Internat. J. Math. & Math. Sci. 267
VOL. 12 NO. 2 (1989) 267-283

ON FACTORIZATIONS OF FINITE ABELIAN GROUPS WHICH ADMIT
REPLACEMENT OF A Z-SET BY A SUBGROUP

EVELYN E. OBAID

Department of Mathematics and Computer Science
San Jose State University
San Jose, CA 95192

(Received October 20, 1987)

ABSTRACT. A subset A of a finite additive abelian group G is a Z-set if for all
a € A, na € A foralln e Z.

The purpose of this paper is to prove that for a special class of finite abelian
groups, whenever the factorization G = A 8 B, where A and B are Z-sets, arises from
the series G = K1 > K2 > ... D> Kn > <0> then there exist subgroups S and T such that
the factorization G = S & T also arises from this series. This result is obtained
through the introduction of two new concepts: a series admits replacement and the
extendability of a subgroup. A generalization of a result of L. Fuchs is given
which enables establishment of a necessary and sufficient condition for extendability.
This condition is used to show that certain series for finite abelian p-groups admit

replacement.
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1. INTRODUCTION.

Let G be a finite abelian additive group and let A and B be subsets of G. I[€
every element g€ G can be uniquely represented in the form g = a + b, where a€A,
be B, then we write G = A @ B and call this a factorization of G. A subset A is said
to be a Z-set if for all a€A, naeA for all neZ.

A.D. Sands [1] gave a method which yields all factorizations of a finite abelian
good group. His method corrects one given previously by G. Hajos [2].

Our main purpose is to prove that for a special class of finite abelian groups,
whenever the factorization G = A & B, where A and B are Z-sets, arises from the series
G = K1 > K2 > ...> Kn > Kn > Kn > <0> (see [3]), then there exist subgroups S and
T such that factorization G = S ® T also arises from this series.

In order to achieve this result we introduce two new concepts: a series admits
replacement and the extendability of a subgroup. We prove a generalization of a
result of L. Fuchs [4] which enables us to derive a necessary and sufficient condition
for extendability. This condition is used to show that certain series for finite

abelian p-groups admit replacement.
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2. PRELIMINARIES.

We shall use the term "Z-factorization'" when referring to a factorization of
the form G = A @ B, where A and B are Z-sets.

Our first two lemmas can be readily verified.

LEMMA 1. Let G =S ® A, where S is a subgroup of G and A is a Z-set. If H and K

are subgroups of G with H = HS ® HA’ K= KS (] KA’ where HS’ K. are subgroups of S,

S

and HA’ KA are Z-sets such that HA S A, l(A < A, then HNK = (Hsn KS) e (HAnKA)'

LEMMA 2. Let G =A @ B be a Z-factorization of G. If H is a subgroup of G such
that A c H then H=A @ (H n B).

LEMA 3. Let G = GO

G(n+1) = <0> be a series for G with S
A= A0 5 (D (n)

cseasc® s g, ) ) g o

0, 1),

..>8 > <0> subgroups of G and

S...2 A > {0} Z-sets. There exists a refinement of (2.1) which is a
composition series for G and the subgroups in this refinement have the same properties

as (2.1), i.e. any subgroup, H, in the refinement has the form H = Hs ® HA’ where HS

is a subgroup of S and HA is a Z-set, HA c A, and H c K implies HS S_KS and HAE_KA.

Furthermore, if H < K are successive groups in the refinement then either HS==KS or

HA = KA’
; ien ¢ g o gU+D
PROOF. It suffices to show that if there exists G ¢ G with G 2 G2 G

then é = é (-] A with S(i) =} é 2_S(i+1), A(i) A 2 A(+1), A a Z-set, and either 5 = S(i)

or R = A(i), 0<isn.
Consider ¢{1) = s(1) g ,(1) 5 git1) | g(i+1) o G#D) g oy o
Case 1. Suppose that A(i) = A(i+l). Then for any G such that G(i) >G> G(i+l)

we have G = A(i) ® (é n S(i)) by Lemma 2. Clearly S(i) 56N S(i) > S(i+l). In

this case we have A = A(l).

Case 2. Suppose that A(i) # A(i+l). We can insert the subgroup G = 6(i+1) +

S(i) = S(l) (] A(i+1) without altering the structure of the series, i.e. we have

6 o (1) g 4(0) g o (1) g \(1H) | (GiH) _ ((41) o, (441)

(i+1). (i+1)

Let 6 be such that G(i) > é > G If G = G ve are done. If G>G oG
then by Case 1 G has the required form. Finally, if G(l) 56> G then by Lemma 2,

¢ =5 0 @Gna®). crearty AP 5 ¢ 0 a1 5 ,GFD)

s = s,

. In this case we have

This completes the proof.
THEOREM 1. [5] If G = B(l) 8...6B
(1)

(k) (1)

, where each B is a Z-set, 1 £ i = k,

and if G =N ®...0 N(r), where each N(j) is a subgroup of G, 1 £ j £ r, such that
(|N(i)|,|N(j)|)=1 for i# j, then
(@) B = (D) 13Dy g...0 (T g p(E)y, g <

and

A
.
A
=
-

) NI - D 0D g e (v Ky,

A

.
(1Y
~
.



