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ABSTRACT. A subset A of a finite additive abelian group G is a Z-set if for all

a A, na A for all n Z.

The purpose of this paper is to prove that for a special class of finite abelian

groups, whenever the factorization G A B, where A and B are Z-sets, arises from

the series G K m K
2 Kn <0> then there exist subgroups S and T such that

the factorization G S T also arises from this series. This result is obtained

through the introduction of two new concepts: a series admits replacement and the

extendability of a subgroup. A generalization of a result of L. Fuchs is given

which enables establishment of a necessary and sufficient condition for extendability.

This condition is used to show that certain series for finite abelian p-groups admit

replacement.
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I. INTRODUCTION.

Let G be a finite abelian additive group and let A and B be subsets of G. If

every element g G can be uniquely represented in the form g a + b, where a A,

bB, then we write G A B and call this a factorization of G. A subset A is said

to be a Z-set if for all aA, nasa for all nZ.

A.D. Sands [I] gave a method which yields all factorizations of a finite abelian

good group. His method corrects one given previously by G. Hajos [2].

Our main purpose is to prove that for a special class of finite abelian groups,

whenever the factorization G A B, where A and B are Z-sets, arises from the series

G K K2 K K K <0> (see [3]) then there exist subgroups S and
n n n

T such that factorization G S T also arises from this series.

In order to achieve this result we introduce two new concepts: a series admits

replacement and the extendability of a subgroup. We prove a generalization of a

result of L. Fuchs [4] which enables us to derive a necessary and sufficient condition

for extendability. This condition is used to show that certain series for finite

abelian p-groups admit replacement.
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2. PRELIMINARIES.

We shall use the term "Z-factorization" when referring to a factorization of

the form G A H B, where A and B are Z-sets

Our first two lemmas can be readily verified.

LEMMA I. Let G S H A, where S is a subgroup of G and A is a Z-set. If H and K

are subgroups of G with H Hs H HA K KS H KA, where HS, KS are subgroups of S,

and HA, KA are Z-sets such that HA = A, KA A, then HflK (HSfl KS H (HAfiKA).
LEMMA 2. Let G A H B be a Z-factorlzation of G. If H is a subgroup of G such

that A H then H A H (H fi B).

LEMMA 3. Let G G
(0)

S H A m G
(I)

S
(I) H A(I)

G
(n+l)

<0> be a series for G with S(0) S(1)D S

A A(0) m A(I) ... A(n) {0} Z-sets There exists a refinement of (21) which is a

composition series for G and the subgroups in this refinement have the same properties

as (21), i.e. any subgroup, H, in the refinement has the form H Hs @ HA where HS

is a subgroup of S and HA is a Z-set, HA K A, and H K implies HS Ks and HA!KA.

D...DG(n) S
(n)

H A(n) D (2.1)
(n)

<0> subgroups of G and

Furthermore, if H c K are successive groups in the refinement then either HS= KS or

HA KA-
PROOF. It suffices to show that if there exists c G with G i)D G(i+l)

then H with S(i) D_ D_ S(i+l) A(i) D D A(+I) a Z-set and either S(i)

or A(i) 0 < i < n.

Consider S(i) S(i) @ A(i) S
(i+l)

S(i+l) H A(i+l) 0 < i n

Case I. Suppose that A(i) A(i+1).
we have A(i) H (6 0 S (i)) by Lemma 2.

this case we have A(i)

Case 2. Suppose that i(i) A(i+l).

Then for any 6 such that C
(i) = C

(i+1)

Clearly S(i) m 0 S (i) S(i+l). In

We can insert the subgroup G (i+l) +

S(i) S(i) A(i+l) without altering the structure of the series, i.e. we have

G(i) S(i) A(i) = 6 S(i) H A(i+1) = C
(i+l)

S(i+i) H A(i+l).
Let fi be such that G(i) fi G(i+1). If fi we are done. If fi m G(i+l)

then by Case 1 has the required form. Finally, if G(i) D D then by Lemma 2,

S(i) H ( N A(i)). Clearly A(i) 6 A(i) D A(i+l). In this case we have

s(i) This completes the proof.

THEOREM I. [5] If G B(I) H...H B(k), where each B(i) is a Z-set, < i < k,

and if G N(1)H...H N(r), where each N(j) is a subgroup of G, < j r, such that

(IN(i)I,IN(J)I)=I for is j, then

(a) B(i) (N(1) n B(i)) H...H (N(r) n B(i)), ! i ! k,

and

(b) N(j) (N(j) 0 B(I) H...H (N(j) 0 B(k)), j r.



FACTORIZATIONS OF FINITE GROUPS 269

The following lemma is a direct consequence of the Second Isomorphism Theorem.

LEMMA 4. Let U, Ul, and K be subgroups of G with UlC U. Then [U N K: UI0 K] <-
[u: u1].

