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ABSTRACT. In a previous article we have obtained a holomorphic extension theorem (edge
of the wedge theorem) concerning holomorphic functions in tubes in ¢n which generalize
the Hardy H® functions for the cases 1 < p < 2. In this paper we obtain a similar

holomorphic extension theorem for the cases 2 < p < .
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1. INTRODUCTION.

This paper is a continuation of Carmichael [1]. The definitions of cone C in Kn
with vertex at the origin 0 = (0, 0, ...,0) in K", regular cone, and projection of a
cone are all contained in Carmichael [1, p. 417] as are the definitions of the indica-

trix function uc(t) of the cone C and the number pC which characterizes the nonconvexity

of the cone C. C* ={t e Rn: <y,t> > 0 for all y € C} is the dual cone of the cone C;
C* is always closed and convex (Vladimirov [2, p. 218]). 0(C) will denote the convex
hull (convex envelope) of a cone C. Following Vladimirov [3, p. 930], we say that a
cone C © Kn with interior points has an admissible set of vectors if there are vectors
ek e C, Iek| = 1, k=1,2, ... ,n, which form a basis for Rn; equivalently we say
that such a set of n vectors in C is admissible for the cone C. Let p =

(ul, u2, cess un) be any of the 2n n-tuples whose entries are 0 or 1. Cu =

i
{y e ¥*: (-1) J y.>0, =1, ... ,n} is a quadrant in K" and there are 2" such

J

quadrants. We note that any quadrant Cu is a regular cone in Rn.
1 ] L
Let ,x_ denote the space of tempered distributions. The subspace }'p of ’x_ .

1 < p<®, is defined to be the set of all measurable functions g(t), t e Rn, such that
there exists a real number b > O for which ((1 + |t:|p)-b g(t)) e 1P (carmichael
[k, p. 83]).
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We now define the norm growth and the space of functions which are of interest
in this paper. Let B denote a proper open subset in K" and let TB = " + 1B be the
associated tube in ¢". Let 0 < p < and A> 0. Let d(y) denote the distance from
¥y € B to the complement of B in R". The space SiYTB) (carmichael [4, pp. 80-81]) is

the set of all functions f(z), z = x+iy € TB, which are holomorphic in TB and which
satisfy

1/p
[ex+iy) || o |

[ Iﬁn | £(x+iy)|P ax

(1.1)

IA

M (1+(a(y))™™)° exp(emAly|), y € B,

for some constants r > 0 and s > O which can depend on f, p, and A but not on y € B
and for some constant M = M(f,p,A,r,s) which can depend on f, p, A, r, and s but not

ony e B. IfB =C, a cone, then d(y) in (1.1) is the distance from y € C to the
boundary of C. We have defined and studied the functions Si?TB) in Carmichael [1]

and Carmichael [4-7] and have stated our motivation in studying these functions in
Carmichael [4, p. 81].

In Carmichael [1, Theorem] we proved a holomorphic extension theorem (edge of
the wedge theorem) for holomorphic functions in 7 vhich satisfy (1.1) for y € C
where C is a finite union of open convex cones in Rn and for the cases 1 < p < 2.

We did not consider the cases 2 < p < ® in Carmichael [1] because at that time we
did not know whether elements of SiKTC), 2 < p < ©, had distributional boundary values
for any base C of the tube TC; in fact we did not know anything about the basic
P C
structure of S (T7), 2 < p < =,

In Carmichael [6] we have recently proved that, indeed, elements of SIXT ),
2 < p < », do have distributional boundary values in the strong topology of ;
where C is a polygonal cone or a regular cone. A polygonal cone is a more general
cone than a regular cone (Carmichael [6, section 2]); a polygonal cone is a finite
union of open convex cones which satisfy a certain intersection property and each
of which is the image of the first quadrant C= under a nonsingular linear trans-

0
formation. For our purposes here the main importance of the results in Carmichael

[6] is that we now know that elements of S;kTC), 2 < p < », for regular cones C do

have distributional boundary values in the strong topology of /‘:; and we also use
some technical details from Carmichael [6] here.

