemma 4.3, f(intA) C
sintscl(f(A)). Conversely, let the given condition holds true and G any open set in
X. Then f(G) = f(intG) C sintscl(f(G)) which implies that f(G) C sintscl(f(G)).
Thus, f(G) is a semi-preopen set in Y by Lemma 4.3 and hence f is a semi-preopen
map. O
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THEOREM 4.5. Let X,Y, and Z be three topological spaces and let f : X — Y and
g:Y — Z be two mappings with go f : X — Z is a semi-preopen mapping. Then,
(i) If f is continuous and surjective, then g is semi-preopen.
(ii) If g is preopen, preirresolute, and injective, then f is semi-preopen.

PROOF. (i) Let V be an arbitrary open set in Y. Since g o f is semi-preopen and f is
surjective then g(V) = go f{f~1(V)} is a semi-preopen set in Z. This shows that g is
a semi-preopen map.

(i) Since g is injective, we remark that f(A) = g~ '[g(f(A))] for every subset A of
X. Let U be an arbitrary open set in X, then by hypothesis, go f(U) is a semi-preopen
setin Z. Then by Note 3.2, we have f(U) = g~ (go f(U)) € SPO(Y) which implies that
f(U) is a semi-preopen set in Y. Hence, f is a semi-preopen map. O

5. Semi-preclosed functions. We recall the following definition.

DEFINITION 5.1. A function f: X — Y is called semi-preclosed if the image of each
closed set in X is a semi-preclosed setin Y [22].

Note that every closed map is semi-preclosed but not the converse, which is shown
by the following example.

EXAMPLE 5.2. Let X = {a,b,c}, T = {D,{a},{a,b},{a,c},X}, and o = {QD,{a},
{a,b},X}. Then f: (X,T) — (X,0) is the identity mapping. Here, clearly T and o
are topologies on X. And, the T-closed sets are {J, {b},{c},{b,c}, X}, the o-closed
sets are {J,{c},{b,c},X} and SPF(0) = {D, {b}, {c},{b,c},X}.

Clearly, f is a semi-preclosed map but it is not closed since f({b}) = {b} which is
not a o-closed set. Hence the example.

Note that every preclosed map (resp., semi-closed map) is a semi-preclosed map.
Thus, we state the following theorem.

THEOREM 5.3. A map f : X — Y is semi-preclosed if f is both a semi-closed and a
preclosed map.

THEOREM 5.4. Let f:(X,T) — (Y,0) be a mapping from a space (X, T) into a space
(Y,0). Then f is semi-preclosed if and only if ((f(A))s)* C f((As)*), for each set A of
(X,71).

PROOF. Let f be a semi-preclosed map and A any subset of X. Then f((As)*) €
SPE(Y). As f(A) C f((As)*), it follows that (f(A))* C f((As)*).

Conversely, assume that F € SPF(X). Then f(F) = f((Fs)*) > ((f(F))s)*, thus we
obtain that (f(F))¥ = f(F). Hence, f is a semi-preclosed map. O

Next, we give the following definition.

DEFINITION 5.5. A mapping f : X — Y is said to be s-preclosed if f(F) € SPE(Y)
for each semi-closed set F of X.

Clearly, every s-preclosed map is semi-preclosed. But semi-closed, preclosed, and
s-preclosed maps are, respectively, independent of each other.
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EXAMPLE 5.6. Let X = {p,q,v}, T = {D,{r},{q,v},X}, and o = {D,{r},{p,7},
{a,v},X}. Let f:(x,T) — (X,0) be a mapping defined by f(p) = q, f(q) =7, and
f(r) =r.Then clearly, f is s-preclosed but f is not a preclosed map since f({p,q}) =
{q,7} which not preclosed in (X, o). This shows that s-preclosed and preclosed maps
are independent of each other.

Recall the following lemma.

LEMMA 5.7 (see [22]). If f:X — Y is semi-preclosed, then for each subsetV of Y and
each open set U of X containing f~1(V), there exists W € SPO(Y) such thatV c W and
Flw)cu.