Let S be a subgroup of G. We will say that S is homogeneous if S is a direct sum

of cyclic groups of the same order.

Theorem 2, which is a generalization of the following result of L. Fuchs [4], p.79),

can be readily verified.

(Fuchs) Let S be a pure homogeneous subgroup of G of exponent pk and let H be a

subgroup of G satisfying pkG _c H and S N H <0>. If M is a subgroup of G maximal with

respect to the properties H M and M 0S <0> then G S OM.

n
THEOREM 2. Let S @ S. be a pure subgroup of G with Si, i & n, homogeneous

i=l i

of exponent pki, kl>k2..>kn, and let U G. There exists a subgroup, T, of G with

U c T and G S @ T if and only if [pkjG + S. + U] S. <0>, j & n.
> i j

3. REDUCTION TO THE CAUSE OF P-GROUPS

Consider the series

G G
(0)

S A m G
(I)

S
(I) A(I) D...m G(n)=s(n) O A(n) m <0> (3.1)

where S S
(0)

S
(I) ... S

(n)
<0> are subgroups of G and AffiA(0)A(1)...RA(n)

{0} are Z-sets. We say the series (3 I) admits replacements if there exist sub-

groups, T(i), such that T=T(0)_ T(1)_ ..._ T(n)_ <0> and G(i)=s(i) T(i), 0.< i <.n.

Let us note that by Proposition 1 [3] there exist subgroups T(i) such that

G(i) S(i) eT(i) 0 < i < n However it is not necessarily the case that T(0) D

T(1) -..2 T(n) This problem will be treated in the next section

A group C admits replacement if every series for G of the form (3.1) admits

replacements. The following theorem enables us to restrict our investigations in this

area to the case of p-groups.

THEOREM 3. Let G G where the G are the primary components of G. G admits
P P P

replacement if and only if for each p, G admits replacement.
P

PROOF. Suppose G admits replacement. Let H G for some p and let
P

H H(0)= S
(0) A(0) H(1) s(1) A(I) ... H(m) S

(m) A(m) = <0>

be a series for H with S
(0)

S
(I) ... S

(m)
<0> subgroups of H and

A(0) D_ A(I) _m..._m A(m) {0} Z-sets. Define K , so that G H K =(S(0)@ K)
P pGp,

O A(0). Then G G
(0) (S(0) K) A(0) m H(0) S

(0)
@ A(0) m H(1)= S

(I) A(I)

D_ H(m)= S
(m)

@ A(m) D_ <0> is a series for G which by hypothesis admits replacements.

Consequently the series H H(0) H
(I)

m...m H(m) m <0> admits replacements.
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Conversely, suppose G admits replacement for each p. Let
P

G G
(0)

S
(0) A(0) :> G

(I)
S
(I)

@ A
(I) ... G(n)= S

(n)
@ A(n) n <0>

be a series for G with S,0.(1 S "I’(% ... S
"n’(%

<0> subgroups of G and A0( Alt
D...D A(n) D {0} Z-sets. For each p define G(i) to be the p-primary component of

Gi}", 0 < i < n, so that Gi}-""- G 0 Gi)" and Gi)-""- $ Gi)"". By Theorem we have that
P P p P

G(i) (S(i) n G(i)) (A(i) a G(i)), 0 i n.
P P P

Define S(i) S(i) G’;’{{% A(i) A(i) G
(i)

0 & i & n. Clearly
P P p P

S(0) D S(I) D...D S(n) D <0> and A(0) A(I) ... A(n)
_

{0}. Thus for each p,p p p p p p

G G(0)-- S
(0) A(0) G(1)= S

(I) A(I) ... G(n)= S(n) A(n) <0>
P P P P P P P P P P

is a series for G which by assumption admits replacements.p

there exist subgroups Tti) such that
P

(i) T Z(0) Z(1) ... Z(n) <0>
P P p p

and

(ii) G(i)= S(1) T(i) 0 & i < n
P P P

Thus for each p

Define T,i,( Z T,i.( 0 .< i <. n. Note that this sum is direct.
PP

that T T(0) D T(I) D ...D T(n) D <0> and (ii) implies that

From (i) we have

G
(1) e G(i) O (S(i)

P P P P
T(i)) S(i)) e T(1)) S

(i) T(i)
P P P P P

0 & i & n. This completes the proof.

4. EXTENDABILITY

Let G S A D G’ S’ e A’ S’ e T’, where S’ _c S are subgroups of F, A’ _c A

are Z-sets, and T’ is a subgroup of G’. We say T’ is extendable to G if there exists

T, a subgroup of G, such that T’ T and G S T.

The following theorem provides a necessary and sufficient condition for extenda-

bility of a subgroup T’ when G is a p-group.