The purpose of this paper is to prove a holomorphic extension theorem like that
in Carmichael [1, Theorem] for holomorphic functions in a tube TC, where C is a finite
union of open convex cones, which satisfy (1.1) for y € C and for the values 2 < p < ™.
In so doing we complete this holomorphic extension problem for functions that gener-
alize the HP functions in tubes to the values 2 < p < ©; we have already obtained
this type of result for 1 < p < 2 in Carmichael [1] as we have noted above. For the
values 2 < p < ©, the analysis to obtain our basic result is somewhat different than
for the cases 1 < p < 2; although there is some overlap in the technical details. We
obtain our general holomorphic extension theorem here by first proving a special case

corresponding to special cones and then use this special case to prove the general case.
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2. HOLOMORPHIC EXTENSION THEOREM.

m

Let C = \/ CJ where each C'j is a regular cone in Rn. Let f(z) be holomorphic in

° and satisfy (l.l) for ye Cand 2 < p< ., For any y € CJ’ j=1, ... ,m, the

distance from y to the boundary of C is larger than or equal to the distance from y to

the boundary of C, from which we have f(z) € SP(T J), j=1, ... ymy 2 < p<®, By

Carmichael [6, Corollary 1] for each j =1, ... ,m there is an element VJ € )L such
that
RiEl '
y0  fx+iy) = 'f[vj] e d.i=1, .. .m, (2.1)
yeCj

in the strong topology of AL' with this boundary value being unique and being obtained
independently of howy + 0, y € C., § =1, ... ,m. Here ‘f[VJ] means the ,8-'
Fourier transform which maps 48: one-one and onto ,xj (Schwartz [8, Chapter 7).
(As usual in the papers Carmichael [1] and Carmichael [4 - 7l, by y > 0, y € C, for a
cone C we mean y > 0, y € C', for every compact subcone C' of C.)

Before stating our theorem we first need to make a technical discussion which is

needed for the theorem. Let the open cone C be the union of a finite number of regular

cones, C = \J Cj’ as in the preceding paragraph. For each of the regular cones
J=1

C =1, ... ,m, consider CJ (\ C“ for the 2 quadrants Cu in K . Let C

3’ 3%’

k=1, ... ,rj, be an enumeration of the intersections Cj (\ Cu which are nonempty;

and for each J =1, ... ,m, r, is a positive integer with o as an upper bound. Each

J

CJ K’ k=1, ... ,rj, j=1... ,m, is an open convex cone that is contained in or is

3

a quadrant C in %, Now put T \j \JJ C k We have T'€ C and T is the finite
J=1 k=1 J-k

union of open convex cones each of whlch is contained in or is a quadrant in R We

have that O(I') = 0(C) and 1 < polpp<® (Viadimirov [2, p. 220]).
We now state our holomorphic extension theorem (edge of the wedge theorem); in
this theorem T is the cone constructed from the cone C as in the preceding paragraph.

THEOREM. Let C be an open cone in Kn which is the union of a finite number of

*
regular cones, C = \] C., such that (0(C)) contains interior points and has an

J
admissible set of vgctors. Let f(z), z = x+iy, be holomorphic in Tc and satisfy
(1.1) for y € C and 2 < p < ©, Let the boundary values of f(x+iy) in the strong
topology of ’8: corresponding to each connected component Cj’ =1, ... ,m, of C
given in (2.1) be equal in ,x:. There is a function F(z) which is holomorphic in

TO(C) and which satisfies F(z) = f(z), z € TC, where F(z) is of the form

F(z) = P(z) H(z), z ¢ T(C), (2.2)

with P(z) being a polynomisl in z and H(z) € Sip (TO(C)) N S}p (TO(C)),
T T

(1/u) + (1/q) = 1, for all u, 1 < u < 2.
For our purposes here we have assumed that the CJ, J=1, ... ,m, in the
Theorem are regular cones instead of the more general polygonal cones (Carmichael

*
[6, section 2]) because the hypothesis that (0(C)) contain interior points and an
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admissible set of vectors cannot be true for polygonal cones that are not regular
cones. By comparing the statement of the Theorem with the statement of Carmichael
[1, Theorem] we see that these two results have the same type of conclusion; this is
what we desired. We thus have been able to extend the result Carmichael [1, Theorem]
to the cases 2 < p < =,

We will prove the Theorem by first proving a special case of it corresponding to
the cones Cj’ j=1, ... ,m, being contained in quadrants. After proving this special
case we will then use it to give a proof of the Theorem. We now present the desired
special case of the Theorem.