FACTORIZATIONS OF FINITE GROUPS 269

The following lemma is a direct consequence of the Second Isomorphism Theorem.
LEMMA 4. Let U, Ul’ and K be subgroups of G with U.c U. Then [U n K: Uln K] =
[U: Ull.

Let S be a subgroup of G. We will say that S is homogeneous if S is a direct sum

1

of cyclic groups of the same order.

Theorem 2, which is a generalization of the following result of L. Fuchs [4], p.79),
can be readily verified.

(Fuchs) Let S be a pure homogeneous subgroup of G of exponent pk and let H be a
subgroup of G satisfying ka € Hand SNH = <0>. If M is a subgroup of G maximal with
respect to the properties H €M and MNS = <0> then G = S & M.

n

THEOREM 2. Let S =@ Si be a pure subgroup of G with Si’ 1 £ i £ n, homogeneous

i=1
of exponent pki, k1>k2..>kn, and let UcG. There exists a subgroup, T, of G with

ks
UcTand G=S® T if and only if [ JG+ 0 S, +U]l NS, =<0>,1%5j<n.
P i>j 1 J
J

3. REDUCTION TO THE CAUSE OF P-GROUPS.

Consider the series
6=c0 =2seasc) =g, M), g gl g, (), 4 (3.1)

0) _ (1) (n) (0), ,(1) (n)

where S = S 2S 2...28 2 <0> are subgroups of G and A=A 2...2A

> {0} are Z-sets. We say the series (3 1) admits replacements if there exist sub-

groups, T(i), such that T=T(0)_D T(I)g -] T(n)g <0> and G(i)=S(i) (] T(i), 0sisn.

Let us note that by Proposition 1 [3] there exist subgroups T(l) such that

G(i) = S(i) OT(i) , 0 is n. However it is not necessarily the case that T(o)

T(l) 3 ...2 T(n). This problem will be treated in the next section.

2

A group C admits replacement if every series for G of the form (3.1) admits
replacements. The following theorem enables us to restrict our investigations in this
area to the case of p-groups.

THEOREM 3. Let G = 3 Gp, where the Gp are the primary components of G. G admits

replacement if and only if for each p, Gp admits replacement.

PROOF. Suppose G admits replacement. Let H = Gp for some p and let
e g@o (0 g 40 5 (1) _ (1) g (1) 5 (@) _ (m) g (), o
© , (m)

be a series for H with S > <0> subgroups of H and

(m)

2...28

A(O) =] A(l) 2...2A > {0} Z-sets. Define K = g,ngp. so that G = H & K =(S(0)0 K)

0 A Then ¢ = (@ = (59 g k) & A{® 5 g0 = 5(0) g L(0), {(1)_ (1) g (1)

2 H(m)= S(m) ® A(m) 2 <0> 1is a series for G which by hypothesis admits replacements.
(0) |y (m)

Consequently the series H = H >5...0 H D <0> admits replacements.
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Conversely, suppose Gp admits replacement for each p. Let

6 = 6{0 = 5(0) g 40 5 (1) (1) ¢ (1) ga), 5(n) g (), o,

(0) (1) (n) (0) (1)

be a series for G with S
(n)

oS 2...28 2 <0> subgroups of G and A DA

(1)

2...2A to be the p-primary component of

o

> {0} Z-sets. For each p define G

,054isn, so that c§1)= G, n 61 ana ¢P)- o G;i). By Theorem 1 we have that
P

(1) _ (1) (i) (i) (1)
Gp (s fn Gp ) e (A n Gp ), 0s1isn.

pefine 510 = (1) o (D) () _ (D) oD g oy < h Clearly

P P % )
s 5 s 5 56 5 gy ang a0 5 A 5 5 A 5 (0}, Thus for each p,
P P P ) P )

6 =60 g0 g 40 L (D) (1) g (1) cn) () g (0), o
p P P P P P P

is a series for Gp which by assumption admits replacements. Thus for each p
(1)

there exist subgroups Tp such that
1) 1 =19 501 5 55,
P P P P

and
(i1) c;i)s sgi) ® T;l), 0sisn.

Define T(l) = Z:Tﬁi) , 0£1isn. Note that this sum is direct. From (i) we have
P

that T = 7@ 5 71 5 . 5 7™ 5 05 and (i1) implies that

1) _ (i) _ (i) (i), _ (i) 1)y _ (1) (1)
G g cp g (sp ® Tp ) = ( g sp ) e ( g TP ) =38 eT ,

0 £ i $ n. This completes the proof.

4. EXTENDABILITY

let G=S®A>SG' =S'@®@A' =S'"@T', where S' c S are subgroups of F, A' c A
are Z-sets, and T' is a subgroup of G'. We say T' is extendable to G if there exists
T, a subgroup of G, such that T'c T and G =S @ T.

The following theorem provides a necessary and sufficient condition for extenda-
bility of a subgroup T' when G is a p-group.

THEOREM 4. Let G be a finite abelian p-group of exponent pk and let G' be a
subgroup of G. Suppose G =S @ A, G' = S' ® A' = S' @ T' with S' c S, subgroups of
G, A' ¢ A, Z-sets, and T' a subgroup of G'. T' is extendable to G if and only if

there exist subgroups, Ti’ such that T' > T1 =3 T2 2...2T 2 <0> and G' N plG =

k-1
s'np'S)er, 1siskl.
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PROOF. By Lemma 1 we have that G' n piG = (s'n piS) @ (A'npla), 1 5 1 s k-1.

