ON THE HARDY-LITTLEWOOD MAXIMAL THEOREM

SHINJI YAMASHITA

Department of Mathematics
Tokyo Metropolitan University
Fukazawa, Setagaya, Tokyo 158
Japan

(Received May 5, 1981)

ABSTRACT. The Hardy-Littlewood maximal theorem is extended to functions of class PL in the sense of E. F. Beckenbach and T. Radó, with a more precise expression of the absolute constant in the inequality. As applications we deduce some results on hyperbolic Hardy classes in terms of the non-Euclidean hyperbolic distance in the unit disk.

KEY WORDS AND PHRASES. Hardy-Littlewood's Maximal Theorem, Subharmonic Functions of Class PL, Hardy Class, Hyperbolic Hardy Class.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: 30D55, 31A05.

1. INTRODUCTION.

Let $D = \{ |z| < 1 \}$, let $T = [0, 2\pi)$, and let u be a function subharmonic in D. For a function g on T we denote

$$\|g\|_p = \left[\frac{1}{2\pi} \int_T |g|^p(t) \, dt \right]^{1/p};$$

hereafter always $0 < p < \infty$ unless otherwise specified. Then, although u is not defined on T we customarily denote

$$\|u\|_p = \limsup_{r \to 1^-} \frac{1}{u_r}\|u_r\|_p,$$
where \(u_r(t) = u(re^{it}), \ t \in T, 0 < r < 1. \) For simplicity, \(\|f\|_p = \| |f| \|_p \) for \(f \) holomorphic in \(D. \) Let \(S(t,R) \) be the domain consisting of the interior of the convex hull of the circle \(|z| = R < 1 \) and the point \(e^{it} (t \in T); \) hereafter always \(0 < R < 1. \) The maximal function \(M_R(u) \) of \(u \) is defined on \(T \) by

\[
M_R(u)(t) = \sup \{ |u(z)|; z \in S(t,R) \}.
\]

Let \(H^p \) be the Hardy class consisting of all functions \(f \) holomorphic in \(D \) such that \(\|f\|_p < \infty. \) Each \(f \in H^p \) has the radial limit \(f^*(t) = \lim_{r \to 1^-} f(re^{it}) \) at \(e^{it} \) for a.e. \(t \in T, \) and \(f^* \in L^p(T). \) We then observe that

\[
\|f\|_p = \|f^*\|_p \quad [1, \text{Theorem 2.6, p. 21}].
\]

In the present paper we introduce the Hardy-Littlewood number \(a(p,R) \) of order \((p,R) \) by

\[
a(p,R) = \sup \left\{ \frac{\|M_R(|f|)\|_p}{\|f\|_p}; f \in H^p, f \neq 0 \right\}.
\]

The celebrated Hardy-Littlewood theorem \([3, \text{Theorem 27, p. 114}]\) then reads that

\[
a(p,R) < \infty \quad \text{for each pair} \quad (p,R). \quad \text{The main purpose of the present paper is to prove that} \quad a^*(p,R) = a(p,R) = a(1,R)^{1/p}, \quad \text{where} \quad a^*(p,R) \quad \text{is defined in terms of functions of class PL} \ [4, \text{p. 9}].
\]

A function \(u \) defined in \(D \) is said to be of class PL, or \(u \in \text{PL}, \) if \(u \geq 0 \) and if \(\log u \) is subharmonic in \(D; \) we regard \(-\infty\) as a subharmonic function. For \(u \in \text{PL}, \) the function \(u^p \) is subharmonic in \(D, \) and for \(f \) holomorphic in \(D, \) the modulus \(|f| \in \text{PL}. \) Let \(\text{PL}^p \) be the family of all \(u \in \text{PL} \) such that \(\|u\|_p < \infty. \) It will be observed that \(u \in \text{PL}^p \) has the radial limit \(u^*(t) \) at \(e^{it} \) for a.e. \(t \in T \) and that \(\|u\|_p = \|u^*\|_p. \) Apparently, \(|f| \in \text{PL}^p \) if \(f \in H^p. \) Set

\[
a^*(p,R) = \sup \left\{ \frac{\|M_R(|f|)\|_p}{\|f\|_p}; u \in \text{PL}^p, \ u \neq 0 \right\}.
\]