m

LEMMA. Let C be an open cone in K* of the form C = U Cj where each

Cj’ jJ=1, ... ,m, is an open convex cone that is contained in or is any of the 2"
quadrants C_ in Kn, and let (O(C))* contain interior points and have an admissible
set of vectors. Let f(z), z = x+iy, be holomorphic in ° ana satisfy (1.1) for
y € Cand 2 < p< o Let the boundary values of f(x+iy) in the strong topology of

/8- corresponding to each connected component Cj’ j=1, ... ,m, of C given in (2.1)
be equal in ,8- . There is a function F(z) which is holomorphic in T o(c) and which
satisfies F(z) = f(z), z € TC, where F(z) has the form given in (2.2) with P(z) being
a polynomial in z and H(z) € Sip (TO(C)) n Szo (TO(C))’ (1/u) + (1/q) = 1, for all u,
1<uc<o2. ¢ ¢

PROOF. An open convex cone that is contained in or is any of the 2t quadrants

C]‘1 in Rn is a regular cone. Recall the discussion in the first paragraph of section

2. By this discussion we have f(?) € SX(TCJ), j=1, ... ,my 2 < p < o, and we have
the existence of elements Vj € /x. , =1, ... ,m, such that (?.l) holds. In addition,
by the proof of Carmichael [6, Lemma 1] these elements Vj € 'x. have supp (VJ) (=

{t: uCJ (t) < A} and

f(z) =<V,, exp(2mi<z,t>)>, z € T 'j, J=1, ... ,m. (2.3)

J
By hypothesis the boundary values in (2.1) satisfy

Elvl= Flv,]=...= Flv]

] 1 1
in 1. . Since the Fourier transform is a topological isomorphism of /x_ onto 'x.
we then have

V=V, ==V (2.4)

' ]
in x. , we denote the common value in (2.4) by V, and V € }- . Since the support of

each VJ is contained in {t: u, (t) <A}, j=1, ... ,m, then by exactly the same proof

J
as in Carmichael [1, equation (2.4) on p. 419 through equation (2.6) on p. 420] we ob-
tain that supp(V) < {t: uo(c)(t) Ap }; and

{t: u

o(c)(t) ngC} = (o(c)) + N(O; ApC) (Viadimirov [3, Lemma 1, p. 936]) with

N(O; Apc) being the closure of the open ball in K" centered at the origin 0 in R® with
radius Apc The dual cone (O(C)) is closed and convex; and by hypothesis in this
theorem, (O(C)) contains interior points and has an admissible set of vectors. Any
element of ,‘ has finite order; we denote the order of V ¢ ’8.’ by mg. By
Vladimirov [3, Theorem 1, p. 930] we have
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n

+
ve= T <e, gradient>" 2 6(t) (2.5)
k=1
*
where {ek};_ is an admissible set of vectors for the cone (0(C)) , G(t) is a
continuous function of t € Kn which is unique corresponding to {e }? . and the

k k=1
order my of V € ,8_', supp(G) € {t: uo(c)(t) _<_Apc} = (O(C))* + N(6;Apc), and

[6(t)] <k (1 + ¢ "1 ¢ e ¢, (2.6)
where the constant K is independent of t € . (In Viadimirov [3, Theorem 1, p. 930]
the term "acute" in our present situation means that ((O(C))* )* = 0(C) (Viadimirov
[2, p. 218]) should have non-empty interior (Vliadimirov [3, p. 930]) which is cer-
tainly the case in this Theorem.) Since G(t) is continuous on K* then supp(G) (=

{t: u, )(t) < Apc} as a function (Schwartz [8, Chapter 1, sections 1 and 3]).