2...2 T _

k-1 2 <0> and

Assume there exists subgroups, Ti; with T'> T

1
K
i o

G'n
P i=1

G=(S'n p]‘S) ® Ti’ 1 sisk-1. Let S = Si’ where each Si is homogeneous

of exponent pi, 1 i s k. By Theorem 2, to prove the existence of a subgroup, T, of G

with T2 T' and G = S ® T we must verify

k

(pC%+o S;+T)ns =(8 s +T)ns =<0 (4.1)
i<k i<k
and .
g
(p " +0 Si+T')ﬂSj=<0>,1§j$k-1 (4.2)
i<j
For (4.1), suppose S =% s; + t', s; € 8, 1six5k, t' € T'. Since
i<k
T'c G' we have t' = s' + a', s' € S', a' € A'. Thus Se = = s; + s' + a' so that
i<k
a' = 0 by the definition of S ® A. But then t' € S' N T' = <0>. Consequently,
= = . i i i =
sk o si However, since S is a direct sum of Sl’ SZ’ R Sk’ we have sk 0+0+
oo + 0+ S+ Together these imply that Sy = 0. Hence (4.1) is true.
Let 1 £ j < k. Note that iji = <0> if i £ j. Thus we have ij = @ 1:0']Si (] pJA.
i>j
Suppose
sj=pjg+ = os; vt = = pjsi+pja+ = si+t',
i<j i>j i<j
wheresi € Si, l1sisk,aeA t'eT. SinceT'cG'=S"'@A'
we have
t'=s'+a', s' € S', a' € A' (4.3)
Thus s5 = = pjsi + = sy +s' 4 pja + a'. Therefore
i>j i<j
pla=-a' e ij nA'cG'n ple (4.4)
s, = = pjsi + = s, +s' (4.5)
S ES iy *

Since pJA N A' is clearly a Z-set we have from (4.4) that a' e ij N A'. By hypothesis,

G'n ij =(s'n ij) ® Tj with Tj c T'. Therefore (4.4) implies that a' = = pjgi +tJ.,
i>j

where if:j pJ;i es'npls=5s"n ia;j iji and tj e TJ. € T'. But then (4.3) becomes

t'=s'+ X pjg'i + tj’ where s' + = pJ'éi € S' and tj € S' and tj e T'. Consequently
123 1>
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s'+ X pJgi = 0 by the definition of S' & T', and we have s' = - = PJSi'
i>j i>j
Substituting this expression for s' into (4.5) we obtain

s, = & pjsi + = s; - = pJ;i so that sj = 0. Hence (4.2) is true.
I 5 i>j i>j

Conversely, suppose there exists a subgroup T2 T' such that G =S @ T. By
Lemma 1, G' N piG = (S'n pis) ® (T'n PIT), 1 5 i 5 k-1. Clearly T'ST'n pT 2T'n

k-lT. Thus we can complete the proof by choosing Ti =T'n piT,

pZT >...oT'np
1 s4isk-1.
Let us note that if G = S @ A, where S is a subgroup of G and A is a Z-set, is
an elementary abelian p-group, and G' is a subgroup of G such that G' = S' @& A'
=S'@®T', where S' ¢ S, T' ¢ G', and A' is a Z-set contained in A, then T' is always
extendable to G.
LEMMA 5. Let G=S ® A2G' = S' & A be a series for G with S' c S subgroups of
G and A a Z-set. If T is a subgroup of G' such that G' = S' @ T then G =S @ T.
PROOF. Let S be a set of coset representatives for S modulo S'.
Then G=S®A=5S06S'"0A=506S'"6T=2S586T.

5. SOME GROUPS WHICH ADMIT REPLACEMENT.

We noted in Section 4 that given the series

6 = ¢{0 = 50009, (0) 5 c(1)_ 5D \(1) (m)_ 5 g 40 5 <o5 (5.1)

(n)

5...06G

©) _ 1), 0), ,(1)

where S = S ...2 8 D <0> are subgroups and A = A

(i)

S...2A
(1) g(1) g 4 (1)
(n)

such that G
(0, (1)

> {0} are Z-sets, one can always find subgroups T

0 £ i s n, although it need not be the case that T = T «..2T > <0>.

However, by applying the extendability criterion of Theorem 4, we can ensure that for
(a)

each i, 0 £ i £ n, our choice of the subgroup T(l) will be extendable to each G'% .
(0, (1), g

a S i, and consequently we will have T = T ...2T .

We will briefly illustrate how successive applications of Theorem 4 when G is a
finite abelian p-group of exponent p3 results in Figure 1 since this lattice-type
structure clarifies the proof of the major theorem in this section. By Lemma 3 we may
assume that (5.1) is a composition series for G.

We introduce the following notation to simplify the discussion:
(1) _ (1) j.(2)
Gj,l =G np-G "7,
s L g 30
Js2

(i) _ (1) j,(2)
Ajtz—Al n pla‘™’,
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where 0 £ i s n, 0s¢<n, j=1,2. ByLemmalwehaveG(l) ()QA s
J» j)l Jst

0sisn,0s2<n, j=1, 2.

