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ABSTRACT. Let L) denote the linear operator associated with the radially symmetric form of

the wave operator 2 — A + ) together with the side conditions of decay to zero asr = ||z|| — +o0
and T-periodicity in time. Thus Lyw = wy — (w,r + Lvr;lw,) + Aw, when there are N space
variables. For 6, R,T > 0 let Dr.g = (0,T) x (R, +o0) and L}(D) denote the weighted L? space
with weight function exp(ér). It is shown that L) is a Fredholm operator from dom(Ly) C L?(D)
onto LZ(D) with non-negative index depending on A. If 275 /T)* < A < [27(j + 1)/T)? then the
index is 2j + 1. In addition it is shown that Ly has a bounded partial inverse Ky: L}(D) —
H}(D)NLg(D), with all spaces weighted by the function exp(ér). This provides a key ingredient
for the analysis of nonlinear problems via the method of alternative problems.
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1. PROBLEM STATEMENT AND NOTATION.

In this paper we are interested in discussing the existence of solutions for certain types of
boundary value problems in time associated with linear wave equations on spatial domains of the
form ||z|| > R, with ||z]| = (3 .1:?)1/2. In dimensions N = 1,2 or 3 we will allow R = 0. One of
our primary goals is the development of a linear theory that can be used in studies of nonlinear
problems of the same type (cf. [1]). The most prominent case of interest is that of time-periodic
solutions. Although this case is of natural interest, it has only been in the last ten years that
contributions towards an understanding of this problem have been made. Many of the results
on the nonlinear problem have shown nonexistence of solutions [2],(3},(4],{5]. These works are
complemented by the existence results [6],[7] when N = 1, and [8] when N = 3. In this work
we will extend the linear theory of [9], which played a crucial role in the analysis of 8], to all
dimensions N and thus set aside the restriction of N =1 or 3.

Let Qg = {z € RN : ||z|| > R}. For a given real number A € R we will be interested in the set

of solutions of the problem

ug — Au+ du = f, (t,z) € (0,T) x Qr (1.1)
u(t,z) >0 as |lofl > +oo, t€(0,T) (12)

which also satisfy certain boundary conditions in time. In particular these will be either a periodic
condition (1.3a), or the separated boundary conditions (1.3b) (with a? + a3 # 0, A + 87 # 0 all

nonnegative constants) below
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u(t + T, z) = u(t,z), (t,z) eR x Qp, (1.3a)
{ a1u(0, 1) — asu(0,z) =0,

Biu(T, ) + Byud(Tyz) =0, ° €T (1.3b)

In the case of the periodic problem (1.1)-(1.2) should be satisfied for t € R.

In (1.1) the function f € L2((0,T) x Q) is assumed to be radially symmetric in space, so that
f(t,z) = F(t,r) where r = ||z||. We seek solutions u(¢,z) = U(t,r) also having this symmetry.
N = 1U,. Thus the standard changes of variables

w(t,r) = rﬂi-—lu(t,z), h(t,r) = rli-_‘f(t,z) transforms (1.1) into

W-HWN-3)1 _
A+ e w = h,

It is well-known in this case that Au = U, +

| (tr) €OT) x (R4o0)  (14)

Since solutions are to be at least square-integrable we observe that w, h € L% ((0,T)x
(R,+o0))if and only if u, f € L2((0,T) x Qg). In fact the solutions we find will be weak solutions
in the sense described below. In particular the decay condition (1.2) will be interpreted as

w(t,) € L*(R, +0), (ae.) te(0,T), (1.5)

Despite the apparant weakness of this decay condition it will turn out that in fact w(t,r) decays

exponentially to zero. In the case of the periodic conditions we can write (1.3a) in the form
w(t+ T,r) = w(t,r), (a.e) (t,r) €R x (R,+00) (1.6a)

while the separated conditions which become

{ ayw(0,r) — azwe(0,r) =0 r € (R, +0) (1.6b)

ﬂl ‘U)(T, 1‘) + ﬂ2wt(Ta 7‘) = 01

have only a formal meaning.

Our main result can be briefly stated as follows. Let Ly be the (unbounded) linear operator
associated with the boundary value problem (1.4)-(1.6). Then L is a Fredholm operator (cf.
[10]) with finite non-negative index depending on A. A description of the dependence of the
index on A, as well as the spaces involved, requires more notation.