(c
(This fact is also obtained in the proof of Vladimirov [3, Theorem 1], and the

containment supp(G) & {t: u )(t) < Apc} gives the support of G(t) as a function

here as well as a distributigx(lc.:) Choose a function A(t) € Cw, t ¢ ¥, such that
for any n-tuple o. of nonnegative integers IDa)\(t)l <M, te K, where M is a
constant which depends only on &; and for € > 0, A(t) = 1 for t on an € neighbor-
hood of {t: uo(c)(t) < Apc} and A(t) = 0 for t € ¥ but not on a 2€ neighborhood
of {t: uo(c)(t) iA,oc} (Carmichael [1, p. 420] and [4, p. 94]). For z € TO(C) we
have (A(t) exp(2mi<z,t>)) e}. as a function of t € K°. Recalling that supp(V) _C_
{t: uo(c)(t) iApC} we put

O(C). (2.7)

)(t) < Apc} as a function we have (Vladimirov

F(z) = <V, exp(2mi<z,t>)> = <V,A(t) exp(2mi<z,t>)>, z ¢ T
From (2.5) and supp(G) € {t: Uo(c
{3, (3.1), p. 931])

F(z)

n
[ I <eys —omig>Ro 2 H(z), z € TO(C), (2.8)
k=1

where
o(c)

G(t) exp(2mi<z,t>) dt, z € T (2.9)

{t: uO(C)(t) < Aot

H(z)

1
Since G(t) is continuous on K" and satisfies (2.6) for all t € Rn we have G(t) € ,Xu
for all u, 1 < u < ®, as can easily be seen by choosing b = 3me+ 3 in the definition
1]
of }u (section 1). Combining this fact with the support of G(t) as a function,

which is supp(G) €& {t: uo(c)(t) iApC}, and Carmichael [L, Theorem 6.1, p. 98] yield

(exp(-2m<y,t>) G(t) e L%, y e 0(C), 1 < u < =, (2.10)
and
[lexp(-2n<y,t>) ()| u <M (1 + (aly))™)® exp(emapylyl), y e o(c), Lcu<e,
(2.11)
for constants r = r(G,u,A) > 0, s = s(G,u,A) > 0, and M = M(G,u,A,r,s) > 0 which are
independent of y € 0(C); and we emphasize that (2.10) and (2.11) hold for all u,
1<u<®o, Now (2.10), (2.11), and Carmichael [L, Theorem 5.1, p. 9T] combine to

prove that H(z) in (2.9) satisfies H(z) € S%p (TO(C)), (1/u) + (1/q) = 1, for all
Cc
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O(C)).

u, 1 < u< 2; and in particular H(z) € s° (T Since H(z) is holomorphic in

Ap
C
TO(C) then so is F(z), which is defined in (2.7), because of (2.8); and (2.8) is the

desired representation (2.2) of F(z) in the statement of the Lemma where the poly-
nomial P(z) is
+2

n
P(z) = T <e, —2miz>™0
k=1

and H(z) € 82 (TO(C)) N Sq (TO(C)), (1/u) + (1/q) =1, 1 <u <2, is given in

(2.9). From (2 4), the fact that supp(V) C {t: uo(c)(t) < ApC} in ,8, , and the
definition of A(t) preceding (2.7), we can write (2.3) as

£(z) = <V, A(t) exp(2mi<z,t>)> c

<V, exp(2mi<z,t>)>, z ¢ T j, j=1, ... ,m

These identities and (2.7) prove that F(z) is the desired holomorphic extension of
o(c)

f(z) to T

We can obtain a holomorphic extension result like that in the Lemma without the

and F(z) = f(z), z € mC. The proof of the Lemma is complete.

*
assumption that (O(C)) contains interior points and has an admissible set of vectors.
But we loose the detailed information concerning the holomorphic extension function as

we see in the following corollary to the Lemma.

COROLLARY 1. Let C =Q Cj where each Cj’ j=1, ... ,m, ig an open convex cone
that is contained in or isJa.ny of the 2" quadrants C in Rn; and let f(z),z = x+iy, be
holomorphic in 7 ana satisfy (1.1) for y € C and 2 < p < ». Let the boundary values
of f(x+iy) in the strong topology of ,8_ corresponding to each CJ, j=1, ... ,m,
given in (2.1) be equal in ,8, There is a function F(z) which is holomorphic in

O(C) and which satisfies F(z) = f(z), z ¢ C,

PROOF. Proceeding as in the proof of the Lemma, obtain (2.4) and call V the
common value. By the proof of the Lemma, supp(V) € {t: uo(c)(t) < ApC}. Define
F(z), z € TO(C)

F(z) is holomorphic in T

, as in (2.7). By the necessity of Vliadimirov [2, Theorem 2, p. 239],
O(C); and F(z) = f(z), z ¢ Tc, because of (2.3), (2.4), and
the definition (2.7) of F(z) as in the Lemma.