THEOREM 4. Let G be a finite abelian p-group of exponent pk and let G’ be a

subgroup of G. Suppose G S @ A, G’ S’ @ A’ S’ @ T’ with S’ S, subgroups of

G, A’ A, Z-sets, and T’ a subgroup of G’. T’ is extendable to G if and only if

there exist subgroups, Ti, such that T’ T1
T
2 ... Tk_ 1

<0> and G’ pG

S’ 0 piS) Ti, 1 i k-l.
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iGPROOF. By Lemma we have that G’ fl p (S’ fl plS) @ (A’SpiA), <- i .< k-l.

Assume there exists subgroups, Ti; with T’ T ... Tk_ <0> and

k
G’ piG (S’ plS) @ Ti, I & i & k-l. Let S @ S where each S is homogeneous

i=l i’ i

of exponent pi, 1 i k. By Theorem 2, to prove the existence of a subgroup, T, of G

with T T’ and G S T we must verify

k
G(p + S.1 + T’) S

k
S
i
+ T’) S

k <0>
i<k i<k

(4.1)

and
JG(p + S. + T’) fl S. <0>, .< j <- k-I

i<j
(4.2)

For (4.1), suppose s
k s + t’, s e S < i k, t’ T’ Since

i i i’
i<k

T’. G’ we have t’ s’ + a’, s’ S’, a’ A’. Thus s
k

X s.x + s’ + a’ so that
i<k

a’ 0 by the definition of S A. But then t’ S’ S T’ <0>. Consequently,

s
k s..m However, since S is a direct sum of Sl, $2,... Sk, we have s

k
0 + 0 +

i<k

+ 0 + sk. Together these imply that s
k

0. Hence (4.1) is true.

Let I & j < k. Note that pJs. <0> if i j. Thus we have piG pJs
i

pJA.
i>j

Suppose

pj pJs. p3g + s. + t’ s
i
+ a + s. + t’

3 i<j
I

i>j i<j
1

where s
i Si, 1 i & k, a A, t’ T’. Since T’ G’ S’ $ A’

we have
t S + a s S a A (4.3)

Thus s. " p3s. + - s. + s’ + pOa + a’. Therefore
3 i>j i<j

pJa -a’ pJA n A’ c_ G’ fl pJG (4.4)

s. - pJs. + - s. + s’ (4.5)
3 i>j 1 i>j

Since pJA A’ is clearly a Z-set we have from (4.4) that a’ pJA N A’. By hypothesis,

G’ piG (S’ fl pJs) T. with T. c T’. Therefore (4.4) implies that a’ PJi +tj’3 O i>j

pj pJs
i

where
i>j P3i S’ S S’ and t T T’ But then (4 3) becomes

i>j j j

t’ s’ + jew where s’ + pJ S’ and t. S’ and t. T’ Consequently
i>j

p si + tj,
i>j

i j j
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pJs 0 by the definition of S’ Q T’ and we have s’
I

i>j

Substituting this expression for s’ into (4.5) we obtain

pJ pJs. E s. + E s. E s. so that sj3 i>j
i

i>j i>j
I

--0. Hence (4.2) is true.

Conversely, suppose there exists a subgroup T’ such that G S Q T. By
is piT)Lemma I, G’ N pG (S’0 p @ (T’ 0 1 i k-l. Clearly T’ D T’O pT DT’ N

2T pk-iT T’p T’0 Thus we can complete the proof by choosing T N pT
1

li&k-l.

Let us note that if G S A, where S is a subgroup of G and A is a Z-set, is

an elementary abelian p-group, and G’ is a subgroup of G such that G’ S’ @ A’
S’ T’, where S’ _c S, T’ c_ G’, and A’ is a Z-set contained in A, then T’ is always

extendable to G.

LEMMA 5. Let G S @ A G’ S’ @ A be a series for G with S’ S subgroups of

G and A a Z-set. If T is a subgroup of G’ such that G’ S’ @ T then G S T.

PROOF. Let be a set of coset representatives for S modulo S’.

Then G S A Q S’ e A S’ e T S T.

5. SOME GROUPS WHICH ADMIT REPLACEMENT.

We noted in Section 4 that given the series

G G
(0) S(0)QA(0) DG(I)= S(1)e A(I) D...DG(n)= s(n) A(n) <0> (5.1)

where S S
(0)

D_ S
(1) _..._ S

(n)
_D <0> are subgroups and A A(0)_A(1)_=..._ A(n)

_D {0} are Z-sets, one can always find subgroups T(i) such that G(i)ffi s(i) T(i)

0 <- i n, although it need not be the case that T T(0) D_ T(1)D_..._D T(n)_D <0>.

However, by applying the extendability criterion of Theorem 4, we can ensure that for

each i, 0 <- i <. n, our choice of the subgroup T(i) will be extendable to each G(=),"
= <- i, and consequently we will have T T(0)-

D_ T(1)_...D_ T(n).