Now, we can prove it for s-preclosed maps in the following theorem.

THEOREM 5.8. If f: X — Y is s-preclosed, then for each subset V of Y and each
semi-open set U of X containing f~1(V), there exists W € SPO(Y) such thatV ¢ W and
Flw)cu.

6. Semi-preirresolute functions

DEFINITION 6.1. A function f: X — Y is called semi-preirresolute if the inverse
image of each semi-preopen set in Y is a semi-preopen set in X.

Note that every semi-preirresolute map is semi-precontinuous but not the converse,
which is shown by the following example.

EXAMPLE 6.2. Let X = {a,b,c,d} and T = {J,{a},{b},{c},{a,b},{a,c},{b,c},
{b,d},{a,b,c},{a,b,d},{b,c,d},X}; Y ={m,n,l},and o = {D,{m},Y}.Let f: X > Y
be a mapping defined by f(a) =m, f(b) = f(c) =1, and f(d) = n.

Then, clearly f is semi-precontinuous but it is not a semi-preirresolute map since
F1({m,n}) = {a,d} which is not a semi-preopen setin (Y, o).

Next, we characterize the semi-preirresolute mappings in the following theorem.

THEOREM 6.3. The following statements are equivalent for a function f: X — Y:
(i) f is semi-preirresolute.
(ii) For each point x of X and each semi-preneighborhood V of f(x), there exists a
semi-preneighborhood U of x such that f(U) c V.
(iii) For each x € X and each V € SPO(f(x)), there exists U € SPO(x) such that
f)cv.

PROOF. (i)=(ii). Assume x € X and V is a semi-preopen set in Y containing f(x).
Since f is a semi-preirresolute and let W = f~1(V) be a semi-preopen set in X con-
taining x and hence f(W) c f(f~1(V)) c V.

(ii)=(iii). Assume that V C Y is a semi-preopen set containing f(x). Then by (ii),
there exists a semi-preopen set G such that x € G ¢ f~1(V). Therefore, x € f1(V)
cl(f~1(V)). This shows that cl(f~1(V)) is a semi-preneighborhood of x.

(iii)=(@). Let V be a semi-preopen set in Y, then cl(f~1(V)) is semi-preneighborhood
of each x € f~1(V). Thus, for each x is a semi-preinterior point of cl(f~!(V)) which
implies that f~1(V) cintcl(f~1(V)) c clintcl(f~'(V)). Therefore, f~1(V) is a semi-
preopen set in X and hence f is a semi-preirresolute map. O
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We state the following theorems.

THEOREM 6.4. If f : X — Y is a preopen and preirresolute mapping, then f is a
semi-preirresolute.

THEOREM 6.5. Iff:X — Y issemi-preirresolute and g : Y — Z is semi-precontinuous,
then g o f is a semi-precontinuous map.

Recall the following theorem.

THEOREM 6.6 (see [10, Theorem 1.1]). If f : X — Y is continuous and open, then
FH(cA) =cl(f1(A)) for every subset A of Y.

Now, we prove the following theorem.

THEOREM 6.7. Let f: X — Y be a continuous open and preirresolute mapping, then
f is a semi-preirresolute mapping.

PROOF. Let A€SPO(Y), then there exists a preopenset U CY suchthatUcAcCclU.
Then by Theorem 6.6, £~ (clU) = cl(f~'(U)). Also, we have

FHU) c 1A C fU(dU) = d (FH). (6.1)

Since f is a preirresolute map, then f~1(U) is a preopen set in X, and hence f~1(A)
is a semi-preopen set in X. Thus, f is a semi-preirresolute map. O

One can easily prove the following theorem.

THEOREM 6.8. A mapping f : X — Y is semi-preirresolute if and only if for every
semi-preclosed set F of Y, f~1(F) is a semi-preclosed set in X.

7. Semi-prehomeomorphisms

DEFINITION 7.1. A bijective mapping f : (X,T) — (Y,0) from a space X into a
space Y is called a semi-prehomeomorphism if both f and f~! are semi-preirresolute
mappings.

