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ABSTRACT. Let C: L » L be a projective deformation of the second order of two totally
focal pseudocongruences L and 1 of (m-1)-planes in projective spaces P" and Fn,
2m-1 < n < 3m-1, and let K be a collineation realizing such a C. The deformation C
is said to be weakly singular, singular, or a-strongly singular, o = 3,4,..., if the
collineation K gives projective deformations of order 1, 2 or a of all corresponding
focal surfaces of L and L. It is proved that C is weakly singular and conditions are
found for C to be singular. The pseudocongruences L and 1 are identical if and only

if C is 3-strongly singular.
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1. INTRODUCTION.

Let L and L be totally focal pseudocongruences of (m-1)-planes in projective
spaces P" and P" and let C: L + L be a correspondence between planes of L and L. In
the case of pseudocongruences of straight lines (m = 2) regular and singular projective
deformations C were studied in many papers (see Svec [1] where one can find further
references).

In the present paper we will suppose that m > 2 and 2m-1 < n < 3m-1. The last
restriction means that L and L are of second class, i.e. lie in their second osculating
spaces provided that their first osculating spaces are tangent spaces.

The author (see Goldberg [2]) found necessary and sufficient conditions for C to
be a projective deformation of order 1,2, and 3. However, conditions under which the
pseudocongruences L and 1 are identical were not found in [2].

In the present paper we will indicate such a condition in terms of singular
projective deformations. Note that second and third order singular projective deforma-
tions were studied by the author for every n > 3m-1 (see Goldberg [3]) and for every
n > 4m-1 (see Goldberg [4]). Note also that second order singular projective deforma-
tions in odd-dimensional projective spaces were considered by Kreizlik ([5,6].

If K is a collineation realizing a projective deformation C of second order,
and at the same time K realizes projective deformations of order 1, 2, or a, a=3,4,000,

of all corresponding focal surfaces of L and 1, then C is called weakly singular,
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singular, or a-strongly singular respectively.

In the present paper it is proved that a second order projective deformation C is
weakly singular, necessary and sufficient conditions for C are found to be singular,
and the following condition of identity of L and 1 is obtained: pseudocongruences L
and L related by a second order projective deformation C: L -+ L are identical if and
only if C is 3-strongly singular.

Note that the author proved in [2] that if L C PPand C: L+ L is a projective
deformation, then L € P". Because of this, we suppose from the beginning that L C p"
and L C §n.

2. A SPECIALIZATION OF MOVING FRAMES ASSOCIATED WITH A TOTALLY FOCAL PSEUDOCONGRUENCE
AND FUNDAMENTAL EQUATIONS.

A family L of planes of an n-dimensional projective space Pn is said to be a
pseudocongruence if each hyperplane of P" contains locally a unique plane of L.

A pseudocongruence L of (m- 1)-planes is a family of m parameters. The admissible
m—-tuples (ul,...,um) are taken from an open neighborhood of " (C = complex numbers).

A one-parameter subfamily of L is said to be focal of order r if infinitesimally
close planes of L have an r-dimensional intersection. Focal subfamilies of maximum
order m- 2 are called developable surfaces of L. A pseudocongruence of (m-1)-planes
possessing the maximum number m of developable surfaces is called focal.

In general, (m-2)-dimensional characteristics of each of these m developable
surfaces forms a symplex in a plane P-1 € L. The vertices of this symplex are foci
of P 1e Each focus generates the focal surface of L of dimension m. A plane Po_1
belongs to the tangent m-plane of each of the m focal surfaces.

It was shown by Geidelman [7) that focal pseudocongruences can be of three types:

(a) Pseudocongruences whose (m-1)-planes belong to an (mt+l)-plane;

(b) Pseudocongruences foliating into <P subfamilies of m-b parameters, 1 <b < m,

where all (m-l)-planes of each of these subfamilies belong to an m-plane;

(c) Pseudocongruences possessing m systems of integrable (m-1)-parameter focal

subfamilies of order zero.

Pseudocongruences of the third type are called totally focal (abbreviated t.f.).
Each of the m focal surfaces of a t.f. pseudocongruences is an m-conjugate system
(see Geidelman [7]).