We will briefly illustrate how successive applications of Theorem 4 when G is a

finite abelian p-group of exponent p3 results in Figure 1 since this lattice-type

structure clarifies the proof of the major theorem in this section. By Lemma 3 we may

assume that (5.1) is a composition series for G.

We introduce the following notation to simplify the discussion:

G! i)
G
(i) pJG()

S
(i)

S (i) N pJs()
j,

A! i)
A(i) 0 pJA()
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where 0 < i < n, 0< < n, j 1,2. By Lemma we have G:i( S! i) A! i)
3, 3, 3 ,

0 <. i <- n, 0 <- <. n, j I, 2.

G! i such that
3, 3,

G!i) s!i @ A!i S
(i)

@ T!i, and T(i will denote any subgroup of phGi such that
3, 3, 3, j, 3, h, ,
hA(i) h.(i) h.(i) h(i) _(i) < < < hP ’I, p ml, w p AI, p ml, w Zh,l, u 1 n, u m I, 3 z, z, a non-

negative integer.
1,0

, ,,,,,

,,.- /9,.-z

,.- s,.-]l "!’1 , I! !,
IGI.-o) Iln-l) IAG(.-I)I IA I/ l(n-.I i/Gin-I) A

6 (") Gl’zd I/ I/ l/GIn-2) l/Gin-z) /

I,O

Consider a subgroup TIn) such that in the series (5.1) we have GIn)= s(n) TIn).

By Theorem 4, T
In)

will be extendable to G(i), 0 < i < n-l, if an only if there exist

subgroups Tj,l such that TIn) D TIn)
_In)

with G )= S
In)

l,i 2,i i j,i’
0 i n-l, j 1,2.

G(nWe have the following array for the containments of the subgroups j,i’
0 i n, j=l,2:

G
In) m_ G

In) m G
In)

.:3
_In) _In)

D G
In)

l,n
pG(n)

l,n-I l,n-2 2.. ul, 1 D_ Ul, 0

Ul Ul Ul Ul Ul

Gin) p2G(n) Gin) (n) c.
_In)

m G
In)

2,n
m_

2,n-i m---2,n-2--’’c-u2,1 2,0

Thus if we can find subgroups T
In)

0 < i < n, j 1,2 T
In)

such that
j,i.....

In) _In) _In) In)
T
In) T

In)
c T c T

l,n
c

l,n-I l,n-2 TI,I TI,0

Ul Ul Ul Ul Ul

T(n)n T
In)

c T
In) _In)

2, 2,n-i 2,n-2 ’’’ T2,1 2,0
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and G(I S( T( 0 i < n j 2 G(n)= s(n)O T
(n)

we would have
3 i 3 i 3 i’

T(n) extendable to G(i) 0 < i < n-I
(n-l)_(n)

extendable to GI, iLater it will become apparent that we need TI, i (n)
0& i & n-l. We will show how this can be incorporated in our discussion on T

Using Lemma 4 with U G
(n-l) U G

(n) K pG
(i)

0 i n-l, we have

[G(nl) G(n] (n-I)
[ I, I, p" Thus PGI, i

(n-l)
has exponent at most p2Note that GI, i

By Theorem 4
_(n)

is extendable to G
(n-l)

II,i l,i

0 i < n-i if and only if there exists a subgroup (n-) such that
_(n) T(n-TI,I i Tl,i-- i,i i

(n-l) n-l) i)and PGl,i(n-1) PSl,i(n-1) @ T(n-l)l,l,i, 0 < i < n-l. Since PGl, i
p(G A pG

c pG(n-l) n p2G(i) c G(n) p2G(i) _(n)
0 i < n-I we have the following arrayu2, i

subgroups G(n) G(;I (n-l)
0 < i < n-I j 1 2:for the

i’ PUl,i

G
(n)

S
(n)

c cG(n) G(n) _(n) G(n)
l,n l,n-I l,n-2 I,I Ul,0

G
(n)

c G
(n)

c G(n) c c
_(n)

c
_(n)

2,n 2,n-I 2,n-2 u2,1

c_ _(n) _(n)
fl
_(n-l) (n-l)

0 < i < n-iUl, i
so that Ul, i Pl,i PGI,i

Ul Ul Ul Ul

..(n-1 .(n-1
c (n-1) .(n-1

PUl,n- c_ P’l,n-2 c--PGI,1 _9 PI,O

T(n)

T-,I)("- 0<i< n, 0< i’<n-l, j= 1,2,Thus if we can find subgroups lj, i

such that

T(n) T(n) .(n)
c c T(n) _(n)

T(n)l,n l,n-I Xl,n-2 I,I TI,0
U1 U1 Ul U1 U1

T(n) c T(n) .(n)
c T(n) _(n)