For R > 0 let D denote either (R, 400) or (0,T) x (R, +00). Let § > 0 and define L(D) to be
weighted Hilbert space of function h € L?(D) for which h - exp(ér) is square-integrable over D.
For an integer m > 0 we set (cf. [11]) H*(D) = {h € L}(D) : D*h € L} D) for
0 <|a| <m}. The derivatives are to be understood as distributional derivatives relative to
C§°(R,+00) or DR as defined below, respectively. The norm used in LZ(D) will be

1/2
Al L2(p) = {/Ihlze”'dp} , (dp=dr or drdt resp.),
D

and in HJ*(D) we use

1/2
1]l ) ={ > nD"hui;(D)} :

laj<m
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Similarly we define L;"*°(D) as the set of functions k € L°°(D) for which |D*h|exp(ér) is
bounded on D, for all 0 < |a| < m. When m = 0 we more briefly write L§°(D).

The class of test functions to be used in defining solutions of (1.4)-(1.6) is
Drr = {¢ € C®(R x (R,+00)) : ¢ satisfies (1.6) and (¢, ) € C§°(R, +o0)}. Let gn(r) =
(N —1)(N — 3)/4r%. We say that w € L?((0,T) x (R, +00)) is a weak solution of (1.4)-(1.6) if

T 4oco T +oo

//w[cpu—w"+(/\ +qN(r))<p]drdt=/ / hy drdt, V¢ € Dr,r. (1.7)
o R 0 R

The operator Ly defined formally above is now to be understood as a closed linear operator in
L%((0,T) x (R, +0o0)), with dom(Lx) C H} ((0,T) x (R, +00)).

The distributional definition above (cf. [12]) allows for an analysis based on separation of
variables. It is well known (cf. [13]) that the eigenvalue problems

&+ 6% =0, 0<t<T, (1.8)
0)=¢T), ¢€0)=¢(T), or (1.9a)
1§(0) —2€'(0) =0,  Bé(T)+ A€/ (T) =0 (1.9b)

admit countably infinite sequences of eigenvalues {62} and eigenfunctions {£,(t)}. The eigen-
functions are known to be complete in the sense that linear combinations are dense in L?(0,T).
Allowing for the different cases in (1.9) we assume {6,} is enumerated so that the sequence is
nondecreasing and includes repetition in the periodic case. In terms of these notations our main

result can be stated as follows.

THEOREM. HG? <A< 0§+1 for some j and 0 < § < (A — 6’12)‘/2 then the operator Ly is
a Fredholm operator onto L2 ((0,T) x (R, +00)) with index equal to the dimension of the linear
space spanned by {€n(t)}n<,. Moreover, if the boundary conditions (1.9) are either periodic,
Dirichlet, or Neumann, then there is a bounded partial inverse K» : L%((0,T) x (R, +00)) —
H}((0,T) x (R, +00)) such that Lyw = h if and only if w = v + Kxh, where v € ker(Ly). In
addition range(K») C ker(L»)* with the orthogonality in H} ((0,T) x (R, +00)).

We loosely describe the arguments leading to the above result. Let (¢, 1) = £,(t)¥(r) for some
1 € C§°(R,+00). Then (1.7) implies

+oo +o0
[onl=w+ (<62 42+ anr) W dr = [ i (1.10)
R R
where r r
wa(r) = c;? /w(r,s)f,.(t)dt, ha(r) =c;? /w(t,r){,.(t)dt (1.11)
) )
for a constant ¢, = "5""%,7(0,7')' Thus it follows that w,(r) is a solution of the generalized

boundary value problem
Wi + pa(r)wn = —hy, r € (R, +00), (1.12)

wp € L*(R, +0), (1.13)
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where pp(r) = 62 — A — (N —1)(N —3)/4r2. On the other hand, if solutions of these problems can
be found for every n then w(t,r) ~ 3 wn(r)€n(t) should satisfy (1.4)-(1.6) in the sense of (1.7).
In this way we may show existence of solutions. However we are interested in uniqueness and
continuous dependence as well as existence of solutions. Thus we must characterize all solutions
of (1.12)-(1.13). In particular we need to show (1.13) is a property which guarantees uniqueness.
When 62 > X this can be done. When 62 < A an additional constraint is needed to obtain a
particular 1-dimensional affine space of solutions. Verification of these remarks requires several
steps.