Using the Lemma we can now give a proof of the Theorem.

PROCF OF THE THEOREM. From the cone C construct the cone T = (o] as

J=1 k=1 d.k
in the second paragraph of this section. We have that each CJ K’ k=1, ... ,r,,

Ce
C"—‘:’

J=1, ... ,m, is an open convex cone that is contained in or is a quadrant Cu in Rn.
Further we have T € ¢, O(T) = 0(C) and 1 < Po L pp < = Since the distance from
yecC

to the boundary of C is less than or equal to the distance from y to the

J.k sk o
boundary of C, we have f(z) € Si(T J’k), k=1, ... , rj, j =1, ... ,m. By hypothesis
the m boundary values given in (2.1) of f(x+iy) corresponding to each connected compo-
nent C,j’ =1, ... ,m, of C are equal in ,3- 3 we denote the common value of the
boundary values as £[V] € ‘ for some V € /8. . Since each boundary value

f[VJ] “E[v], =1, ... ,m, is obtained uniquely and independently of how y »> 0,
y € C,, then we have
J
Lin
y>0 f(x+iy) = ‘£[vj] = F[lvl, k=1, ... Ty =1, ... ,m (2.12)
yeC

Jok
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in Ag' Since we have O(T') = 0(C), than (O(F))* (O(C))*contains interior points and
has an admissible set of vectors by the hypothesis on (O(C)) In addition f(z) is
holomorphic in Tr and satisfies (1.1) for y €e T and 2 < p < @ from the hypothesis

on f(z) in this Theorem corresponding to the cone C and the facts that ' € C and the
distance from y € I' to the boundary of T' is less than or equal to the distance from
y to the boundary of C. Thus by these facts, (2.12), and the Lemma, we have the

o(r) = TO(C) and which satisfies

existence of a function F(z) which is holomorphic in T
F(z) = £(z), z € Tr, where F(z) is of the form

F(z) = B(z) 1(z), z e ) = 0(C)

o(c))’

with P(z) being a polynomial in z and H(z) € s° (TO(C)) r\ s (T (1/u) +

(1/q) =1, for all u, 1 < u < 2. Now consider each C,, J =1, ... ,m; we have that
J ,m. For each j =1, ... ,m, we

both f(z) and F(z) are holomorphic in T Y, j =1, ..

further have that f(z) = F(z), z € {;/ ch’k, with \39 TCJ’k SE_TCJ. It thus follows
k=1 k=1

(viadimirov [2, p. 39]) that f(z) = F(z), z € T j, j =1, ... ,m; hence f(z) = F(z),
Z € TC. The proof of the Theorem is complete.

We have the following corollary to the Theorem which is similar to the Corollary
1 of the Lemma. The proof of the following corollary is obtained by the construction
of the proof of the Theorem and the use of Corollary 1 in place of the use of the
Lemma. We leave the obvious details to the reader.

m
COROLLARY 2. Let C = {J Cj where each C
J=1

z = x+iy, be holomorphic in ¢ ana satisfy (1.1) for y € C and 2 < p < ©. Let the

is a regular cone in * and let £(z),

J

boundary values of f(x+1y) in the strong topology of /g. corresponding to each CJ
j=1, ... ,m, given in (2.1) be equal in /g' There is a function F(z) which is
holomorphic in TO(C) and which satisfies F(z) = f(z), z € TC.

An additional fact concerning the holomorphic extension function F(z) in the
Theorem can be observed as we now note. From the proof of the Theorem and the con-
struction of the Lemma we have that the analytic extension function F(z) in the
Theorem has the form

F(z) = <V, exp(2mi<z,t>)> = <V, A(t) exp(eni<z,t>)>, z ¢ TO(P) = TO(C),
1

with V ¢ } and supp(V) € {t: u )(t) iApr}. We thus

o(ry(#) < Aopd = (o ug 0
have
£im []
y>0 F(x+iy) = [Vl e
yeo(c) o = 'X'

in the strong topology of /8. by the boundary value proof in Carmichael [k,
Corollary 4.1, p. 93]. Thus F(x+iy) has the same } boundary value on the

o(c)

distinguished boundary R* + iJ of T as the original function f(x+iy) does

(o
from each connected component T j, j=1, ... ,m, of TC.
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