2,n 2,n-I 2,n-2 2,1 T2,0
U1 U1 U1 U1

1,1,n-1 l,l,n-2-"" 1,1 1,1,0

with G!n) _(n) T(n) (n-) (n-l)
T 0 < i < n 0 i’ n-l,3,i bj,i j,i’ PGI,i PSI,i’ I,i

j 1 2 G(n) S (n) " T
(n)

we would have T,n)
(

extendable to G,n-l)
(

0 < i n-1
,i i ,i

and T(n) extendable to G(i), 0 i n-l. In particular, we would know there exists
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a subgroup T(n-l) with T(n-l) T(n) and G
(n-l) S(n-l) $ T(n-l). However,

we must ensure that our choice for T(n-l) is extendable to G(i) 0 & i n-2

Appyling the previous argument to Tn-l) and then to Ti), 0 < i < n-3, we obtain

Figure I. We remark that lattice-type structures similar to Figure I can be obtained

for finite abelian p-groups of exponent pk, where k is any non-negative integer. Such
3

structures become rather complicated when the exponent of the group exceeds p

The following definitions will facilitate references to Figure I.

DEFINITION 1 The row for G
(i)

0 & i & n, is the series

,.(i)DEFINITION 2. The row for u2, 0

m G_
(i)

m
_(i)

D m G
(i)

2,0- 2,1- u2,2- 2,i

0 & i n, is the series

DEFINITION 3 The row for pG i)
,0’ 0 .< i .< n-l, is the series

,0 pG m pG ,2
m P’l,i

G()

DEFINITION 4. The sub-figure for G(i), 0 < i < n, consists of the rows for

() and pS2,0’ ,0 i <- <. n, i-I <. ’ n-l.

DEFINITION 5. We say the sub-figure for G
(i)

S(i) $ A(i), 0 & i & n, is

complete if

(i) for every subgroup H in the sub-figure for G(i) H= SHgAH,
SH a subgroup of S(i), a Z-set, AH _c A(i), there exists a subgroup TH such that

H SH
$ TH,

(ii) for all sub-groups H, K in the sub-figure for G(i) with H c K we have TH c_ TK.

Let us note that, by the construction of Figure I, if the sub-figure for G(1),
1 =< i n, is complete then T(i) is extendable to G(i-1) to

Gi-l), 0-< -< i"

DEFINITION 6. The row for G
(i)

T(i) Ti)
,’ 0 <= -< i, such that

(i) T(i)m T i) i) i),0 m_ T ,1 m_ D__m T ,i P- <0>,

& i n, is complete if there exist subgroups

, S , e T 0 .< .< i,

to G.i-l.(l and T; i)(
is extendableis extendable ,(iii) T(i) to GiI)

0 i
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We will say that the sub-figure (row) for G
(i)

can be completed if we can prove

the existance of the subgroups TH (T(i) _(i)
discussed in the definition for "The sub-Ii,

figure (row) for G(i) is complete."

PROPOSITION i. Let G be a finite abelan p-group and let

G G(0) S A D G
(I)

S
(I) O A(I) D D G

(n)
S (n) e A(n) D <0> be a composition

series for G with S S
(0) a S

(I)
_D S

(n)
_

<0> subgroups of G and

A A(0) D_ A(I) D_ D_ A(n) D_ {0} Z-sets. The following statements are true for

0 <- i <- n-l, 0 <. i’ .< n:

,i Gl,i+l <" p

(b) [Gi .(i+l)] < 0 <
-I, p’ i+l

<,.> ro<-,: < o<-,+,>] o<,..< i+,
2, -2, , I,

- [ }PROOF. Let G(’i)
<gk>. Since G(i): G(i+) p we have

k=l

G(i+l) <gl > @ <g2> @ <pgj> i <gk> for some j, =< j =< r.

_(i) i) r (i+l) i+l)
1
> e...i <p2gje...eThen Ul, i

pG e and pG <pg
k=1

<Pgk> bl,i+1 <Pg2>

<Pgk>

If o(gj) p then G i)
G If o(gj) > p then G

i) i+l)
,i ,i+l ,i: G

,i+l p"

This proves (a).

Each of properties (b) through (f) can be deduced from Lemma 4 by choosing U, UI,
and K appropriately as follows:

(b) U G(i) U1 G
(i+l) K G? 0 < < i+l

,, U
1

G ,, ,’+i’
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(,.(t U
1

G ,+(d) U---I, K--G 0 <- .< i’

(e) U G(i i) G(i+l)
I, UI G ,’+i’ K 0 -< -< i.