Let L be a t.f. pseudocongruence of (m-1)-planes P1 in P". To each plane
€ L we associate a moving frame consisting of linearly independent analytic

Pp-1
points Al""’An+1’ such that

[A1’°"’An+1] =1 (2.1)

and (Al,...,Am) =Py

The equations of infinitesimal displacements of the moving frame are

dA_ = w'A_, U, v = 1yee,ntl, (2.2)
u uv
where the Pfaffian forms MX satisfy the structure equations (i.e. the integrability
conditions) of the space P
dw’ = W AW . Uy, VoW = 1,00e,ntl e (2.3)
u u w

In addition, differentiating (2.1) by means of (2.2), we obtain
w =0. (2.4)
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In this paper we will suppose that 2m-1 < n < 3m-1l, In this case we can specialize
the moving frames in such a way that

(i) the vertices Ai , 1i=1,.0.,m, are foci of pm-l;

(ii) the line AiAm+i is tangent to the line Y4 of the conjugate net (Ai) which is
not tangent to p ;3

(iii) the points A2m+1"“’A2m+c’ where 2mto = n+l, are chosen arbitrarily (of

course, (2.1) is supposed to be satisfied).

Under such a choice of vertices A of the moving frames the developable surfaces

of L are determined by equations mm+1 = 0. Since all foci are supposed to be linearly

i

independent, forms wm+i are also linearly independent. We will take them as forms of

i
the dual cobasis and will denote them by mi:

wT+i = wi . (2.5)

In (2.5) and in what follows there is no summation of the indices 1,j,k = l,.0.,m,
unless it is indicated by the summation sign. If the moving frames are specialized in

the above described manner, we have:

k i
dAi miAk + w Am+i s (2.6)
20, 541, (2.7)
W™ = o, £=1,eee,0. (2.8)
In addition, since
(4A,ALA L) =0modwd ,  34i, (2.9)
by means of (2.6) we obtain
wi = bimj . 44 (2.10)

Exterior differentiation of (2.7) and (2.8) by means of (2.2) and (2.10) and application

of Cartan's lemma leads to

gt e, (2.11)
mﬁi{r = a§m+rmi . r=1,.0.,50. (2.12)
It follows from (2.1) and (2.12) that
k 2m+r i
da i = { 1Ak tu A tap wAy . (2.13)

Since n = 2m-1+0, there are ¢ linearly independent points among points 82m+rA

.
Because of this, we have ! .

rank(a2m+r) =g . (2.14)

I: other words, (2.14) means that the second osculating space of L is the whole space
P, i.e. L is of second class.
Further exterior differentiation of (2,10), (2.11), and (2.12) and application

of Cartan's lemma give rise to the following Pfaffian equations:

. . .
dbi + bi(ZmJ -y - m+j) - I b k3 k

i g m+jj o K,y
=bj,w + a
ij ij ’ (2.15)
J h| i

- 3
“mbi T 233 T aii“’ ’ (2.16)
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CIE N RS B RO IO SRPPYPPN

b 3, 1 1 3
dey + eyl = 205,y + m+j) + k#g 4 C1 *agt Wonde T B1W FCyY
»
2m+r 2m+r m+i |, 2mtr 2m+s 2mtr k_2mir k_ 2m+r 1
dai (w - 20 i-l-w2m+r) + aj wyie + kgi cya W mag, (2.18)

In the following we will need the differential extensions of (2.15) and (2.16)
which have the following form:

K o d
bl + bj ol -} - 2 +vaud,, - ™Ry - ] b:bijw ~3b (b]

ij 3 h] 2m+r ki, ]
h] ki k k J K jiidi_ .3 3 j 1 (2.19)
+ 3b X b.bjw - b 2 - byc,crw by,,w + a,, .w , .
145y 1K 148 €4%" 1551 133 113
3 gy - 34 1 k31 1k k
daj + aij(Zw Swy m+j) - bi et kf%,j (aiibk ciakj)w kig,jbkaikw
- aijjwj - aiijwi , (2.20)
i m+i ) 33 ki k 2mtr J
daii + a‘li(m1 - Zwm+i + wj) = 1%y + k#g,j Ciag® — 8y Worar
=ad ) - Wt (2.21)

1] 113

3. FIRST AND SECOND ORDER PROJECTIVE DEFORMATIONS OF T.F, PSEUDOCONGRUENCES.

It is well known that (m-1)-planes P of the space P" can be represented as

n N

points of the Grassmannian G(m-1,n), dim G = m(n-m+l), in a projective space g(P ) =P
n+l) 1. Denote by [M1
(Ml’°°”Mm)' If {Au} is a moving frame in P", then ([Au ,...,Aum]} is a moving frame

N 1
of P,

Let P" and P" be two n-dimensional projective spaces with moving frames {Ah} and

of dimension N = ( seeesM ] Grassmann coordinates of the plane

{K;} and K: P" +» P" be a collineation given by

- v
= . .1
KA =aA det(a ) # 0 (3.1)
The collineation K induces the collineation g(K): g(Pn) > g(fn) given by
v v

K[A Al=ali.a™ M@ Al (3.2)

u 900y u u oo u v LX) v . .