First we show existence and uniqueness of solutions to a more restrictive problem in which
(1.13) is replaced by the requirement w € L}(R, +00) for some § > 0. At the same time, a priori
estimates of solutions are given in the LZ( R, +00) norm. These estimates are crucial for subsequent
developments, and are stronger than would be suggested by (1.13). To bridge the gap between
the competing desires for strong estimates on one hand and weak uniqueness conditions on the
other hand we consider an intermediate problem in which (1.13) is replaced by w € L}_,(R, +00)
for some ¢, 0 < £ < §. We then show a priori estimates can be obtained when ¢ = 0, and that
uniqueness is implied when € = §.

The outline of the arguments for this are as follows. In the next section existence and uniqueness
is established with € < §. Some a priori estimates, which require R large, are also given. Then
in the third section some special solutions are considered. These solutions are shown to satisfy
a priori estimates with arbitrary R but require ¢ > 0. Finally in Section 4 the results of the
previous sections are combined to obtain a characterization of solutions and a priori estimates.

Throughout the developments we have outlined, it is essential to show that the constants
involved in the a priori estimates are independent of n. This allows for a passage to the limit
argument. This argument is given in Section 5 and is used to show that solutions of (1.4)-(1.6)
exist as limits of sums of the component functions described above.

2. A CHARACTERIZATION OF SOLUTIONS.
It is crucial for our purposes that we completely characterize solutions of the generalized bound-
ary value problems (1.12)-(1.13). Towards this goal we consider the problem

w” + p(r)w = h, r € (R, +00), (2.1)

w € L}_,(R,+00), (2.2)

where p(r) = b— ¢(r) with b € R and ¢(r) = r=2(¢2 — ). In particular we want to include
the case b = b, = 2 — X > —) (i.e. bounded below) and ¢ = (N — 2)/2. With these choices
P = pn and ¢ = gn are the functions of the previous section. In general we assume § > 0 and
if b < 0 then also 6 < [b]'/2, R > 0,0 < ¢ < §, and h € L} R,+00). When N =1 or 3 so
that p(r) = b is constant, and with R = 0, an analysis of problem (2.1)-(2.2) has been given
in [9]. The analysis uses the classical Paley-Weiner Theorem [14] (cf. [15]) which characterizes
functions h € L?(0,+00) in terms of their Laplace transforms H(s) = £{h(r)}. We summarize a
number of the results obtained in [9] in the statement following.

THEOREM 2.1. Let B denote a non-negative real number, and let p(r) = b, R = 0, and
€ =6 in (2.1)-(2.2).
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i) If b= f? > 0 and 0 < § < +o0o then, for every h € L2(0,+00), there is a unique solution
W of (2.1)-(2.2).

i) fb=—f% < 0and 0 < § < B then, for every b € L%(0,+00), (2.1)-(2.2) has a 1-
dimensional affine space of solutions. All solutions have the form
w(r) = a exp(—pfr) + w(r) where a € R is arbitrary and
W(r) = L~V {[H(s) — H(B)] /(s* — B*)} is uniquely determined by h.

Furthermore the function 1, in either case, belongs to H}(0,+o0) and satisfies the a priori

estimates

I® 1l L2 (0,4-00) < CliAllL2(0,400)s |b|l/2"ﬁ’"[/§(0,+oo) < ClhllL2(0,400)» (2.3)
l|'1’"1,}'°°(o,+°o) < C||h”L§(o,+oo), (2.4)

where C = C(6) if b >0, or C = C(6,8 — 6) if b < 0, is a constant independent of h and such
that C — 400 as§ — 0%, and as 6 — B~ if b< 0.

REMARK: The above result shows that uniqueness is obtained by only requiring w €
L?(0, +00), and that the uniquely determined solutions actually belong to LZ(0, +0o) where § > 0
is such that h € L%(0,+00). If we only know that k € L?(0, +00) then there is no guarantee that
solutions exist (cf. [9]).

Below we need to consider (2.1)-(2.2) where generally we must have R > 0. We will comment
on the exceptional cases R > 0 subsequently. If 0 < § < § then exp(—fr) € L(R,+o00) for any
R > 0. Let Ny denote the 1-dimensional subspace of L(R, +oc) spanned by exp(—fr), and let

Q : L}(R,+00) = Nr (2.5)

denote the orthogonal projection onto N'g. An easy calculation shows Qh(r) = cexp(—pr), where
¢ = 2(B — 6)exp(BR)HR(B — 26) with Hg(s) = L{h(r + R)}. Clearly we have the orthogonal
decomposition L3(R,+00) = Ng + N, with Qu = 0 for all w € N.