In addition, Tglz will denote any subgroup of Gglz such that
» ’

¢ - (D) (i) (i) (i) (i) h.(i)

J, j,!L [] Aj, SJ,9. ® TJ 2 and T h,1,8 will denote any subgroup of p Gl,z such that

h.(i) _ ho(i) o h, (i) _ h.(i) o (i
G = =pS (-]

PG g =PS @A R =PS 0T

negative integer.

i,logiSn,0§£$i,j=l,2,hanon-

G.“. Zzl G.“u 23) U G{:‘z‘z) 1, o Gir-2)
(» G't(:;': ‘GF"):." G‘:E'a' — (foz'" /GT“ el /G"'"’
Gi,a 1,0~ 31,02 Gy, n- 51" GI:.T ilﬁc') /(,.,
A | o 1 R IR
sireth | ol [k A Sl 7l
5!;.)- Gi‘-’n -1 32‘:1-2 (iz,".'-: ‘.- G;:'g G,"’ ‘:)z,o
IPG.‘,T-’ 1. Ipc"‘ 3 feciy® Gz'f ATy
06,'2 .3 Voo'a} | ot | Vol ® ‘:.,";:
polad /ool [fbolnd . Rl VA
PGy 0

Consider a subgroup T(n) such that in the series (5.1) we have G(n)= S(n)O T(n).

By Theorem 4, T(n) will be extendable to G(i), 0 £ i £ n-1, if an only if there exist

(n)

subgroups Tj 1 such that T(n) E) Tfnz (n) with G(n) = S(n?, 0sisn-1, j=1,2.
’

2 i J»i Ji

We have the following array for the containments of the subgroups G§ni, 0sisn, j=1,2:
’

(n) - (n) (n) (n) (n) (n)
o 26) 1.126) 19226, 126 526
ul ul ul ul ul
(n) _ 2.(n) (n) (n) (n) (n)
Gpn= PG 26, [ 265 5563126
Thus if we can find subgroups T( ) 0<isn, j=1,2, T(n), such that
(n) (n) (n) (n) n) (n)
€T a1 ST, €T CTIO T
ul ul ul ul ul

2 g ) ¢ (™ ¢ p(n)
2n—2n1 2n2"' 2,1 — 2,0
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and 6™ = (‘j‘) ® T( N o 5<ishn, §=1,2, ¢m) = g g (M) Lo yould have
J)l i J»s1

(i)

T(n) extendable to G , 0 £1i s n-1.

(n)
1,i
0 i $ n-1. We will show how this can be incorporated in our discuss1on on T

(n-1) (i)

-1
Later it will become apparent that we need T extendable to G(“ )

(n)

Using Lemma 4 with U =G , U =G(n), K = pG , 0 £i s n-1, we have

1

cn-1), (n) (n-1) _ (n) (n) (n-1) _ (n 1) <o
{11 : 11 < p. Thus pG A Ccliso th':-n:Gl’ianl'i pG , 0sis n-1.
Note that Gin;l) has exponent at most pz. By Theorem 4, T(n) is extendable to G(n 1)

0 £ i s n-1, if and only if there exists a subgroup Ti 11? such that Tini_ Tgnlli
’ ’

(n-1) _ pS g{n-1)

(n-1)
and pGl,i oT

1,i 1,1,1i°

c pG(n-l) n pZG(i) c G(n) n sz(i) gnz, 0 £ i s n-1, we have the following array

05isn-1. Since pc(“ D _ 5D g p6ld))

(n ) c(m (n-1)

for the subgroups G j i p(;1 PR 0sisn-l, j=1,2:
)6y e £ o
ul ul ul ul ul
637 € oot € C3na €+ £ G301 £ 63T
ul ul ul ul
c(n-1) _ _~(n-1) (n-1) (n-1)

PGy n-1 S POy g S€---SP6) 7T €06y

Thus if we can find subgroups T:(jng, Tinili,, 0<sis€n, 05i' sn-1, j=1,2,
T(n) such that

(n) (n) (n) (n) (n) (n)

NnS€Tn1ST,n28-€T) ] €Ty €T

ul ul ul ul ul

r(n) r(n) (n) (n) r{n)

T2n€T2,n-1 €T n28 - €Ty 1 €Ty
Ul ul ul ul

T(n-l) c T(n 1) (n 1) (n 1)

l,l,n-l"lan"" 111— 110

(n-1) (n-1)

with ¢ = g(n) g p{n) pc(“ D 1 ®@T " {,054isn, 054" s,

3,1 " %5,1 0Ty =ps

5=1,26M =5 g () L L4 have Tinz extendable to c(“ D 6sisn,
»

and T(n) extendable to G(i), 0 £ i £ n-1. In particular, we would know there exists
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(1) Lien 707D 2 () g g(n-D) _ g(0-1) g pn-1)

we must ensure that our choice for T(n‘l) (i), 0sisn-2.

(n-1) , 051isn-3, ve obtain

a subgroup T However,

is extendable to G
Appyling the previous argument to T and then to T(i)
Figure 1. We remark that lattice-type structures similar to Figure 1 can be obtained
for finite abelian p-groups of exponent pk, where k is any non-negative integer. Such
structures become rather complicated when the exponent of the group exceeds p3.