Now, we characterize the semi-prehomeomorphism in the following theorem.

THEOREM 7.2. Let f:(X,T)— (Y,0) be a bijective mapping from a space X into a
space Y. Then the following are equivalent:
(i) f is a semi-prehomeomorphism.
(i) f! is a semi-prehomeomorphism.

PROOF. (i)<(ii). Since f is a bijective map, both f and f~! are semi-preirresolute
functions. O

DEFINITION 7.3. A property which is preserved under semi-prehomeomorphism
is said to be a semi-pretopological property.

Clearly every homeomorphism is semi-prehomeomorphism.

8. Pre-semipreopen functions. In this section, we introduce the notion of pre-
semipreopen mappings analogous to pre-semiopen mappings [10].



94 G. B. NAVALAGI

DEFINITION 8.1. A function f : X — Y is called pre-semipreopen if the image of
each semi-preopen set in X is a semi-preopen setin Y.

Note that every pre-semipreopen map is semi-preopen but not the converse, which
is shown by the following example.

EXAMPLE 8.2. Let X = {a,b,c}, T = {JD,{a},{a,b},X}, Y = {p,q,v}, and o =
{o,{p},{at, {p,a},{q,r},Y}. Assume, a function f: X — Y is defined by f(a) = {p},
f(b) =1{q}, and f(c) = {r}. Then, clearly f is a semi-preopen map but it is not pre-
semipreopen since f({a,c}) = {p,r} ¢ SPO(Y,0).

REMARK 8.3. (i) A pre-semipreopen map need not be open.
(ii) An open map need not be pre-semipreopen.

THEOREM 8.4. Ifamapping f : X — Y is pre-semipreopen then ((f(A))s) « C f((As) %)
for every subset A of X.

PROOF. Suppose f is a pre-semipreopen map and A any arbitrary subset of X.
Since (As)« is a semi-preopen set, f((A;)«) is a semi-preopen set in Y as f is a pre-
semipreopen map. Hence, we obtain that ((f(A))s)« C f((As)4). O

THEOREM 8.5. Let f: X — Y and g:Y — Z be two maps such that g o f is a pre-
semipreopen map. Then,
(i) If f is a semi-preirresolute surjection, then g is a pre-semipreopen map.
(ii) If g is a semi-preirresolute injection, then f is a pre-semipreopen map.

PROOF. (i) Let A be any semi-preopen set in Y. Since f is a semi-preirresolute
map, f~1(A) is a semi-preopen set in X. As g o f is a pre-semipreopen map and f is
surjective, go f(f~1(A)) = g(A), which is a semi-preopen set in Z. This implies that
g is a pre-semipreopen map.

(i) As we claimed in (i), we can prove the second part easily. O

9. Pre-semi-preclosed functions

DEFINITION 9.1. A function f : X — Y is called pre-semi-preclosed if the image of
each semi-preclosed set in X is a semi-preclosed setin Y.

Note that every pre-semi-preclosed map is semi-preclosed but not the converse,
which is shown by the following example.

ExXAMPLE 9.2. Consider (X,T), (Y,0), and f be as defined in Example 8.2. By taking
complements, one can show that f is a semi-preclosed map but not a pre-
semi-preclosed map since f({b}) = {q} ¢ SPF(Y,0).

REMARK 9.3. Both closed and pre-semi-preclosed maps are independent of each
other.

One can prove the following theorem similar to Lemma 5.7.

THEOREM 9.4. If a mapping f : X — Y is pre-semi-preclosed, then for each subset B
of Y and each semi-preopen set V in X containing f~'(B), there exists a semi-preopen
setU inY containing B such that f~1(U) C V.
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REMARK 9.5. In Theorem 9.4, if f is also a surjective map then, the only if part
holds true.

We prove the following theorem.

THEOREM 9.6. Let f: X — Y and g:Y — Z be two maps such that go f is a pre-
semi-preclosed map. Then,
(i) If f is a semi-preirresolute surjection, then g is a pre-semi-preclosed map.
(ii) If g is a semi-preirresolute injection, then f is a pre-semi-preclosed map.

