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ABSTRACT. For a finite group G and an arbitrary prime p, let SP(G) denote the
intersection of all maximal subgroups M of G such that [G:M] is both composite
and not divisible by p; if no such M exists we set SP(G) = G. Some properties of
G are considered involving SP(G). In particular, we obtain a characterization of

G when each M in the definition of SP(G) is nilpotent.
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1. INTRODUCTION.

It is an interesting problem to investigate the relationships between the
structure of a finite group G and the properties of the maximal subgroups of G.
This has been studied by several people (e.g. [4], [5]). 1In [2] and [7-8] we
have considered the family of maximal subgroups whose indices are composite and
co-prime to a given prime. In this note we obtain further results in this
direction. All groups considered are finite. A maximal subgroup M of a group G
will be sometimes denoted by M <- G. A maximal subgroup M of G of composite index

will be called c-maximal.

2. THE SUBGROUP sp(c).
Let G be a group and p any prime. Consider the family of subgroups of G:
J ={(M : M is c-maximal, [G : M]P = 1)

Define SP(G) =n{M:MeJ}), if J is empty then set SP(G) = G. This
subgroup was introduced by us and several results have been obtained in [2] and
[7]. We remark that SP(G) is a characteristic subgroup containing the Frattini
subgroup ¢(G).

Our first result is motivated by Rose [9] where it was proved that if every
non-normal, maximal subgroup of a group is nilpotent then the group is solvable.
This result was extended by us ([2, Theorem 1.1]). We now obtain a further result

in this direction.
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THEOREM 2.1. Let p be the largest prime divisor of the order of a group G.
Suppose that each subgroup in the family J (see above for the definition) is
nilpotent. Then
(1) either, G is p-nilpotent or, there exists a normal p-subgroup Py of G such
that G/P0 is p-nilpotent.

(ii) if lp(G) denotes the p-length of G then 1p(G) < 2.
(Note: It follows directly from [2, Theorem 1.1] that G is solvable in this
case).

PROOF: (i) we distinguish two cases:

Case 1: G has no normal p-subgroup. Let P be a Sylow p-subgroup of G. Then
NG(P) # G and choose M <: G such that NG(P) <M. If [G : M] is a prime q, say,
then it is easy to see that q > p, an impossibility, thus [G : M] is composite
and clearly [G : M]p = 1. So M e J implying that M is nilpotent. Therefore M =

NG(P). Let P, be a nontrivial characteristic subgroup of P. As G has no normal

0

p-subgroup, NG(PO) = NG(P) = M. Consequently M induces only p-automorphism on P,

and so by Thompson [10] G is p-nilpotent.
Case 2: G has a normal p-subgroup. Let PO be a normal p-subgroup of G of the

largest possible order. If P0 is a Sylow p-subgroup of G then trivially G/P0 is
p-nilpotent. So, assume that P0 is not a Sylow p-subgroup. We use induction on

|G|. We mote that p is the largest prime dividing |G/P0 . It is easy to see

that G/P0 satisfies the hypothesis of the theorem and G/P0 has no normal
p-subgroup. So by induction hypothesis G/P0 is p-nilpotent. Thus the proof of
(i) is complete and (ii) follows now readily.

Our next result illustrates how under certain conditions the supersolvability
of a group is controlled by the structure of certain groups of smaller orders.

THEOREM 2.2. For a group G and any prime p, if ‘SP(G)| is co-prime to p, then
G is supersolvable <=> G/SP(G) is supersolvable.

PROOF: The case => is trivial and we consider now the <= case.
If every maximal subgroup of G is of prime index then G is supersolvable by a
well known result of Huppert and so SP(G) is supersolvable. Now let M be a
c-maximal subgroup of G. If M does not contain SP(G),then G = MSP(G) and so
[G:M]P = 1 since by hypothesis ISP(G)I is a p'-number. Consequently M € J and so
SP(G) < M, a contradiction. Thus Sp(C) is contained in every c-maximal subgroup
of G and so SP(G) is contained in L(G), the intersection of all c-maximal
subgroups of G. Now by [1] (see [2] for a published proof) L(G) is supersolvable

and so the result now follows.