COROLLARY 2.2. Let 8 denote a non-negative real number, and let p(r) = b, R > 0,
and € = 6§ in (2.1)-(2.2). Then there is a continuous linear solution operator K in LZ(R, +o0) for
(2.1)-(2.2). K is defined according to the following cases:

i) Ifb= %> 0and 0 < § < 400 then Ky : LI R, +00) — L(R, +o0) is defined by Kyh = %
where 1 is the unique solution of the problem. Thus w satisfies (2.1)-(2.2) if and only if
w =0 = Kh.

ii) Ifb=—p% <0and 0 < 6 < f then Ky : L}(R,+00) — N is defined by Kyh = W where
W is the unique solution of (2.1)-(2.2) satisfying Qw = 0. Thus w satisfies (2.1)-(2.2) if
and only if w(r) = a exp(—br) + w(r) where a € R and W = Kyh.
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Furthermore we have in either case Kyh € Ly™(R, +00) N HZ(R, +0c0) and

IKohl L2(R,+00) < CllAllL2(R,+00)s |b|l/2|IK:bhl|L}(R,+m) < ClikllLz(r,+00) (2:6)
ICsRll 1o (R 400y S ClIRNlL2(R,400)s (2.7)

for a constant C having the same character as in (2.3)-(2.4). In particular there is a constant
K, independent of R such that ||| < K, with the norm being the linear operator norm in
LY(R, +0).

PROOF: Given a function w defined on (R, +00) we set wr(r) = w(r + R) to obtain the
translate defined on (0, +00). If w € L3(R, +00) N LP(R, +00) then

lwrllLzo o) = € FllwliLzr o)y NwrllLg 4o = €™ FllwllLee (R oo (2.8)

Suppose that w satisfies (2.1)-(2.2). Then wg satisfies (2.1)-(2.2) on (0, +o0) with h replaced
by hr. Hence either wg = g is uniquely determined (b = #% > 0), or has the form wg(r) =
aexp(—fr) + Wwg(r) as described in Theorem 2.1. It follows that the same is true for w(r) =
wpr(r — R). Let @(r) = Wgr(r — R). Then by (2.3) and (2.8)

6R'

I8l 22(R,400) = €Tl BRI L2(0,400) < Ce*RIIRRIL2(0,400) = ClIRllL2(R,+00)-

Repeating this argument using the other norms involved shows that w satisfies the estimates
(2.3)-(2.4) on (R, +00), and when b > 0 this verifies (2.6)-(2.7). If b < 0 then we need to show the
same estimates apply for @ = (I — Q)b. But since Q is an orthogonal projection in LZ(R,+00)
(2.6) follows immediately. To obtain (2.7) we first observe that if cexp(—8r) = Qw(r) then again
by orthogonality

e POR -8() 7
|C|—2ﬂ = [lee™ Nl L2(R,+00) S 1@l 2(R,400)-

Hence by the triangle inequality

ST < T + V2B = 8)e B an oy, > R,
T ()] < 71 (r)] + VAB = 8~ BB 2]l 3 g 4oy, > R.

(2.7) now follows from these inequalities and the estimates already established for .

We now consider the variable coefficient problem originally stated. Assuming ¢(r) — 0 as
r — 400 one might conjecture that this problem will admit unique or multiple solutions, according
to the value of b, in the same way as described in Theorem 2.1. That is the problems should be
asymptotically equivalent in the sense of solution sets.

THEOREM 2.3. Let 8 denote a non-negative real number, and let 0 < ¢ < § in (2.2).
Let p(r) = b—g(r) in (2.1) with b € R and q(r) = (o2 — }) /r®. Then there is a number Ry > 0
such that when R = Ry in (2.1)-(2.2) the following holds:

i) fb=p%>0and 0 < § < +0o then, for every h € L%(Ro,+00), there is a unique solution
© of (2.1)-(2.2).
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ii) b= —f% <0and0 < § < B then, for every h € LZ(Ro,+00), problem (2.1)-(2.2) has a
1-dimensional affine space of solutions. Moreover there is a solution @ of (2.1)-(2.2) such
that all solutions have the form w(r) = awgy(r)+ @(r) where a € R and wy(r) is a solution
of the corresponding homogeneous problem which satisfies (2.2).