The following definitions will facilitate references to Figure 1.

DEFINITION 1. The row for 6\1), 0 s i s n, is the series

(i) (i) () (i)
G 361 11 ...361’1.
DEFINITION 2. The row for Ggia, 0 £isn, is the series
(1) | ) S () (i)
G2 62,126,222+ 265 -
DEFINITION 3. The row for pGilg, 0 £ i S n-1, is the series
peli) (1) J (1) (1)

PGy g2 P61 26 52 ... 296, 5 -

DEFINITION 4. The sub-figure for G(i). 0 S i & n, consists of the rows for

L L L
G( ) g 3, and pGi 3 , is¢sn, i-1 s 2' s n-1.

DEFINITION 5. We say the sub-figure for 630 = s(1) 0 A1), 0 < i < n, is

complete if

(i) for every subgroup H in the sub-figure for G(i), H= SH ® AH’

S, a subgroup of S(i), AH a Z-set, AH c A(i), there exists a subgroup T,, such that
H - H
H= SH (-] TH’
(ii) for all sub-groups H, K in the sub-figure for G(l) with Hg K we have Ty c T,.
Let us note that, by the construction of Figure 1, if the sub-figure for G(i).

1 £isSn, is complete then T(i) is extendable to G(i-l) and T(i)

-
1 L

is extendable to
0= g2 s i.

DEFINITION 6. The row for G(i), 1 $isn, is complete if there exist subgroups

(1), Tifz, 0525 i, such that
() () () (i)
() T * 111 > ...2 Tl?i > <0>,
(i1) 6V = s(i) o 7(1), ciig (i) ® Tl ,0s ¢ 51,

(1i1) T is extendable to ¢(i™1) and Tiii is extendable to 6\1°1), 0 5 ¢ < i.
»

’
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(i)

We will say that the sub-figure (row) for G can be completed if we can prove

(1) (i)

the existance of the subgroups T (T discussed in the definition for "The sub-

figure (row) for G( 1)
PROPOSITION 1. Let G be a finite abelian p-group and let

is complete."

© (W) gD g 5 ) ) g ()

series for G with § = 50 2 s(1) 5 . 5 (™

G=G =S@®ADG > <0> be a composition
2 <0> subgroups of G and
A= A(O) =) A(l) D ... 2 A(n) > {0} Z-sets. The following statements are true for

0<isn-1l, 0g4i'" $n:

(i) (i+1)
(a) [G‘ Gl,i+1] <p

(b) [Ggiz 51‘;1)] $p, 0S8 s it

(1) | .(i+1) (1) | LGi+1) < ot
() [Gl,l'ﬂ' Gl,£'+1] s [61,9.' ) ] » 0228 54
(d) [GS‘;) : cilg?ﬂ] $p, 0S8 s,
(i+1) | (i+1) (i) | (D) < ot <
(e) [Gl,z' : G1,1'+1] s [61,1' : Gl,!,'+1] » 0= 2t 2
(1) , g(i+1) (1), ;G+1) < .
(£f) LGZ.l : 2’1 ] < [G1,m 1 N ] , 052 5 i+l

@ [¢®. 6]

r
PROOF. Let G (] <gk>. Since = p we have

i) | <g)> ®<g,>® ... 0 <pg,> 8 ... ® <g,> for some §, 15 5.

Then ¢(1) = p(i) = @ (1+1) _ . (i+1)

1,i P67 = @ <pg.>and Gy = w6

= <pg,> ® <P8,> 9...0 <ngj0...0
k=1

<pgk> .

. @ - o) [, (i) -
If o(gj) P, then G\ =Gy y g . If o(gj) > p, then |G) 5 : 6y i) P
This proves (a).
Each of properties (b) through (f) can be deduced from Lemma 4 by choosing U, U,
and K appropriately as follows:

) u=c), U = Uil g o (1;, 0s 2 s itl.
o) _ o(i+1) _(2'41) '
() U=61, L up =600 L k=6l T 082t s
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@ u=6¢%),u =) w6 o< g,

1,2 1 1,2'+1°
- (1) _ (1) _ o(it1)
(e) U Gl,z' » Uy = G1’£,+1, K=6G , 052" sid.
£) =6, u =t w26V o< < a1

1 L’ 1 1,2 ° 2,8’

[G(i): G(i+1)] (i) c c(it1) 2G(i) c pG(i+1) E>G(i+2).

Observe that = p implies that pG and p

Thus [c(i?: c(ifl)]= 1,0s4s n-1,[ (1), c(lfl)]= 1, 051 $n-1, and
1,i 1,i 2 i 2,i

[G(1+1). G(1+2)

2.4 21]=1,0$i§n-2.

PROPOSITION 2. Let G be a finite abelian p-group and let
M _ 1) g 4D () _ g(0) g 4(m)

2...2 G

© (1), g

G = G(o) =S®ADG > <0> be a composition

series for G with § = S > <0> subgroups of G and
A= A(o) 2 A(l) 2...2 A(n) > {0} Z-sets. The following statements are true for

0sisnl,0s2si, 02" si-1.