A group G is called a Sylow tower group of supersolvable type if (i) P, > Py
oo D P, are all the prime divisors of |G| and Pi is a Sylow pi—subgroup of G and

(ii) Py P, ... P <G, 1 < i< ke
THEOREM 2.3. Let q be the largest prime divisor of a group G and assume that
Sq(G) = G. (In other words, the family J in the definition of Sq(G) is empty).
Then G is a Sylow tower group of supersolvable type.
PROOF. We use induction on |G|. 1If Q is a Sylow gq-subgroup of Sq(G) then by

[7, Proposition 5] Q < G. Consider the following two families of subgroups:
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J={(M: Mis c-maximal in G, [G : M]q =1}
J] = {M/Q: M/Q is c-maximal in G/Q, [G/Q : M/Q]q = 1)

Since Sq(G) = G, J is empty. This implies that J, is also empty. For, if J, is

1

nonempty and M/Q belongs to J. then clearly M € J, contradicting the fact that J

is empty. Hence Sq(G/Q) = G/é. This implies that if M/Q is an arbitrary maximal
subgroup of G/Q then clearly [G/Q : M/Q]q = 1 and [G/Q : M/Q] must be a prime.
Thus every maximal subgroup of G/Q is of prime index. So, by a well known result
of Huppert G/Q is supersolvable. Hence G is a Sylow tower group of supersolvable
type.

If G is supersolvable then every maximal subgroup of G is of prime index by
a well known result of Huppert, and so Sp(G) = G. Thus, if G is supersolvable
then for H < G, we have that SP(G) nH= SP(H). A simple example will show that

the converse is not always true. (Take G = A, and p = 2. Here SZ(H) = H for

4

every subgroup H but A, is not supersolvable). However, we have the following

partial converse: *

PROPOSITION 2.4. Let p be the largest prime dividing the order of a group G.
Suppose that Sp(G) nH= SP(H) for every subgroup H of G. Then G is a Sylow
tower group of supersolvable type.

PROOF: Let Q be any Sylow q-subgroup of G where q is any prime dividing |G|.
By hypothesis, SP(G) nQ-= SP(Q). Further since any maximal subgroup of Q is of
prime index in Q, Sp(Q) = Q irrespective of the fact that p may or may not be
equal to q. Thus S _(G) contains every Sylow q-subgroup of G for every prime q
dividing IGI. Therefore SP(G) = G. The result now follows by applying Theorem
2.3.

We omit the proof of the following standard result:

LEMMA 2.5. Let G be a supersolvable group in which for every maximal subgroup
M, [G:M] = p where p is a fixed prime. Then G is a p-group.

We now prove:

PROPOSITION 2.6. Let p be the largest prime dividing the order of a group G.
(i) Assume that [G:M]p = 1 implies that [G:M] is a prime for any M <+ G. Then G
is a Sylow-tower group of supersolvable type. Further if P is a Sylow p-subgroup
of G then P < G and G/P is supersolvable.
(ii) Let q be any prime such that q is not equal to p. Assume that [G:M]p =1
implies that [G:M]=q for any M <+ G and furthermore [G:Mllq = 1 implies that

[G:MI] = p for any M, <+ G. Then G issupersolvable.

PROOF: We omitlthe proof of (i) which is a direct consequence of Theorem 2.3.
Now consider (ii). If P is a Sylow p-subgroup of G then by (i), P < G and G/P is
supersolvable. Now q divides |G/P|. Suppose if possible M/P <+ G/P such that
[G/P:M/P]q = i. Then [G:M]q = 1 and so by hypothesis [G:M] = p which is
impossible since M contains P. Thus no maximal subgroup of G/P has index
co-prime to q and since G/P is supersolvable, this gives, by using a well known

result of Huppert, that every maximal subgroup of G/P is of prime index, and so

has index q. By Lemma 2.5 it now follows that G/P is a g-group and so |G| is of
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the form pa qB. By using a well-known result of Burnside, G is solvable. We now
show that G is supersolvable. Suppose if possible that there exists a maximal
subgroup M such that [G:M] is divisible by both p and q. Then G = P M and it
follows that [G:M] = |P|/|PnM| is a power of p, a contradiction. Therefore, for
any M <- G, we have that the index of M in G is either co-prime to p, or co-prime
to q. Consequently, by the hypothesis it follows that every maximal subgroup of
G is of prime index and hence G is supersolvable by using a well-known result of
Huppert.

REMARK: Under the hypothesis of Theorem 2.6 (ii) it might be tempting to

conjecture that G is nilpotent. However, S, satisfies the hypothesis but is not

3
nilpotent.
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