In either case the solution © satisfies the following estimates for a constant C' having the same

dependence on §, and B~ 6 if b< 0, as in (2.9)-(2.4).

81l L2(Ro+o0) S CllRlInz(Ro400)s 102 I1Bl| L2(Ro 400y S CllRlL2(Ro,+00)s (2.9)
Bl 10 Ry 400y < ClRIL2(Ro400)- (2.10)

PROOF: First we assume ¢ = 0. For convenience set co = |02 — 1|. Let K be the linear
operator defined in Corollary 2.2, and suppose b = 82 > 0. Let K, denote a bound for the operator
norm of K in LZ(R,+00). We can assume K is independent of R. Choose Ry > (Koco)llz. By
the corollary we know w € L}(Ro, +00) satisfies (2.1)-(2.2) if and only if w = Ky [qw + h]. Let
T : L%(Ry,+00) — L%(Ry,+00) be the bounded affine operator defined by Tw = Kj [qw + h].
We have

ITw — Tv|lL2(Ro,400) < IKbllllgll Loo(Ro,+00) 1w = VIl £2(Ro,+00)
< Koco Ry |jw — V]|L2(Ro,+00)

It follows that T is a contraction by the choice of Ry. Hence there is a uniquely determined fixed
point @ € L%(Ry,+00). Equivalently, when £ = 0 and R = Ry, problem (2.1)-(2.2) has a unique
solution @ € LZ(Rg, +00) .

If b= —p% < 0 then w € L(Ry,+00) is a solution of (2.1)-(2.2) if and only if w(r) =
aexp(—fr) + w(r), where % = Ky[qw + h]. Now for a fixed a € R, define T : N — N7 by
Tw; = Ky[qw + h], where w(r) = a exp(—fr) + w1(r). Then as before we find

I Tws — To1ll L3R 400y < KocoR *llwr — 1]l L2(Ro,4-00)

for all wy,v; € Ng,. Therefore T has a unique fixed point w; € Nj,, and all solutions of
(2.1)-(2.2) belonging to L}(Ry,+00) have the form w(r) = aexp(—Br) + wy(r).

For convenience of notation let e(r) = exp(—pBr). Since the operator K3q has norm less than
one it follows that w; = (I — Kyq)~'Ks[gae + h]. Thus w; depends linearly and continuously on
both o € R and k € L}(Ry, +00). In particular we may write w;(r) = aw;(r) + @(r), where

wy = (I — Ksq) "' Ksge, » = (I — Kyq) " Kph. (2.11)

Hence w(r) = a(exp(—Br) + w2(r)) + ©(r), where clearly wo(r) = exp(—pBr) + wa(r) is a solution
of the corresponding homogeneous problem which satisfies wy € LZ( Ry, +00), and @ is a solution
of (2.1) which is uniquely determined by h.

It remains to verify the estimates (2.9)-(2.10). First assume b > 0. Then the bound K is also
independent of b. Hence both K and (I ~Kyq) ™! are norm bounded independent of b as operators
in L(Ry,+00). Therefore @& = (I — Kpq)~1Kyh satisfies the first estimate in (2.9). Using this
estimate in conjunction with (2.6)-(2.7), with h replaced by ¢iv + h, yields (2.9)-(2.10). Now
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suppose b < 0. Then the bound K, depends on the difference 8 — §. It follows that ||(I — Ksq)~!||
inherits this dependence. As before ¥, as given by (2.11), satisfies the first inequality in (2.9) with
the constant C now depending on § — 6. Since @ = K}[q + h] we can use the same boot-strap
argument as above to obtain the remaining estimates in (2.9)-(2.10).

Now suppose 0 < € < 8. Thené=6—¢c >0and h € L%(Ry, +00) C Lg(Ro,+oo). Hence
by the argument just given, with é replacing §, there is a unique solution of (2.1) satisfying
w € L%(R,+oo), when b > 0and R > Ry. But & € L%(Ro,+oo) and therefore w = @ in this
case. If b < 0 only the existence of @ has been claimed. The characterization of solutions follows

as before.

REMARK: The argument above fails when ¢ = §. In this case we would have §=0and
hence K would not be well-defined.

COROLLARY 2.4. Let p(r) = b— q(r) where b € R and ¢(r) = (62 — ) /r®. Assume
0 <& < é. Then conclusions i) and ii) of the previous theorem are valid with Ry replaced by any
R > 0. In addition estimates (2.9)-(2.10) remain valid for Ry sufficiently large.