(a) If Lsgfz : GifZif] and [G(l). Giizl)] p» then [Ggf: : cgftl)] = 1.
(i) | G+ ] _ [.G-1) | (1) _
(&) 1f [Gl,l'+1' Gl,z'+1] = [G1,1'+1° Gl,z'+1] =1 and

[ (1) (i+1)]

(1-1), (D]
10t S gr b ] 1.

= p, then [Gl,z' : 1 o

¢ ¢ G+l
1 9.+1 1’ “_15 . Therefore G

() | G ] S D]
1,841} G1,9,'+1] =1 and [ 1,2'¢ 61,0 ] 1

(i) (1) c{i) (i+1)
PROOF. We have GZ,E 2’2 neG

In

(i+1)

2 . Hence (a) is true. [G

imply that [cilz.. c§12,+1] = p and [cilzf). cilzfll] = 1. By (d) and (e) of

(i 1),
1,8

(i+1)

261041

(i 1), (i)
1,20 ¢ G100 ] =1

Proposition 1 we have that [ ] = p. Consequently [

We can eliminate from consideration several combinations of indices in Figure 1
since by Proposition 2 it is impossible for them to occur.

LEMMA 6. Let W, X, Y and Z be subgroups with the following properties:

(1) WeX, YecX, Z=WnyY

(ii) [W:Z] = [X:Y]

(iii) X = Sy ® Ay, W=5S @A =5 0T, Y=5 0A = Sy ® Tys

where Sw, SX’ Tw, TY are subgroups with Sw c SX and Aw, AY’ Ax are Z-sets

withAngx,AYgAx.

(iv) z = Sy @ T, with T, ¢ T and T, c Ty.



278 E.E. OBAID

Then X = SX -] TX’ where TX = ’1‘w + TY'

PROOF . ByLemmalwehaveZ=WnY=(SwﬂSx)Q(AwnAY)=Sw0(AwnAY).
The following diagram illustrates the relations between the subgroups W, X, Y, and Z.
Sx @ Ax

W=Sw0Aw=Sw0Tw Y=S8 OAY SOT

X

N
L]

wnY=swo(AwnAY)=sonZ

We will first show that X = W + Y. We have Y ¢ W+Y ¢ X and [W:Y] = p. Since
[W:Z] = p we must have X = W+Y = Sy + ('l‘w + TY).

We will complete the proof by showing that S¢ N ('I'w + TY) = <0>.
Let

=tw+ty,sxe SX,tweT,tYeTY (5.2)

= = ' !
Wecanwritetw sw+aw,t_Y sX+ay,sweSw,sxesx,aweAw,aYeAY.

= ! - ! =
Thus (5.2) becomes Sy = Sy + ay + sy + ay and we have Sy T Sy = Sy and

tay = ay € Aw n AY c Z. Consequently we can write a, = sv" + tZ’ s"q € SW’ tz € TZ.

1 = -
But then t = s, + sg + t,. Since T, c T, and Ty N S, = <0> we must have s + sy 0.

Similarly,tY=s)'(-s"‘-tZsothats)'(-s"‘=0. Hencesx=sw+s"‘-s"4-s)'(=0.

THEOREM 5. Let G be a finite abelian p-group of exponent pk, k 2 1, and let

6=06 cseaoc®) =g g1, gy, () 4 (53

0 1), g

be a series for G with S = S 2 <0> subgroups of G and

A=a® 54 5 54 5 16y 7osets. If p?A = {0} then the series (5.3) admits

replacements.
PROOF. By Lemma 3 we can assume that (5.3) is a composition series for G. Note
that for 0 s i sn, 05 2si, j22,h21,

g:) = a3 ¢ p2 = 0y,
and
iiv).- h+1, (£) c pA = {0}.
ThuswehaveGgi) gi) dpG(1)=phS§i:, 0sis<n 0sesi,jz2 hzl.
Consequently we must have T§1: Tl(li;,l =<0>,0sisn,0s2s1i, j22,h21.

(1),

We use a '"backward induction" on i to show that the sub-figure for each G
0 £ i S n, can be completed.

For i = n, [6'™] = p implies that ¢™

is cyclic of forder p. Thus the sub-

figure for G(n is trivially complete.
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(i+1)

Now assume the sub-figure for G is complete. In view of the preceeding

comments on the subgroups Tglz, Tﬁii o 0sgesi, 22, h21, if we can complete

(i) (i+1) (i) (i+1) (i)
' 1,8 STi,e T csT,

will be complete as well.

(1) _ ,G+1)

the row for G in such a way that T 0s 2 s

then the sub-figure for G(i)
(i+l)

By Lemma 3 we must consider two cases, (1) A , and (2) S(i) =S

Case (1). By hypothesis, the sub-figure for G(i+1) is complete so that there exist

subgroups T(i+1) =l Tile) 2_T§TII) 3...2 Tif:i; such that
D)  g(it1) g p(i41) 51:1) (1+1) ® T§lzl), 0525 i+, and T 45
extendable to G(i), T§1;1)1s extendable to Giiz, 0 s 2 s i. Setting H = G(i),
K= pG(l), 0 s 2 s i, in Lemma 1, we conclude that A§fz = Aif;l), 0 s ¢ si. Applying
Lemma 5 with G = Gifz, ' = G§f:1), T = §1I1)’ 0525 i, ve have
iiz gii ® Tif;l), 052c5i. Again applying Lemma 5, this time with G = G'17,

G' = G(i+1), T = T(i+1), we have G(i) = S(i) (] T(i+l). Thus we can complete the sub-
figure for G(i) by choosing T(l) T(i+1), 0s¢esi, T(i) = T(i+l).