(f) U Gil U1 Gi+l) K G( 0 < < i+l

Observe that[G(i) G(i+l)] c and c_ pGp implies that pG(i) G(i+l) p2G(i) i+l) c_ G(i+2)

Thus i),i: -l,ic(i+l) I, 0 <. i < n-l, [ 2,i: G
,i

[Gi+l) c(i+2)] I 0 < i n-2
,i -2,i

0 -< i <-n-l, and

PROPOSITION 2. Let G be a finite abel:an p-group and let

G G
(0)

S @ A D G
(I)

S
(I) A(I) D...D G

(n)
S
(n)

O A(n) D <0> be a composition

series for G with S S
(0) m_ S

(I) m_..._m S
(n)

D <0> subgroups of G and

A A(0) _m A(I) _m...m_ A(n) D_ {0} Z-sets. The following statements are true for

0 .< i <. n-l, 0 .< .< i, 0 .< ’ .< i-l.

,and

(b) If rG(i) Gi+1) 1 rG(i-,l+)1 Gi) ][ 1,’+I ,’+I] [ I, ,’+I 1 and

(i) )] p then [(i-l) _(i)
,t

,.(i) i) ,.(i) G(i+l)PROOF. We have t,
2,

_c G
+1 "1., +1-c Therefore Si) G(i D G(i+l)

2, ,’+I: i,’+i} 1 and G ,,: I,’

,,: G , +I p and G i+l): G i+l) ]
,’ ,’+lJ

I. By (d) and (e) of

Proposition 1 we have that
[ I, I, ’+lJ p" Consequently I, ’ I.

We can eliminate from consideration several combinations of indices in Figure

since by Proposition 2 it is impossible for them to occur.

LEMMA 6. Let W, X, Y and Z be subgroups with the following properties:

(i) W X, Y X, Z W O Y

(ii) [W:Z] [X:Y] p

(iii) X Sx Ax, W Sw . Aw Sw
, TW, Y Sx @ Ay SX

, Ty,
where SW, SX, TW, Ty are subgroups with Sw c Sx and AW, Ay, Ax are Z-sets

with AW E AX, hy kx.
(iv) Z Sw @ TZ with TZ Tw and TZ Ty.
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Then X SX TX, where TX TW + Ty.

PROOF. By Lemma we have Z W 0 Y (S
W

0 SX) O (AW N Ay) SW @ (AW Ay).
The following diagram illustrates the relations between the subgroups W, X, Y, and Z.

W SW @ AW SW * TW Y SX * Ay SX * Ty

Z W N Y SW @ (AW S Ay) SW T.

We will first show that X W + Y. We have Y _c W+Y c_ X and [W:Y] p.

[W:Z] p we must have X W+Y Sx + (Tw + Ty).
We will complete the proof by showing that Sx & (Tw + Ty) <0>.

Let

sX tw + ty, sx Sx, tw e Tw, tye Ty

Since

(5.2)

We can write tw sw + aw, ty s + ay, sW
e SW, s e Sx, aW

e AW, ay e Ay.
+ and we have sx sW andThus (5.2) becomes sx sW + aw + sx ay sX

e SW tZ TZ.-aw ay Aw 0 Ay c__ Z. Consequently we can write aw sw + tz, sw
But then tw sw + sw + tZ. Since Tz _c Tw and Tw Sw <0> we must have sw + sw 0.

00. Hence sx sW + sw sW sxSimilarly, ty sx tZ so that sX sW

THEOREM 5. Let G be a finite abelian p-group of exponent pk, k => I, and let

S O
(0)

S A D G
(I)

S
(I) A(I) D...D G

(n) s(n)@ A(n) D <0> (5.3)

be a series for G with S S
(0)

D_ S
(I)

D_..._D S
(n)

D_ <0> subgroups of G and

A A(0)
_
A(I) _..._D A(n) _D {0} Z-sets. If p2A {0} then the series (5.3) admits

replacements.

PROOF. By Lemma 3 we can assume that (5.3) is a composition series for G. Note

that for 0 <- i <- n, 0 =< <. i, j >. 2, h >. I,

A! i) A(i) n pJA()
j, S p2A {0},

and
h.(i) ph+lA()p A1, p2A {0}.

Thus we have G!i) _(i) phGiI phsi)0 " i n, 0 " i j > 2 h "j, bj, and ,,
Consequently we must have T! i) (i) <0>, 0 < i & n, 0 < i j > 2 h >

3, h,l,

We use a "backward induction" on i to show that the sub-figure for each G(i),
0 i n, can be completed.