PROOF: This follows immediately by continuation of the unique solution @ to (0, +0c0),
which is possible since p € C(0, +00).

3. SPECIAL SOLUTIONS.

In this section we consider some special solutions obtained from the variation of parameters
formula by certain choices of the free constants. Letting p(r) = b — ¢(r), where b € R and
g(r) = (02 = 1) /r? with o > —1, differential equation (2.1) becomes

ot -1
w" 4+ (b— i )w=nh (3.1)
2

This is a nonhomogeneous Bessel equation. All solutions have the form

w(r) = (cl - / %&(s)d‘s) wy(r) + (02 + / wl—é;g—il)(i)ds) wa(r), (3.2)
R R

in which ¢;, c; are arbitrary constants, wy(r) and wy(r) are linearly independent solutions of the
corresponding homogeneous problem, and W (s) is their Wronskian. It follows immediately from
Abel’s formula that W(s) is constant.

There are three distinct cases to consider. Let v = |o|. If b = B2 for some § > 0 then we
may take (cf. [16),[17]) wi(r) = r'/2J,(8r) and wy(r) = r1/2Y,(Br) where J,,Y, denote Bessel
functions of the 1st and 2nd kind respectively. From known results (cf. [16]) it follows that
W(s) = 2. Since we know the unique solution @ of (2.1)-(2.2) tends to zero as r — 400, while

wi(r) and wy(r) are asymptotically cosine and sine functions, we hueristically argue that the

choices . .
oo 00
= g / s'2Y,(Bs)h(s)ds, c; = —g / s2J,(Bs)h(s)ds,
R R

should yield . With these choices (3.2) becomes

+o0
w(r) = /Gb,y(r,s)h(s)ds, where (3.3)

Guu(r,s) = 5(rs)' /2 [ (Br)Ya(Bs) - Ju(Bs)Ya(Br)]. (3.4)
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If b = 0 then we can take wy(r) = r3%¥ wy(r) = r3~% when v # 0 and wy(r) = r'/2,
wa(r) = r'/%logr when v = 0. Direct calculation shows W(s) = —2v or W(s) = 1 respectively.
Again hueristics suggest

+o0 1 +o00
—3; [ $37Vh(s)ds, v#0 L T sk +vh(s)ds, v#0
= R ) C = R
+o00 +o0
J s'/%logsh(s)ds, v=0 —~ [ s'?h(s)ds, v=0
R R

so that (3.2) now takes the form (3.3) with

—;—v(r‘}'“’s*"" —s¥tredony L, 40

(rs)?log(s/r), v=0 (3.5)

Go,u(ry8) = {

If b = —B? for some 8 > 0 then we take w;(r) = r'/2L,(Br) and wy(r) = r'/2K,(Br) where
I,, K, are the modified Bessel functions. In this case W(s) = —1. Here we make the ansatz

+o00
o =— | s*K,(Bs)h(s)ds, c; =0.
R
Then (3.2) becomes
+oo
w(r) = / Gs,u(1, 8)h(s)ds, where (3.6)
R

~(rs)'?L(Bs)K,(Br), R<s<r,

—(r&) 2L (Br)K,(Bs), 1< s < +oo. @.7)

Gyu(r,8) = {

Ultimately we need estimates on ||w|| and |5]'/?||w|| in the L?__(R, +o0) norm for the functions
w(r) defined in (3.3)-(3.7). For convenience we assume that by > 1 is a fixed number. Then
both ||w|| and |b]!/?||w|| are bounded by max (b,l,/z, |b|1/2) |lw]]. Thus it suffices to bound this last
quantity. In general we have by Hélder’s inequality

+o0
() < gm0y [ [Ganlr,s)Pe s,
R

with Gy, (r,s) extended as the zero function on R < s < r in case b > 0. Setting Gy ,(r,s) =
max (b(l,/z, |b|1/2) Gb,(r, 8) we thus obtain

max (b;/Z’ |b|1/2) ||w||L§_‘(R,+°°) < C(b,R, 6,e,u)||h||L2(R'+°°), assuming (3.8)
+o00 400 1/2
{ / / |c":,,,,(r,s)|2e-2l‘<’-')+"ldsdr} < C(b,R,6,¢,v). (3-9)
R R

Our goal is to show that the constant C(b, R, $,¢,v) is finite and has the following types of de-
pendence on the various parameters:

(3.10i) C(b,R,6,e,v) = +o0 as § — 0
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(3.10ii) If b > 0 then C(b,R,6,e,v) = C(R,é,¢,v) is independent of b, and if b < 0 then
C(b,R,6,¢,v) = C (|b]'/? — 6,R,6,¢,v) depends on b only through the difference [b|'/2 —
§ > 0 and tends to 400 as § — |b|!/2.