1 m 1 m 1 m

A pseudocongruence L is represented in g(P™) by some surface belonging to G(m-1,n).
We will denote it also by L.

A correspondence C: L + L between two t.f. pseudocongruences L and L of Pn and
P" is said to be a proaecttve deformation of order h if for any plane P € L there
exists a collineation K: P® + P" such that surfaces g(K)g(L) and g(L) have the
analytic contact of order h at the point g(pm_l), f.e. if

Ka®[A . uuh ) = ) (2re, " ME LT (3.3)
2=0
where s = 0,1,,..,h and e2 are f-forms.

Suppose that the moving frames {Au} associated to the planes Pl €L are speci-
alized similarly to the moving frames associated to the planes Pr1 € L. We will denote
all expressions connected with L by suppressing the overbar. Then we have equations
(2.1)-(2.21) if 2m~1 < n < 3m-1,

According to (3.3), the correspondence C: L + L is a projective deformation of

order one if for any P € L there exists a collineation K: P" + P" such that
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K[Al... Am] = [Al...Am] s
Kd = — — _ (3.4)
[Al...Am] = d[Al...Am] + 91[Al...Am].

In what follows we will denote the Grassma duct cea
smann products [A1 Am], [Al"'Ak—lAukAk+1"'Am]’

K kL7
(A ...A A cerB, A AL ioh Tycib , :
T R LA L LV By puls oo

K
(A ...A ] = [A] (A .. A A ceeA ] = (AN,
1 An , 17 Aeby At u (3.5)

k ,2
[A eee A P cee = ’ ces
1 Ak—l ukA'k+1 Al—lAulAlHl Am] (Auk, ull ’

Using notations (3.5), we can write (3.4) in the form

K[A] = [A] , Kd[A] = d[A] + el[Kl . (3.6)
Bymeans of (2.1), (2.3), and (2.4) one obtains
- i i i
d[A] g wy[A] + E WA LT . 3.7)

The author proved in [4] the following theorem:

THEOREM 1. A correspondence C: L + L is a projective deformation of first order
if and only if C is developable (i.e. developable surfaces of L and L correspond to
each other under C). A collineation K realizing such a deformation is determined by

KA=p-A. KA =pK.+Zan
i i1 ? i 1 mHi m+i ’
j i (3.8)

u —
KAZI!H‘I' = azm_'_rA s r=1l,e04,0, u= l,00eyntl,

Although restrictions for n are different in (4] and in the present paper
(n > 4m-1 and 2m-1 <n < 3m-1 respectively), in the proof presented in [4] one needs

to have n > 2m-1 only.
Note that in the proof as consequences of (3.6) the author obtained the form

(3.8) of the collineation K, equalities
ol = ut (3.9)

giving developability of C, and the following form for the l-form el in (3.6):

B i, i -1i
el = § (- Ty + o P @ ) . (3.10)
In (3.10) and what follows we use the notation
vV_-Vv_ v
LT, Ty, (3.11)

In addition, in what follows we will need the differential extension of equation (3.9)

that has the following form:

mHi i_ i
Tt = T4 tim . (3.12)
In the case of a projective deformation of second order one obtains from (3.3) condi-

tions (3.6) and

kd2(a] = d?(A] + 20 (A + 6,(A] . (3.13)

Differentiation of (3.7) gives
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a%ia) = Y [dm +(w ) +wiw JIIAT + ] tdol+ ol (2 Jw -wi+m i)][A“M]
i i j
3,002 5, 3020 4 i3 i }
+ . %1#j) {[ci(m ) L CRIR L CW w? [Aml,mﬂ]
2mtr
+ ay (w ) [A2m+r]) . (3.14)

Note that equation (3.14) is slightly different from similar equation in the
above mentioned paper [4] because of different restrictions for n and different choice
of moving frames.