For i n, IG(n)l p implies that G
(n)

is cyclic of forder p. Thus the sub-

figure for G
(n)

is trivially complete.
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Now assume the sub-figure for G(i+l) is complete In view of the preceeding

comments on the subgroups T!i3, Th, l,’(i) 0 < i, j > 2, h > i, if we can complete

the row for G(i) in such a way that Ti+l)c, Ti, 0 .< <- i, T(i+l) c_ T(i),
then the sub-figure for G(i) will be complete as well

By Lemma 3 we must consider two cases (I) A(i) A(i+l) and (2) S (i) S(i+l)

Case (I). By hypothesis the sub-figure for G(i+l) is complete so that there exist

i+l)
D T D. D T such thatsubgroups T(i+l) D_ T

,0 ,I ,i+l

G
(i+l)

S(i+l) T(i+l) c(i+l) Si+l) Ti+l)
0 < < i+l and T(i+l) is-I, , ,

extendable to G
(i) _(i+l)

is extendable to Gi G
(i)

i-l, 0 <- i. Setting H

K pG
()

0 < < i in Lemma I we conclude that Ai A(i+l) 0 < < i Applying

_(i) G’ Gi+l) T Ti+l)
0 < < i, we haveLemma 5 with G Ul,, , ,

Gi) Si @
_(i+l)

0 < < i Again applying Lemma 5 this time with G G
(i), i-I,

G’ G(i+l), T T(i+l), we have G(i) S(i) T(i+l). Thus we can complete the sub-

figure for C(i) by choosing Ti T(i+l) 0 < < i T(i) T(i+l)-i,

Case (2) We have [G i) (i+l)] < 0 < <,: Ul, .p, i by (b) of Proposition I.

If [Gi) c.(i+l)] I 0 < < i we can complete the sub-figure for G(i) by choosing,: -I,

Ti _(i+l)
0 .< -< i and extending T(i+l) to G(i) i+l)

i-I, (T is extendable to G
(i)

by the hypothesis that the sub-figure for G(i+l) is complete).
Now suppose there exists such that

o

, for o < -< i

for 0 <. -< o
This situation is illustrated in Figure 2, where for simplicity we have omitted the

subgroups G!r) and G since T!r) T(r) <0> 0 n 1 < h < k-23, , 3, h,l,

2 j & k-l, r i+l, i, i-l. The numbers 1 and p in Figure 2 represent indices

We can choose Ti)=j Ti+l)j for < < i. As remarked previously the hypothesis, , o

sub-figure for G(i+l) is complete implies that T i+l)
can be extended to G i)that the

’o ’o
This extension is indicated in Figure 2 by a single arrow

Y wSetting X I, Ul, i,+I’ 0 o -i, we have

Z W N Y G
,+i’ 0 < <. -i so that W,X,Y,Z satisfy the conditions of Lemma 6o
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Thus we can apply Lemma 6 to obtain G
i)

S T where T +T, , ,’ I, +1

0 < < -I. We can again apply Lemma 6 taking X G(i) W Gi) Y G
(i+l)

o ,0’

Z W A Y Gi+l),0 to obtain G(i) S
(i+l) T(i), where T(i) T i),0 + T(i+l)"

.(i) . .These sums are indicated in igure 2 by double arrows. Clearly, (i)
_
I,0-

and Ti+l) c Til 0 < < i Thus the sub-figure for G(i) is complete.

(i+l)
l,i

2
COROLLARY I. If G is a finite abelian p-group of exponent less than or equal to p

then G admits replacement.

PROOF. Let G G(0) S A D G(1)= S
(I) A(1)D...D G(n)= S(n) A(n) D <0> (5.4)

be a series for G with S S (0) S
(I) ... S(n) <0> subgroups of G and

A A(0)- A(I) 2... A(n) R {0} Z-sets. We have p2A {0} since by hypothesis p2G <0>.

By Theorem 5 the series (5.4) admits replacements. Hence G admits replacement.

6. RELATION TO A VARIATION OF A METHOD OF A.D. SANDS.

Our terminology will be the same as in [3] when referring to factorizatlons which

are obtained by the variation of Sands’ method.

The following Proposition can be readily verified.

PROPOSITION 3. Let G K1D K2 D...= Kn D <0> be a series for G with coset

H If H
i

is a subgroup (Z-set) thenrepresentatives H
i

I & i n, K
n n Hi+2

Hi+2 Hi+4 is also a subgroup (Z-set).

THEOREM 6. Let G be a finite abelian group which admits replacement and let

G K1D K2 D...D Kn D <0> (6.1)

be a series for G. If G A B is a Z-factorization of G arising from (6.1) then there

exist subgroups S, T such that the factorization G S @ T arises from the series (6.1).

PROOF. We will assume that n is odd since the proof for n even is similar. We will

proceed by induction on the order of the group G.

If IGl=p, then G G <0> is the only Z-factorization of G. Thus in any series from

which this factorization arises we must have G K
1 S, T K. <0>, i Z 2.

1



FACTORIZATIONS OF FINITE GROUPS 281

Assume the theorem is true for groups of order less than G. Let G A @ B be a

Z-factorization of G arising from (6.1). By Lemma 5 of [3] we may assume

A H @ H3 H5 @... Hn,

B H
2
@ H4 @ H6 e...@ Hn_ I,

where 0 H
i

i n.