1,2

Case (2). We have [ (1). Gilzl)] sp, 0 s ¢ < i, by (b) of Proposition 1.

If [G(i)° G(1+1)] =1, 0 £ 2 5 i, we can complete the sub-figure for G(i) by choosing

1,2
ilz T§i+:), 0 s 2 5 i, and extending T(i+1) to G(i). (T(i+1) is extendable to G<i)

(i+1)

by the hypothesis that the sub-figure for G is complete).

Now suppose there exists Eo such that

[G( ) . (1+1)] 1 for 2, <2 s i
1,8 ° %1,
p for 0 s ¢ < lo

This situation is illustrated in Figure 2, where, for simplicity, we have omitted the

(x) and G(r) since T(t) (r)

3,2 h,1,e .2 h12=<0>,059.5n,15h5k-2.
»

subgroups G

2 <js k-1, r=i+l, i, i-1. The numbers 1 and p in Figure 2 represent indices.

We can choose Tiiz = Tilzl) for 20 < £ s i. As remarked previously, the hypothesis
’ td
that the sub-figure for G(i+l) is complete implies that Tiizl) can be extended to Gili .
’ 0 ’ o

This extension is indicated in Figure 2 by a single arrow.

(i) _ (i+1) _ (1) _
1,¢° Y = Gl,l , W=_G 02 s 20 1, we have

Setting X = G 1,e41°

(i+1)

Z=WnNnY-= G1,1+1’

04 s lo -1, so that W,X,Y,Z satisfy the conditions of Lemma 6.
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Thus we can apply Lemma 6 to obtain G(i) = S(i+1) ® T(i)

(1) _ (1) (i+1)
1,2 = 81,0 1,2’ 1,2 =T +T

L 1,0+1 1,2 °

10 -1. We can again apply Lemma 6, taking X = G(i), W= Giig, Y= G(i+1),
»

where T

(=]
"
B
WA

Z=WAnyYs= Gii;l)’ to obtain G(i) - S(i+1) ® T(i), where T(i) - Tgig + T(i+1).
’ ’
; IR (1) | (1) (i)
These sums are indicated in Figure 2 by double arrows. Clearly, T 2 Tl 0 3...3'r1 9
4 »
and Tiizl) c Tiiz, 0 < 2 s i. Thus the sub-figure for G(i) is complete.

(-1 (-1 (i-1) (-1 -1 i- -
Gy, i-1 Gi, tg+1 Gi, 2,  Gigg-1 - Gn‘,u ! G:.o" '™
(U]

)
o L /// ) W m w Lo
] N A MY VAN AN VA ALY /61,0 6
~,
(+1) / (i+1)

~, ~, -~ Q
(i+4) i+1) i+
Gy,i+1 /6,4 (T / Glflo'ﬂ G:. lo)

t+n

Q ) Q q
14+1) I+t 41
G, Lo-1 Gi o L Al

Gy,

L

COROLLARY 1. If G is a finite abelian p-group of exponent less than or equal to p2
then G admits replacement.

PROOF. Let 6 =G®) =s @456
() , 51

(1) (1) g 41,
(n)

oo ¢Ma s g A o 6 (5.4

2 <0> subgroups of G and

be a series for G with S = S 2...2 S

A=2a00 5 a0 5 A 5 16} 7-sets. We have pA = {0} since by hypothesis p2G = <0>.

By Theorem 5 the series (5.4) admits replacements. Hence G admits replacement.

6. RELATION TO A VARIATION OF A METHOD OF A.D. SANDS.

Our terminology will be the same as in [3] when referring to factorizations which
are obtained by the variation of Sands' method.

The following Proposition can be readily verified.

PROPOSITION 3. Let G = K1 > Kz S...2 Kn > <0> be a series for G with coset

representatives Hi’ 1£4ishn, Kn = Hn. If Hi (] Hi+2 ® ... is a subgroup (Z-set) then

H ., ®H , ®...is alsoa subgroup (Z-set).

THEOREM 6. Let G be a finite abelian group which admits replacement and let

G =K oK :...DKn=><0> (6.1)

1 2
be a series for G. If G =A ® B is a Z-factorization of G arising from (6.1) then there
exist subgroups S, T such that the factorization G = S ® T arises from the series (6.1).

PROOF. We will assume that n is odd since the proof for n even is similar. We will
proceed by induction on the order of the group G.

If |G|=p, then G = G ® <0> is the only Z-factorization of G. Thus in any series from

which this factorization arises we must have G = Kl =S5, T= l(i =<0>, i 2 2.
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Let G=A @B be a

By Lemma 5 of [3] we may assume

Assume the theorem is true for groups of order less than G.

Z-factorization of G arising from (6.1).

A

Hl ® H, @ H

3 5 0...0 Hn,

o~
n

H, &éH @&H

,@H, 0H 0.0 H

1)

where 0 € Hi’ 1<isn.