THEOREM 2, A correspondence C: L +Lis a projective deformation of second order
if and only if there exist functions pi such that the relative invariants bi and Bi of
L and L satisfy equation

o,B) = 3 bl . (3.15)
A collineation K realizing such a deformation C is determined by (2.8) where CH and az

satisfy equations:

=1 Ek _ k _ 2m+s mtk
Pre*Pn ’ P11 TPk T 3 %omts ? (3.16)
p.t, = 2m4s m+i - 2 °
i%1 7 % %2mts i

Proof of Theorem 2 1is computational and follows proof of a similar theorem in [4]
where one should use (3.13) and (3.14).
Note also that in [4] the author proved that if C: L » 1 is a projective deforma-

tion of second order, then the following identities hold:

ot B h| i j
P = pybl - byGoyE -l ), (3.17)
o= pad owlet (3.18)

Py ij jij i%mHi
They can be obtained from (3.15) and (2.15).
4. SINGULAR PROJECTIVE DEFORMATIONS OF T.F. PSEUDOCONGRUENCES.
A correspondence C: L -+ L induces the correspondences C (A ) » (A ) of focal
surfaces of L and L. Suppose that there exists a collineation H such that
nasa, = I By e d R, s = 0,1, (4.1)
2=0
where ¢§ are 2-forms. In this case we will say that cy is a projective deformation of

order h between (Ai) and (Ki). A second order projective deformation C: L + L
realized by the collineation K which is determined by (3.8) is said to be weakly
singular, singular, or oa-strongly singular, o = 3,4,..., if the correspondences ¢y
induced by C are projective deformations of order one, two or o respectively
realized by the same collineation K.

THEOREM 3. A second order projective deformation C: L + L is weakly singular.

PROOF. Suppose that C: L +1 is a projective deformation of second order, i.e.
we have (3.8) and (3.15)-(3.18). It follows from (2.6) and (2.10) that

- 33 i
da; miAi + jgi byw Aj WA L (4.2)
Using (3.8), one finds from (4.2) that
- — 1, i i+
KAi = piAi s KdAi = pidAi + (—pi'ri + oY )Ai . (4.3)
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According to (4.1), it means that K realizes a projective deformation of first
order of (Ai) and (Ki) for any i and therefore the correspondence C: L -+ L is weakly
singular. Note also that (4.3) and (4.1) show that

0 1_ i, 4 i
05 TPy 05 = 7Pyt g e (4.4)

THEOREM 4, A second order projective deformation C: L + 1 is singular if and only
if the following equations hold:

2m+r 3 I _ —3 j 3

3 2mbr - 2i1P3 T %11 T S4 %m0 (4.5)

—2mtr _  2mts  2mtr
pjay = a; @ s (4.6)

PROOF., Suppose again that C: L - L is a second order projective deformation.
Differentiating (4.2) and using (2.1), (2.7), (2.8), (2.11), (2.12), (2.15), and (2.16),

we get

d2Ai= [dmi+ (wi)2+ u)i[m ) bjb mJ]}A + 1 [bJ mj+bjmj(2w +w$§:-u)3])—aii(wi)2
j#i j#
+ mj(Z k#; ka ky bijmJ+Za ) )]A + [d(n +u) (w, +wm+1)]AnH-i
|
i, 3.2 2mbr, 1,2
+ 7 [bi(m Y+ ¢ (w ) ]Am+3 +aj (w)) Ayir (4.7)

j#i
Using (3.11), (4.7), (4.7), (3.8), (4.3), (4.2), (4.5), (4.6), (3.12), and (3.15)-(3.18),

we obtain

2 2 1~ = i 2mir_k —* k kk -
KA“A; = 0y d"A; - 2¢;dA; - 054 = (v )? Z (a5 omer * 354P5 T 251PK ¥ 1%t
2m+s 2m+r —2mtr
@ e TP Moy (4.8)
where
2 _ i i 2 iid i i i, mHi i i 2mbr i i,2
87 = o ldTy - (DT F Wl e e b ey - 2Ty m e Ay, (00) " (5.9
Comparison of (4.1) for s = 2 and (4.8) leads to equations (4.5) and (4.6), Q.E.D.

THEOREM 5. Suppose that L and L are second class t.f. pseudocongruences of
planes in projective spaces P" and 5“, 2m-1 < n < 3m-1, and suppose that they are
related by a second order projective deformation C: L - L. The pseudocongruences L
and L are identical if and only if the deformation C is 3-strongly singular.

PROOF. Suppose again that C: L - L is a second order projective deformation
between L and L. The deformation C is 3-strongly singular if (4.1) holds for s = 1,2,3.
We already showed that for s = 1 equation (4.1) holds automatically and for s = 2 it
holds if and only if conditions (4.5) and (4.6) are satisfied.