We have the H3 + H5 +...+ Hn is a Z-set by Proposition 3.

Thus

K2 (H
3 H5 e...@ Hn (H2 e H4 ’’’ Hn_l

is a Z-factorization of K2 arising from the series

K
2 K3 m...m K m <0>

n
(6.2)

IK21 < IGI implies, by the induction hypothesis, that there exist subgroups, S’, T’

such that the factorization K
2

S’ @ T’ arises from the series (6.2). Thus, by

Lemma 5 [3] there exist transversals Hi’ 2 -< i <. n, such that

n-l’

T’ @ @ . H’H3 H5 n’

where 0 H’. 2 < i <
I’ n.

Note that K H H’ and
n n n

H K H 2 <i<n-I (6.3)Ki i i+l i Ki+l

H

since both Hi and HI are coset representatives for Ki modulo Ki+I, 2 < i < n. Using

(6.3) successively, starting with i n-l, we see that we can choose HI H3, H5

H’Hn’ H2’ H4’ H6’ n-I as coset representatives for the series (6.1) to obtain the

factorization

G (H H3 e...e Hn (H H4’ e...e H’n_I) A S’ (6.4)

By Proposition 3, H
i Hi+2 e...@ Hn is a Z-set, i 1,3, ...n, and H!I Hi+2’ e...e

is a subgroup, i 2,4, n-l. Set

s(i) =H’.
I Hi+2

S"n-l( H’n-I

A(i) H
i
@ Hi+2

A"n’( H K
n n

e...e H’ i 2,4 n-3n-l’

...e H i 1,3 n-2
n
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Then the series (6.1) can be written as

G=KI--S(2) A(I) D K2--S(2) A(3)D K3=S(4)
where S

(2) S’ and A(I) A. In general,

A(3) ,.. K Iffis(n-I)A(n)DK A(n)D <0>
n- n

S
(i)

$ A(i+l) for i even, 2 <- i .< n-I

S(i+l) A(i) for i odd, .< i <-n-2, K A(n)
n

By hypothesis G admits replacement. Thus there exist subgroups T(I)

such that

S
(i)

@ T(i) for i even, 2 .< i .< n-l,

S(i+l) @ T(i) for i odd, <. i -< n-2, K
n

D_ T(2)D...D_ T
(n)

Define H" T(n) A(n). We have
n

K S
(n-l)

@ T(n-l)= S
(n-l)

@ A(n) S
(n-l)

@ T(n)

so that IT(n-1)l IT(n)l

T(n) H A(n)
n

But T(n) c T(n-I). Therefore T(n-I) T(n)

Next,

K S
(n-l) T

(n-2) T(n-l) c T(n-2)n-2

If we choose H"
n-2

a set of coset representatives for T
(n-2)

modulo T(n-l) we have

T(n-2) H" @ T(n-l) H" T(n) H" + H" and K
n

S
(n-l) H" T(n)n-2 n-2 n-2 n’ -2 n-2

H" @ Kn_ Thus H" is also a set of coset representatives for Kn_2 modulo K
n-2 I" n-2 n-I

Kn_3 S
(n-3)

T
(n-3)

S
(n-3) A(n-2) and

Kn-2 s(n-I) T(n-2) s(n-l) A(n-2) imply that IT(n-3)l IA(n-2)l IT(n-2)I.
But T(n-2) c T(n-3). Hence we have that T(n-2) T(n-3) and

K S(n-3) @ T(n-2) H’ H’ T(n-2) H’n-3 n-3 n-I n-3 Kn-2"
In general, given T(i) for i odd we have T

(i-l) T(i) and T(i-2) H" @ T(i)

so that the factorizations of Ki, <. i ffi< n, are as follows:

K T
(n) H" H

n n n

K S(n-l) @ T(n) H’ @ H"n-I n-I n

Kn_2 S(n-l) T(n-2) H’n_I H"n_2 e T(n) H’n_I e (H"n-2 H"n)
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Kn-3

Kn-4

S
(n-3)

(n-3)
=S

@ T(n-2) (H’ H’_I)O H")
n- 3 n (Hn-2 n

T(n-4) S(n-3) H"n_4 T(n-2) ffi(H-3 H’n_l) + (H"n_4 O H"n_2 H")n

K3 S(4) T(3)

K
2

S(2) T(3)

S(4) @ H3 @ T<5) (H H e...e H’n_l) + (H H5’’ O...@ H")n

e..e H’ + .e H")(H e H4 n-I H3 H5 n

K S(2) T(1) S
(2) H T(3) (H e..e H’ .e H")H4 n-1 H1 H3 n

We can complete the proof by defining S S
(2)

@ e @. . H’ andH
2 H H6 n-

T T(I) H’ @ H H’; e...e H"n to obtain the factorization G S T, S _c G, T _c G,

which arises from the series (6.1).
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