We have the H., + H5 +...+ Hn is a Z-set by Proposition 3.

3
Thus

K2 = (H3 ® H. &...0 Hn) (] (H2 6H 6...6 H 1)

5 4 -

is a Z-factorization of K2 arising from the series

K, oK

2 (6.2)

3 >...D Kn > <0>

|K2| < |G| implies, by the induction hypothesis, that there exist subgroups, S', T'

such that the factorization K, = S' ® T' arises from the series (6.2). Thus, by
Lemma 5 [3] there exist transversals Hi, 2 $i £ n, such that
[T ' '
S'=H) ®H, .0 H ,
[T [ [
T H3 ] HS ®...0 Hn,
where 0 € Hi, 2<isn.
Note that K = H = H' and
n n n
= H! = i - .
K, =H{ @K, 6 =H @K, 2sisn-1 (6.3)

since both Hi and H! are coset representatives for Ki modulo K 2s1isn.

i i+1°
(6.3) successively, starting with i = n-1, we see that we can choose Hl, H3, HS’ ey

Using

Hn’ Hi, Hz, Hé, ey H;_l as coset representatives for the series (6.1) to obtain the

factorization
= ] ] ] = '
G (Hl ® H3 ®...9 Hn) (] (H2 ® HA ®...9 Hn-l) A®S (6.4)
By Proposition 3, Hi @ Hi+2 e...0 Hn is a Z-set, i =1,3,...n, and Hi ] H;+2 ®...0

H;_l is a subgroup, i = 2,4,..., n-1. Set

s - u ey, 0.
S(n-l) - H&-l

A - Hy®H,
A oy -k,

]
0 H

, 1= 2.4,..., n-3

0...0 Hn, i=1,3,..., n-2
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Then the series (6.1) can be written as

o=k =5(2) @ A1) 5k =5(2)g A3 ¢ 5(4) ¢ A3 5 | S g0 gy (), 4,
1 2 3 n-1 n

(2) (1)

where S = 8S' and A = A. In general,

S(i) (] A(i+1) for i even, 2 £ i £ n-1

K. =
i
sO*) g A g0 5 0dd, 151 5 n-2, K = AL H_.
By hypothesis G admits replacement. Thus there exist subgroups T(l) =] T(z)a ..2T
such that
S(i) @ T(i) for i even, 2 £ i £ n-1,
Ki =
sO*) @ 11 £or 4 0dd, 151 202, K, = (™ - H = A,
Define H! = ™ =A™ e have
K, = g(n-1) g p(n-1)_ o(-1) o ,(n) _ ((n-1) o ~(n)
so that |T(n-1)| = |T(n)|. But (™ c 10D Iherefore 7™ = (™),
Next,
k =5 g T(n—2). r(n-1) c r(n-2)
n-2
(n-2) modulo T(n-l) we have

If we choose H;_z a set of coset representatives for T

T g g™ D g g™ g 4gr, anak =D gur e 1™
n-2 n-2 n-2 n n-2 n-2
=H'_ @®K .. Thus H'" _ is also a set of coset representatives for K modulo K_ ..
n-2 n-1 n-2 n-2 n-1
K 3= 5073 g g(0-3) _ 5(n-3) g z(n-2) g
Kn_z = S(n-l) ® T(n-Z) = s(n-l) ) A(n-Z) imply that lT(n-3)' = |A(n‘2)l = IT(n-Z)l.

But T(n_z) c T(n-3). (n-Z) = T(n‘3) and

Hence we have that T
- (n-3) (n-2) _ /.., . (n-2) _ .,
S T = (Hn_3 ] Hn_l) ®T =H (] Kn-

n-3
(i) (i-1) - T(i)

1(n—3 2°
and 7172 = Hy_, @ (1)

for i odd we have T 2

In general, given T
so that the factorizations of Ki’ 1 £1i s n, are as follows:
K =1 oo g

n n

K = S(n‘l) ® T(n) = H' @ H"
n-1 n-1 n

(n-1) (n-2) = ut " (n) = " "
-2 = S ®T =H _,@H ,eT  =H _ o ,0H)

=
I}
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K, =sn3) g (n2) (H! 5 ® H'_)e(H!_, @ H)

(n-3) (n-4) (n-3) " (n-2) =(u! ' " " "
K =S eT =S (-] H“.A ®T —(Hn_3 @ Hn-l) + (Hn-b @ Hn_z [} Hn)

~
|

([’) (3) (A) " (5) ] 1 1 " " "
=s’Ver =85 @H; 0T = (H, @ H, ©...0 H' )+ (H; @ H] @...0 H")

5
2) o o(3)

=( = 1 ] 1 " " "
K S ®T =(H)@H, 6...0H )+ (H]®H 6..0H)

=52 o1V 2 g2 g o3 - n g g ' " e R "
Ky=s'"erT =5 eH ®T = (H,@H 6..0H |)e (4 eH;e..0H).

We can complete the proof by defining S = S(2) = Hi (-] Hz ® Hé 9...0 H;_l and

T = T(l) = HY @ Hg @ Hg e...0 H; to obtain the factorization G=S ® T, Sc< G, T c G,

which arises from the series (6.1).
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