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ABSTRACT. In this paper we calculate the dual of the spaces of distributions L

introduced in [1 ]. Then we prove that LY is the dual of a subspace of C®).
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1. INTRODUCTION

Let D' and S' be the classical Schwartz's spaces of distributions in R

243

and denote by L the Laplace transformation. In (Pérez-Esteva [1 ]) were introduced

a
spaces L as follows:
P PY

LzY is the subspace of Lllocak) of functions f with supp £ C[a,») and

e_Y f € LZGR), where e_Y(x)=e-w(. LzY is a Hilbert space with the inner produc

(f,8) = [ e_szé dx

t

R
then we define 12 - Dpo:Y where Dp is the distributional derivative of order p.

p
Since DP: (® LX is bijective, we can copy the Hilbert space structure of L

a oy PY
on LPY' We have the continuous inclusions
2 CLb , for a>b
PY PY
a a
clL if <
Y  ay’ p=a

Hence for p = {0,1,...} the strict inductive limit

L = ind 1im L2
O '

makes sense. Then
L =ind lim L__ = ind lim L'P
is also well defined.
In[1] it was studied the spaces of distributions g for which the convolution
£ fxg: L > L
By T Ny

is continuous.

a
oy
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Here we describe the strong dual of LY’ which turns out to be a subspace §
of C (). Then we prove the reflexivity of S, and conclude that (SY)'= Ly, which
is the main result of the paper. "'ﬂz will denote the norm of LZGR), Y will be

assumed to be a positive constant, and N will be the set of nonegative integers.
2. THE DUAL OF LY

DEFINITION 1. Let LY be the space of all complex measurable functions g in

2
R such that x{a g €L R) for every a €ER, where x[ stands for the

,°°)e'Y a,oo)
characteristic function of [a,®). We provide LY with the topology given by the

seminorms

=l I €ER.
P,(g) X[a,w)e-yg 5+ 3€R
Next we denote by SY the subspace of LY such that D"f € LY for every
n € N. Define the topology of SY by the system of seminorms

n
= €ER €
Pan(g) Ix[ a,=) -y D guz 2 » nEN

It is clear that L and SY are Frechet spaces and since Dng € Lll.ocaR) for any
n€N and g€ SY, we have that SY C Cm(]R).

LEMMA 1. Let ¢ € L;, then for every p € N, there exists g_ € LY such that

P
o(0Pf) = I e,
R

f gpdx, f € LO

Y Y

The sequence {g } satisfies
q 8p peN

= -Dg_ + 2 €N 2.1
8 8, ng, P 2.1

p+l

Hence ¢ 1is determined by g, € SY.

PROOF. Fix a€R and p €N. Then ¢ € (L%)', and there exists g € 2
PY pa oy

such that

oPf) = f e, fg__ dx, pPs € L:

Y “pa Y

_ Ry a
If a<b, we have L CL° , then
PY PY

P = =
(D" f) f e_zyf gpb dx I e—2yf x[b,W)gpa dx
R R

for DPf € LII;Y’ which shows that

8ob = X b,=)8pa

If gpa is the restriction of gpa to [a,®), then gp = Lajépa is well defined,

belongs to LY and ,
o(0Pf) = f e gyt 8,dx, pPs € L
R

v

Let ¢ € D. Since Dp+1¢ €L L we have

n
p+ly  py’
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¢(Dp+1¢) = ( e vg dx = J e , Dpg dx
-2y " Pp+l -2Y " °p

R
f
= J{D(e-zy"’) + 2y e_zyw}gp dx
R
= <-e Dg +2ye., g,

-2y -2y°p
where <:,*> represents the duality between 0 and D'. It follows that

= -Dg + 2
8y41” DB, * 2ve,
or
e_zY gp+1 = —D(e-ZY gp)
Hence, every gp belongs to SY.
LEMMA 2. Let g€ SY and H be the differential operator defined by

H = -D + 2yI. Then the functional

Pey o ()
o(D ) = J e_2Yf H'P/gdx, £ € LoY

R

is well defined in LY and is continuous.

PROOF. Let f € LzY be such that f = Dh with h € LoY' There exists a

. b .
c .
sequence {fn}neN D converging to f in LoY if b<a.

Let X
e (x) = I £ dy
-00

oY
uous, we have that {v_} e converges to h in L . 1If follows that
n nEN oY

Then f_ € Lb , D@ -h) =f - £, and since the inclusion Lb C Lb is contin-
n oy n n 1y

ZYh H(g)dx = LJ_.:,I e-2Y¢n H(g)dx (2.2)
n
R
and
I e-2yf g dx = :.lainJ e_szng dx (2.3)
R R

On the other hand

B B
f e_ZYsPn H(g)dx = -j D(e_ g) dx

“a
e B
= -¢n(B)e (B)g(B) + f £ e (2.4)
But we have the estimate b
lgx)| < |g®)]| + e (x) ||)([b w)® (Dg - Yg)“z(x-b) 172 for x>b
Hence !
j e 2v%n H(g)dx = J e _ovfn g dx
R R
From (2.2) and (2.3) it follows that
f e_szgdx = [ e_zyh H(g)dx (2.5)

R R
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By induction we obtain

J e_pfdx = J e_pyh P (@)ax (2.6)
R R
if £=0°h and f,nEL _.
oY

Finally, if DPf = D% with f,h € LoY and q 2 p, then f = DY Ph, hence
by (2.6) we have

f
J e_sz H(p) (g)dx = I e_ph H(q) (g)dx
R

Thus ¢ is well defined and it is clearly continuous.

Y

THEOREM 1. The strong dual of LY is SY.

PROOF. By lemmas 1 and 2 we know that LY' = SY. It remains to prove that the
strong topology KL;, LY) coincides with the topology T of SY. First notice that

T is defined by the system of seminorms

1, (8) = I X a,) %y H(p)(g)llz, a €R, p EN

Fix a€R and pEN. Let V= {g€ SY: qap(g) < 1}. Denote by U the unit ball
in L:Y, then the set B = DPU is bounded in LpY and hence in LY. 1f g€8°
(the polar of B), then for every f € U we have

1| epyf 1 @axl =1<0Ps, g>| <1
Thus
lle_ X a,my B @I, <1

It follows that B° CV and T c B(L;, Ly)‘ Now, let B be a bounded set in LY.
Then for some p €EN, B C L;$ and is bounded there (see Kucera, McKennon [2] ).
Hence B CeDPU for some €>0, where U is the unit ball in L;s. Let

v={g€ SY: a, p(g) < 6—1}, then g € V implies for f € eU that
<pPf, g>= |J e_pf 1P (g)ax| <1
R

Then g € Bo, so we proved that V C 8°. This completes the proof.

COROLLARY 1. LY is the strong dual of Sy.

PROOF. By (Kucera, McKennon [2 ], Theorem 4) we know that LY is reflexive.
Hence the corollary follows from Theorem 1.
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