PROOF. We prove (ii) only. Suppose A is an arbitrary semi-preclosed set in X. Since
go f is a pre-semi-preclosed map, then go f(A) is a semi-preclosed set in Z. Since
g is a semi-preirresolute injective map, we have g='(go f(A)) = f(A), which is a
semi-preclosed set in Y. This shows that f is pre-semi-preclosed. O

Recall that amap f : X — Y is called M-preclosed [23] if the image of each preclosed
set is a preclosed set.
Finally, we prove the following theorem.

THEOREM 9.7. If f : X — Y is a continuous M-preclosed injective map then f is a
pre-semi-preclosed map.

PROOF. Let f be a continuous M-preclosed injective map and A a semi-preclosed
set in X. Then, there exists a preclosed set F in X such that intF ¢ A C F and so
f(ntF) c f(A) c f(F). Since f is a continuous injective map, int(f(F)) C f(@intF)
and also f is a M-preclosed map, f(F) is a preclosed set in Y. Then, we obtain that
int(f(F)) c f(A) c f(F) which implies that f(A) is a semi-preclosed set in Y. Thus,
f is a pre-semi-preclosed map. O

10. Generalized semi-preclosed sets and their mappings. We recall the following
definition.

DEFINITION 10.1 (see [15]). A subset A of a space X is called a generalized closed
set (written as g-closed) set if clA < U whenever A < U and U is open.

Clearly, every closed set is a g-closed set. The complement of a g-closed set in X is
called generalized open, that is, g-open [15] set. So, every open set is a g-open set.

DEFINITION 10.2 (see [4]). A subset A of a space X is called a semi-generalized
closed set (written as sg-closed set) if sclA < U whenever A € U and U is semi-open.

Clearly every semi-closed set is a sg-closed set. The complement of a sg-closed set
is called a semi-generalized open set, that is, a sg-open set [4]. Every semi-open set is
a sg-open set.

DEFINITION 10.3 (see [11]). A subset A of a space X is called a generalized semi-
preclosed (written as gsp-closed) set if (As)* = U whenever A < U and U is open.

Clearly, every semi-preclosed set is a gsp-closed set. The complement of a gsp-
closed set is called generalized semi-preopen [11] (written as gsp-open). Every semi-
preopen set is a gsp-open set. The family of all gsp-closed (resp., gsp-open) sets of X
is denoted by GSPF(X) (resp., GSPO(X)).
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Next, we define the following mappings.

DEFINITION 10.4. A function f : (X,7) — (Y,0) is called approximately semi-
preirresolute (written as ap-sp-irresolute) if (Fy)* < f~1(U), whenever U is a semi-
preopen subset of (Y, o), F is a gsp-closed subset of (X, T), and F < f~1(U).

Note that every semi-preirresolute (i.e., sp-irresolute) map is ap-sp-irresolute but
not the converse, which is shown by the following theorem.

THEOREM 10.5. A function f: (X,T) — (Y,0) is ap-sp-irresolute if f~1(U) is semi-
preclosed in (X, T) for every U € SO(Y,0).

PROOF. LetF c f-1(U),where U € SPO(Y, o) and F is a gsp-closed subset of (X, T).
Therefore, we have (Fy)* < ((f~1(U))s)* = f1(U). This implies that f is an ap-sp-
irresolute. O

THEOREM 10.6. Let f: (X,T) — (Y,0) be a map from a topological space (X, T)
into a topological space (Y, o). If the semi-preopen and semi-preclosed subsets of (X, T)
coincide, then f is ap-sp-irresolute if and only if f~1(U) is semi-preclosed in (X,T) for
every U € SPO(Y,0).

PROOF. Suppose that f is an ap-sp-irresolute. Let A be an arbitrary subset of X
such that A € U where U € SPO(X). Then by hypothesis (As)* < (Us)* = U. Thus, all
subsets of X are gsp-closed and hence all are gsp-open sets. Therefore, for any O in
SPO(Y), f1(0) is gsp-closed in X. Since f is ap-sp-irresolute, ((f~1(0))s)* < f~1(0).
This shows that ((f1(0))s)* = f71(0), f71(0) is a semi-preclosed set in X.