For a 3-strongly singular deformation C we additionally have

3, _ 3+ 1 .2~ 2 = 3+
K d Ai =Py d Ai + 3¢i d Ai + 3¢i dAi + ¢iAi (4.10)

where ¢1 and ¢i are 1- and 2-forms determined by (4.4) and (4.9) and ¢2 is a 3-form,
Differentiating (4.7) and using (2.1), (2.7), (2.8), (2.11), and (2.15)-(2.21),
we obtain

y + l”2m+r

m+j i 2mtr (4.11)

d°A, = (A +Z(¢A +w
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where for j # i:

i o3 i 3,3 i_d Jys 4
vy = 2m w (a1JJ - 113 )4-(w ) (b1JJ a1JJ (w ) (allJm ciigY ) 8 »

mHi _ i i m+i
by T Opg® + By ’ (4.12)
mtj J i3 m+
VAR NSO + e,

2m+r 2mtr , 1.3 2mtr 2m+r 2mtr

= w - ) + By .

Vi map )T - A g

In (4.12) we denoted by BX 2-forms which produce terms vanishing on our final step
because of conditions imposed by a second order singular projective deformation C and
the first conditions following from (4.11) which we are going to obtain on our final
step.

Before making the final step of our proof let us simplify at first a collineation

K. By a suitable choice of local frames we obtain

KA =4 . (4.13)
u u
Equation (4.13) means that
Vo_ GV
au Gu o (4.14)

It follows from (4.14), (3.9)-(3.11), (3.15)-(3.18), (4.5), (4.6), (2.5), (2.10), (2.7),
(2.8), (2.11), (2.12), (2.16), (4.4), and (4.9) that

—j 2mtr _ 2m+r

=%, -7, ajij=2ij, bJJ=bij, al =3l , (4.15)
T?+i = Ti = r?+j = Tim+r = Ti+i = z:i = Tii;r =0, j#i, (4.16)
by =-ti, o= -dn 4 (P - el 4.17)
In addition, equations (3.16), (3.12), and equation (4.5) of [4] imply
Ti = Tg = Tzii = Tzig N j#i, (4.18)
It follows from (2.4) and (4.18) that
ZmT + T%:I; =0 (no summation). (4.19)

Applying (4.13) to (4.11) and using (4.13), (4.7), (4.2), (4.17), and conditions

of singularity of C, we get

3, _ (437 1,2— 2 — 3, = e mtj— 2m+r—
Kd“A; - (d7A;+3¢;d°A, + 3¢0{dA, + ¢]A,) j; ayA, + Z QAL Ay, (4.20)
where for j # i:
)
J_ J it v 3
Qi (b 133 leJ)(m ) +(c11J lij)(w ) +-3m m [(a jj lJJ)w
Al

mhi i, 12 . mH (ajy5=2345)0" ”*1 ,
Q. = 21t . ()" + v, s
i mti i b (4.21)
m+j . . .-

- i _ =] i3
24 (31 = €39 (W)
2mt+r _  2mtr 2m+r 2mtr  —2mtr,, 1,3
9 T Al Tome® wh) +(aii ECTHRICI AN )

and YZ in (4.21) are 3-forms vanishing on our final step.
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Comparison of (4.11) and (4.20) leads us to the following conclusions:

i) First of all, we get from the comparison that

2mtr _ (;2m+r_ 32m+r) (82m+r)-1 i ( tion)
omtr ii ii i w no summation),
Since w® are linearly independent, it implies

2mr

Tombr = 0 (no summation) , (4.22)
2mtr _ —2mtr
S e (4.23)
Equations (4.19), (4.22), and (4.18) give
i mH
TS Tmei 0. (4.24)
It follows from (4.23), (2.18), and (2.18) that
2mts  2mtr _
aj Tomts = 0. (4.25)

ii) Second of all, the comparison gives

i _=
i cig ° (4.26)
Equations (4.26), (4.15), (2.17), and (2.17) leads to
2mts _j _
aj Tomts = 0+ (4.27)

iii) Further, we obtain from the comparison that
T =0 . (4.28)
Note that y?+i = 0 by means of (4.24),
iv) Finally, the comparison gives
i _ =3 | i _ i3 I
i3 T %145 0 %35 T %33 0 Pigg T P 0 Ciag T Sidg - (4.29)

Note that yi = 0 by means of (4.24) and other conditions which were previously obtained.
It follows from (4.29), (4.15), (2.21), and (2.21) that
2mbs _j _
ay Tomts 0. (4.30)

Equality (2.14) means that the rank of the matrix of coefficients of each of the
linear homogeneous systems (4.25), (4.27), and (4.30) is maximal and equal to the number
of unknowns, Therefore, these systems 1lead to

j _ .mH 2mts -
Tomtr © T2mbr T “omtr 0. (4.31)

Equations (4.16), (4.22), (4.24), (4.28), and (4.31) show that all forms TX = 0.
Therefore, the pseudocongruences L and L are identical. The converse statement is
trivial, Q.E.D,
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