Since \(1 \in H^p, \) it follows that \(1 \leq a(p,R) \leq a^*(p,R). \) We first observe

THEOREM 1. \(a^*(p,R) = a(p,R) = a(1,R)^{1/p}. \)

REMARK. Let \(S^p \) be the family of subharmonic functions \(u \geq 0 \) in \(D \) such that \(\|u\|_p < \infty, \) where \(p > 1. \) Then
\[b(p,R) = \sup \left\{ \frac{\| M_R(u) \|_p}{\| u \|_p}; u \in S^p, u \neq 0 \right\} \]

is finite for \(p > 1 \) by [3, Theorem 26, p. 113]. Obviously,
\[a^*(p,R) \leq b(p,R) \text{ for } p > 1. \]

To propose an application to the hyperbolic Hardy class \(H^p_\sigma \) we let
\[\sigma(z,w) = \tanh^{-1}(\frac{|z - w|}{1 - \overline{z}w}) \]
be the non-Euclidean hyperbolic distance between \(z \) and \(w \) in \(D \). Set \(\sigma(z,0) = \frac{1}{2} \log[(1 + |z|)/(1 - |z|)] \), \(z \in D \). For \(f \) holomorphic and bounded, \(|f| < 1 \), in \(D \), the hyperbolic counterpart of \(|f| \) is \(\sigma(f) \). We thus define \(H^p_\sigma \) as the family of such \(f \) with \(\| \sigma(f) \|_p < \infty \). The subharmonicity of \(\sigma(f)^P = \exp[p \log \sigma(f)] \) follows from that of \(\log \sigma(f) \) (or, \(\sigma(f) \in PL \)) observed in [6].

Therefore \(\sigma(f) \in PL^p \) for all \(f \in H^p_\sigma \). A few modifications of the proof of [6, Theorem 4], with \(H^1_h = H^1_\sigma \), show that \(H^p_\sigma \) is a semigroup with respect to the multiplication, and is convex. Since each \(f \in H^p_\sigma \) is bounded, \(f \) has the radial limit \(f^*(t) \) at \(e^{it} \) for a.e. \(t \in T \). We then propose

THEOREM 2. For each \(f \in H^p_\sigma \), the function \(\sigma(f^*) \) is a member of \(L^p(T) \), and
\[\int_T \sigma(f(re^{it}), f^*(t))^p dt \to 0 \text{ as } r \to 1-0. \]

The inequality
\[\int_T \sup \left\{ \sigma(f)^P(z); z \in S(t,R) \right\} dt \leq a(1,R) \int_T \sigma(f^*)^P(t) dt \]
holds for all \(f \in H^p_\sigma \).

The first assertion, a consequence of the second, is the hyperbolic counterpart of the F. Riesz theorem [1, Theorem 2.6].

2. PROOFS.

For the proof of Theorem 1 it suffices to show that
\[a^*(p,R) = a(1,R)^{1/p} \leq a(p,R). \]
Since \(a(p,R) \leq a^*(p,R) \), the identities in Theorem 1 follow.

To prove that \(a(1,R)^{1/p} \leq a(p,R) \) we let \(f \in H^1 \) with \(f \neq 0 \). Then \(f \) admits an inner-outer factorization, \(f = IF \), where \(I \) and \(F \) are an inner and an outer function, respectively, such that the radial limits satisfy \(|I^*| = 1 \) and \(|F^*| = |f^*| \) a.e. on \(T \). Since \(F \) is zero-free in \(D \), \(g = F^{1/p} \in H^P \), so that \(|f^*| = |g^*|^P \) a.e. on \(T \). Therefore,

\[
\|M_R(|f|)\|_1 \leq \|M_R(|F|)\|_1 = \|M_R(|g|)\|_P^P \leq a(p,R)^P \|g\|^P = a(p,R)^P f\|_1,
\]

whence \(a(1,R) \leq a(p,R)^P \).