(3.10iii) f 0 < v < % then C(b,R,6,¢,v) = C(b,v,¢,v) is independent of R, and if v > 1 then
C(b,R,6,e,v) = +00 as R — 0t.

There are several cases that must be considered. First suppose that b = 2 > 0 so that G4, (r, s)
is given by (3.4). We define two related functions F,,Q, : R* — R for v > 0 by the formulas

z x

R@=(3) M@, e =(3) e

From the well-known asymptotics (cf. [1]) for J,,Y, it follows that F,(z) = O(1), Q.(z) = O(1)
as z — 0% and F,(z) = O(z""*), Q.(z) =0 (z"“}) as ¢ — +oo. Consequently F, €
L°(R*) and if 0 < v < 1 then Q, € L®(R*). Also we have (%)H% F,(z) bounded on R*, and
(%)%—" Q.(z) bounded on R* provided that 0 < v < . Using these functions (3.4) takes the

form (recall b= 8% > 0, v > 0)
r

Gaulrys) = 21 [(2) FuBQu(Bs) - (2) Fu(Bs)Qu(8r)]

Suppose that 0 < b < by so that 0 < 8 < btl,/2 and é,,',, = btl,/sz,,,. fo<v< % then both F,
and @, are bounded on R*. Hence there is a constant C = C(v), which is independent of b, R,é
and ¢, such that

|éb,,(r,s)|$Cs <0<u$%, 0<b< by, 0§r5s<+oo) (3.11)

If however v > % then Q, is not bounded on Rt but Q.,(ﬂa:)/z"‘* is bounded independent
of B < 63/2 for £ > R > 0. Hence for any R > 0 there is a constant Cp = Cg(v), which is
independent of b, 6 and ¢, and which grows without bound as R — 0%, such that

1Gyu(ry8)| < Crs™*F (v > % 0<b<by, 0<R<r<s< o) (3.12)

Suppose that b > by. Then Gu,u(r,5) = AGu(r,) = § [(Br)*+H Fu(Br)(B)¥~Qu(85)

—(ﬂs)"+§F,(ﬂs)(ﬂr)%‘”Q,,(ﬂr)]. Since (%)H']" F,(z) and (%)%_” Q.(z) are both
bounded on Rt when 0 < v < %, there is a constant C = C(v), which is independent of b, R, §
and ¢, such that

|G~;,'.,(r,s)| <C (0 <v< -;—, b>b, 0<r<s< +oo) (3.13)

When v > 1 we only have (%)%w Q.(z) bounded on [R, +o0) for R > 0. Hence for any R > 0
there is a constant Cg = Cg(v), which is independent of b, 6§ and ¢, and growing without bound
as R — 0%, such that

|Gs,.(r,3)| < Cr (u > %, b>by, 0<R<r<s< +oo) (3.14)
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Next we suppose that —by < b = —% < 0. In this case C;',,,., = b(l,/sz,,, with Gy, given in (3.7).
We now also restrict § to lie in the range 0 < § < 8. As before we define two related functions
F(z) = e *(2) " L(z), Qu(z) = €* (£)" K,(z) for v > 0. From the known asymptotics we
obtain F,(z) = O(1), @(2) = O(1) as = — 0% and F,(z) = 0 (s7*~1), Q) = © (xv-%) as

z — +o00. In terms of these functions (3.7) becomes

—(re)"/2(2)" =P =IF,(Bs)Q.(Br), R<s<r < oo,

Gralris) = { —(re)\/2 ()" P E(Br)Qu(Bs), R<r<s<+oo.