Converse follows from Theorem 10.5. |

DEFINITION 10.7. A function f : (X,T) — (Y,0) is called approximately semi-
preclosed (written as ap-sp-closed) if f(B) < (As)* whenever A is a gsp-open subset
of (Y,0), B is a semi-preclosed subset of (X, T), and f(B) < A.

Note that every pre-semi-preclosed map is an ap-sp-closed map but not the con-
verse, which is shown by the following theorem.

THEOREM 10.8. A function f : (X,T) — (Y, 0) is ap-semi-preclosed if f (B) € SPO(Y, o)
for every semi-preclosed subset B of (X, T).

PROOF. Let f(B) c A, where B is a semi-preclosed subset of (X, T) and A is gsp-
open subset of (Y,o0). Therefore, we have ((f(B));)* < (As)*. Then f(B) c (A)*
which implies that f is an ap-semi-preclosed map. O

The easy proof of the following theorem is omitted.

THEOREM 10.9. Let f: (X,T) — (Y,0) be a map from a topological space (X,T)
into a topological space (Y, o). If the semi-preopen and semi-preclosed subsets of (Y, o)
coincide, then f is ap-semi-preclosed if and only if f(B) € SPO(Y,o), for every semi-
preclosed subset B of (X, T).

Also, we give the following definition.

DEFINITION 10.10. A function f:(X,T)—(Y,0) is called contra-semi-preirresolute
(written as contra-sp-irresolute) if f~1(0) is semi-preclosed in (X,T) for each O €
SPO(Y,0).
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Note that every semi-preirresolute (i.e., sp-irresolute) map is ap-sp-irresolute but
not the converse, which is shown by the following definition.

DEFINITION 10.11. A function f: (X,T)—(Y,0) is called contra-presemipreclosed
(written as contra-presp-closed) if f(B) € SPO(Y, o), for each semi-preclosed set B of
(X, 7).

Note that every pre-semi-preclosed map is an ap-sp-closed map but not the con-
verse, which is shown by the following theorem.

THEOREM 10.12. Let f:(X,T)— (Y,0) be a map. Then the following are equivalent:
(i) f is contra-sp-irresolute.
(ii) The inverse image of each semi-preclosed set in'Y is a semi-preopen set in X.

Next, we give the following definition.

DEFINITION 10.13. A subset of a space X is called semi-proclopen if it is both a
semi-preopen and a semi-preclosed set.

DEFINITION 10.14. A function f : (X,7) — (Y,0) is called perfectly contra-
semi-preirresolute (written as perfectly contra-sp-irresolute) if the inverse of every
semi-preopen set in Y is a semi-preclopen set in X.

We recall the following definition.

DEFINITION 10.15 (see [11]). A space X is called semi-pre-T;,, if every gsp-closed
set is semi-preclosed.

Next, we characterize the semi-pre-T;,> spaces by using the ap-sp-irresolute and
ap-semi-preclosed mappings.

THEOREM 10.16. Let (X,T) be a topological space. Then the following statements
hold:
(i) (X,T) is a semi-pre-Ty,> space.
(ii) Foreveryspace (Y,T) andevery mapping f : (X,T) — (Y, 0), f is ap-sp-irresolute.

PROOF. Let F be a gsp-closed subset of (X, T) and suppose that F < f~1(U) where
U € SPO(Y). Since X is semi-pre-T;,» space, F is a semi-preclosed, F = (F)*. Therefore,
(Fs)* € f~1(U). This shows that f is ap-sp-irresolute. O

THEOREM 10.17. Let (Y,0) be a topological space. Then the following statements
hold:
(i) (Y,o0) is a semi-pre-Ty,> space.
(ii) For every space (X,T) and every mapping f : (X,7) — (Y,0), f is ap-
semi-preclosed.

PROOF. The proof is similar to Theorem 10.16. |
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