To prove that \(a^*(p,R) \leq a(1,R)^{1/p} \), we let \(v \in PL^P \) with \(v \neq 0 \). Setting \(u = p \log v \) and \(\varphi(x) = e^x \), one finds that \(v^P = \varphi(u) \). Since \(\varphi(u) \) admits a harmonic majorant in \(D \), there exists a positive harmonic majorant of \(u \) in \(D \) [5, p. 65]. The F. Riesz decomposition then yields that \(u = u^* - P \), where \(P \geq 0 \) is the Green potential in \(D \), and

\[
u^*(z) = \frac{1}{2\pi} \int_{\mathbb{T}} \frac{1 - |z|^2}{|e^{it} - z|^2} d\mu(t) \quad (z \in D)
\]
is the Poisson integral of the measure

\[
d\mu(t) = u^*(t)dt + d\mu_S(t).
\]

The radial limit \(u^* \) of \(u \) is of \(L^1(T) \) and \(d\mu_S(t) \) is singular with respect to \(dt \). It follows from a general theorem [2, Theorem], applied to the present \(u \) and \(\varphi \), that \(d\mu_S(t) \leq 0 \) a.e. on \(T \) and that \(\varphi(u^*) \in L^1(T) \). Consequently,

\[
u(z) \leq h(z) = \frac{1}{2\pi} \int_{\mathbb{T}} \frac{1 - |z|^2}{|e^{it} - z|^2} u^*(t)dt \quad (z \in D),
\]

and the Jensen inequality yields that

\[
\varphi(u) \leq \varphi(h) \leq V,
\]

where \(V \) is the Poisson integral of \(\varphi(u^*) \). Set \(f = e^{h+ik} \), where \(k \) is a conju-
gate of \(h \) in \(D \). Then, \(|f| = \varphi(h) \leq v\), so that \(f \in H^1 \) with \(|f^*| = \varphi(h^*) = \varphi(u^*) = v^*p\). On the other hand, \(v^p = \varphi(u) \leq \varphi(h) = |f| \) in \(D \), whence

\[
\|M^p_R(v)\|_p \leq \|M^p_R(|f|)\|_1 \leq a(1,R) \|f\|_1.
\]

The Lebesgue dominated convergence theorem, together with

\[
v_r^p(t) \leq M^p_R(v)(t) \quad (t \in T),
\]

yields that \(\|v_r^p\|_p \to \|v\|_p = \|v^*\|_p = \|f\|_1 \) as \(r \to 1-0 \). Therefore \(a^*(p,R) \leq a(1,R)^{1/p} \) follows from

\[
\|M^p_R(v)\|_p \leq a(1,R) \|v\|_p.
\]

We next prove Theorem 2. Set

\[
a_\sigma(p,R) = \sup \{\|M^p_R(\sigma(f))\|_p / \|\sigma(f)\|_p : f \in H^p_\sigma, f \not= 0\}.
\]

Since \(\sigma(f) \in PL^p \) for all \(f \in H^p_\sigma \), it follows that \(a_\sigma(p,R) \leq a^*(p,R) = a(1,R)^{1/p} \), so that

\[
\|M^p_R(\sigma(f))\|_p \leq a(1,R)^{1/p} \|\sigma(f)\|_p.
\]

As is observed in the proof of Theorem 1, \(\sigma(f)^* = \sigma(f^*) \) a.e. on \(T \) because \(\sigma(f) \in PL^p \), and \(\|\sigma(f)\|_p = \|\sigma(f^*)\|_p \). Thus, the second assertion holds with \(\sigma(f^*) \in L^p(T) \). The Lebesgue dominated convergence theorem with the estimate

\[
\sigma(f(t),f^*(t))^p \leq 2^p \sigma(f)^p(f(t)) + 2^p \sigma(f^*)^p(t) \leq 2^{p+1}M^p_R(\sigma(f)^p)(t) = 2^{p+1}M^p_R(\sigma(f))^p(t),
\]

again yields that

\[
\int_T \sigma(f(t),f^*(t))^p dt \to 0 \quad \text{as } r \to 1-0.
\]

REMARK. Since \(\sigma(f) \equiv 1 \) for \(f \equiv (e^2 - 1)/(e^2 + 1) \in H^p_\sigma \), it follows that

\(1 \leq a_\sigma(p,R) \).
REFERENCES

Special Issue on Time-Dependent Billiards

Call for Papers
This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru