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ABSTRACT. In this paper a proof of the existence of the solution of Burgers’

equation for n 4 is presented. The technique used is shown to be valid for

equations with more general types of nonlinearities than is present in Burgers’

equation.
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i. INTRODUCTION

Burgers’ equation has been used to study a number of physically important

phenomena, including shock waves, acoustic transmission and traffic flow. The reader

is referred to Fletcher [I] for some of the phenomena that can be modelled, exactly

or approximately, by Burgers’ equations. Besides its importance in understanding

convection-diffusion phenomena, Burgers’ equation can be used, especially for

computational purposes, as a precursor of the Navier-Stokes equations for fluid flow

problems.

In spite the fact that the numerical solution of bergers’ equation has received a

fair amount of attention (see e.g. Arminjon and Beauchamp [2], Caldwell and Wanless

[3], Maday and Quarteroni [4], Caldwell and Smith [5], Fletcher [6] and Saunders et.

al. [7]), it seems to draw little theoretical interest. Actully, some of the

importance of Burgers’ equation stems from the fact that it is one of the few

nonlinear equations with known exact solutions in low dimensions. In this direction,

the Cole-Hopf transform has been a major tool for finding exact solutions of

Burgers’ equation in 1 and 2 dimensions (see Fletcher [i]). Benton and Platzman [8]

give a table of the known solutions of Burgers’ equation.

The goal of this paper is to establish the existence of the solution of the

steady Burgers’ equation for n 4. To the author’s knowledge, no such result seems
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to have been published.

2. THE PROBLEM

Let fl c Rn (n g 4) be a bounded domain with piecewise C1 boundary, and consider

the n-dimensional Burgers’ equation

(u.V)u u F (2.1)

where u: Rn; F: n (or more generally F e H61()n),
denotes the Laplacian and for u=(uI Un)

n
(u.V) E uj

j=l 8xj
solved subject to the boundary conditions u r 0 where FEquations (2.1) are

is the boundary of .
The scalar version of the problem is

n
E uj ui Aui + Fi lin (2.2i)

j=l 8xj
uil F 0 lin (2.3i)

We are interested in a variational form of the problem, and we follow an approach

which closely resembles that used for the Navier-Stokes equations (See e.g. Temam

[9])

Multiplying equation (2i) by wi (lin), integrating by parts over and adding

the resulting equations we obtain

l uj wi dx Vu. Vw dx + F.w dx
i, j 1 n xj n n

n n
where w (wI wn), Vu. Vw I Vui.vwi and F.w I Fiwi.

i=l i=l

Now define

Vu.Vwdx

n I 8vi
B(u,v,w) E uj wi dx

i, j=l n xj

(2.5)

(2.6)

It is clear that a is a bounded symmetric bilinear form on

the space H(D) n, and the fact that a is coercive follows directly from the Poincare

inequality. Thus there exists a constant =>0 such that

a(u,u) >_ = llul 2 for all u E H()n (2.7)

The Sobolev imbedding theorem implies that the integrals on the right hand side

of (2.6) are finite (this is where the restriction n & 4 is needed,) and that for

some constant 8>0 we have

I(",,-)1 -< I-"1"-I o all U,V,. e H(() n (2.8)

It is obvious that B is trilinear, i.e. it is linear in each of its arguments.

The interested reader can find detailed proofs of the above facts in Temam [9] or

Girault and Raviart [i0]. In (2.7) and (2.8), . denotes the usual norm on H01();
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see e.g. Adams [Ii].

We now define the variational form of the problem as follows

Find u e H() n such that ]
a(u,w) + B(u,u,w) <F,w> for every w e H ()n

where now we allow F to belong to HI()n- and <.,.> denotes

the duality bracket between H(a) n and HI() n.
Observe that the above problem is almost identical in its formulation to the

Navier-Stokes equations, but that the latter problem is posed on a different

function space (the space of divergence ree vector fields,) and that the trilinear

form B of the Navier-Stokes equations possesses an antisymmetry property that makes

it easy to obtain an a priori estimate on the solution u (see Temam [9]) The lack of

antisymmetry is what makes Burgers’ equation different, and restrictions on the size

of the forcing term F must be imposed in order to establish the existence of the

solution.

3. KXISTKNC

In this section we establish the existence of the solution of (2.9). In fact

existence follows from the following abstract version of the problem:

Let H be a separable Hilbert space, let a be a bounded symmetric bilinear form on H

with the property that for some >0

a(u,u) u2 for all u H (3.1)

and finally let B be a trilinear form on H such that there exists a constant 8>0
such that

B(u,v,w)l 8uvnwll for all u,v,w e H (3.2)

Consider the problem

Find u e H such that

a(u,w) B(u,u,w) <F,w>

where F e H (the dual of H)

for every w e H

(3.3)

we shall prove the existence of a solution of problem (3.3) under the assumption

that

.2HFII < where (3.4)

F I1" =: u { <’luU> u H, u 0 } (3.5)

Let r ( 48F )/28

Observe that under assumption (3.4) we have

(3.6)

k=: sHaH*
2

(-r)
< I (3.7)

r (3.8)



648 ADEL N. BOULES

i. For a fixed ueH with u r, and for H*, the problem

a(v,w) + B(u,v,w) <,w> for every weH

has a unique solution v e H.

PROOF: The result follows immediately from (3.6) and the Lax-Milgram theorem

since for all veH

a(v,v) + B(u,v,v) (-lul)lvl 2 (-r)lvl 2

Now let

and define :D H by

{(u) v (3.10)

where v is the unique solution of the problem

a(v,w) + B(u,v,w) =<F,w> for every weH (3.I1)

REMARK I Observe that uD is a solution of problem (3.3) if and only if u is a

fixed point of .
2. @ maps D into itself.

PROOF: Choosing w v in equation (3.11), using (3.1),(3.2) and the fact that

uir we obtain

(-)lvl 2 III*UI, tus (.8)

LMMA 3. is a contraction on D.

PROOF: For ueD, define Au E(H,H*) by

<Au(v),w> a(v,w) +B(u,v,w) (v,w H)

Observe that

a(v’v)+s(u’v’v)l}v| > a(v’v)iJiB(u’v’v)l (-r) ivl

Since e-St>0, Au is bounded away from zero, and therefore one-to-one. Lemma 1 states

that Au is also onto.

The open mapping theorem implies that Au has a bounded inverse,

which we denote by Au-I, and that

1lAu-i <_ (3.12)-r

Observe that now ,by definition, #(u) Au-I(F).
We now show that is a contraction on D. Let uI, u2 e D and let Ai Aui (i=i,2).

Since A-I A-I A-I(A -A )A-1, then by (3.12)
2 1 2 1 2 1

I[ -11 < 1-21 ( ])2
(-r)

It is easy to verify that
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Now by (3.13), (3.14) and (3.7)

II(u2)- (Ul)ll IIA31(F)-AiI(F)

UU" I1. A2 < SNFN* HUl-U2 kNul-u2
(-Sr)

2
(=-Sr)

2

(3.14)

The proof is complete since k < I by (3.7)

Existence now follows directly from lemma 3 (see remark I).

THEOREM 4. If F* < 2/48, then p;oblem (3.3) has a unique solution u with u
K r. In particular, under the same assumption, the same conclusion is valid for

problem (2.9)

Although the above theorem deos not assert the global uniqueness of the solution,

one can prove the following result which rules out the existence of other solutions

in a certain annulus surrounding D.

THEOREM 5 Under the assumption that F* < 2/48, problem (3.3), and hence

problem (2.9), has no solutions in the annular region

r < u < rl, where rI + 48HFl /28.

PROOF- Let u be a solution of problem (3.3). Choosing w=u in (3.3)

we have a(u,u)+B(u,u,u)=<F,u>*. Thus U2 -8UB FU. Hence

sllull 2 -lul + il* o
Observe that r and rI are the roots of the quadratic equation

812 -el +F* 0; thus if r < u < rI, inequality (3.15) cannot hold.

REMARK 2 It should be observed that the same existence result is valid for

quadratic nonlinearities of a much more general nature than the one involved in

Burgers’ equation. Consider for example a system of the type

Liui + Qi Fi(x); ui r 0, lin

where ui R, Fi e HI(), Li is a linear second order formal differential

operator, and Qi Qi(Ul Un’vUl rUn)"
If (a) Each of the operators Li is strongly elliptic and

(b) Each Qi is a quadratic form of the variables

Eu=: (uI Un,VU1 VUn) induced by the bilinear form

Bi such that for some constants ci we have

I l()n 1

Bi(Eu,Ev w ciNuNlviiw (u, H
0

w H0<n)>

then the same formulation is possible and the results of thoerems 4 and 5 hold when

the forcing term is small.

Examples of the above situation include nonliearities which consist of sums

involving uiuj or ui 8uj/Sxk. In both cases, condition (3.16) follows directly from

the Sobolev imbedding theorem; assuming again that n4.
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