Notice that as before F}, € L°(Rt), and if 0 < v <  then Q, € L*(R*). Hence there is a

constant C = C(v), which is independent of b, R, 6 and ¢, such that

Cre =)  (0<v<l, —bp<b<0, 0<s<r<+00)

<1
~ (3.15)
Cse7Pl=n)  (0<v<i, -b<b<0, 0<r<s<+oo).

|Gb,u(r,8)| < {

Ifv> % then @, is no longer bounded on R*, but Q,(8z)/z" —% is bounded independent of
B < b(],/2 for £ > R > 0. Thus for any R > 0 there is a constant Crp = Cr(v), which is
independent of b, § and €, and growing without bound as R — 0%, such that

Cprrvtie—B(r—o) (v> %, —by<b<0, 0<R<s<r<+00)

v+l —B(r—s) 1 (3.16)
Crs*tie (v>3, —-b<b<0, 0<R<r<s<+o00).

Gy (ry8)] < {

The remaining cases, b = 0 or v = 0, are in fact limiting cases of those considered above. For
brevity we simply state that (3.11) and (3.12) apply when b = 0, and (3.11), (3.13), and (3.15)
apply when v = 0.

LEMMA 3.1. Let by > 1 be a given constant, and let €,6, R > 0 with € < §. Suppose that
b> —by, 0 > —3%, and p(r) = b— (02 — 1) /r?. If b < 0 also assume that § < f = [b]'/2. Then
the solutions of (2.1)-(2.2), given by (3.3) with Gy || given by (3.4) when b > 0 and (3.5) when
b= 0, or given by (3.6)-(3.7) when b < 0, all satisfy

max (b(l)/z’ Iblllz) "w"Lz_‘(R,-Q-oo) < C(bv Rv 6’51 Ial)"h"Lz(R,+oo) (317)

where C(b, R, 8,¢,|0|) is a constant of the type described in (3.10).

PROOF: First consider the case b > 0. According to estimates (3.11)-(3.14) we have
|C~r’¢,,|,,|(r,s)|2 < CsP, for a constant C independent of b, §, and ¢, and power p with 0 < p <
max(2,2|o| + 1). Using the inequality (r + s)? < 2P(r? + sP) we have

+o00 +o0o
/ sPe—26(a—r)d3 — /(3 + T)Pe—”’ds <c + c2rP’
0

T

for constants c;,c; > 0 depending on é and p but independent of b, R and €. Since r? exp(—2er)
is integrable on R* for p > 0, £ > 0 it follows that the integral in (3.9) is bounded by a constant
C(R,é,¢,|o|) independent of b. If |o| < % then the bound on G~b,|,| is valid for 0 <r < s < 4o00.
Therefore we may let R — 0% in (3.9) without loss of convergence in the integral, and take
C(e, 6, |0|) independent of R.
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When b = —3? < 0, and 0 < § < B, it follows from (3.15)-(3.16) that |é;,'|,|(r,3)|2 <
CrPe=28(r=8) ¢ < r and |éb,|,,(r,s)|2 < CsPe™2P(s=7) r < 5 for a constant C independent

of b, 6 and €, and a power p as above. Hence

+o0
/ (G joi(r,5)Pe™20="ds
R

r +o0
< C/r”e_z(ﬁ"&)("’)ds +C / sPe=2B+0)e=r) s < ¢) + corP
R r

where ¢;,cz > 0 are constants depending on §, p, and the difference 8 — §, but independent of ¢,
R. Again it follows that the integral in (3.9) is bounded by a constant

C =C(B-6,R,é,¢,|0|) which in this case depends also on the difference 8 — 6. If 0| < % then
the integral remains convergent with R =0 and C = C(8 - §,6,¢,|o]) can be taken independent
of R. Estimate (3.17) now follows from (3.8)-(3.9).

4. A PRIORI ESTIMATES.

The purpose of this section is to establish a priori estimates on certain solutions of (2.1)-(2.2).
Throughout we assume that p(r) = b — ¢(r) in (2.1) with b € R and ¢(r) = r~% (0% — }) for
o > —1. Also we assume § > 0 and if b < 0 then § < [b|'/2. It is crucial for later developments
that the constants involved in these estimates be independent of b, for b — +o0o. It will be
convenient for our purposes to assume b > —by for some fixed by > 1. We begin with some
technical lemmas showing that it is sufficient to establish LZ(R, +00) estimates on solutions in

order to obtain H} (R, +00) estimates. The first is a variant of a well-known interpolation estimate.
LEMMA 4.1. Let y > 1 be given and suppose § > 0, R > 0. Then for all w € H}(R,+00)

there is a constant Cy independent of v, 8, R such that
'l 23,400y < Co [max(L, 6)vlwllz3cr oo + 7 10"l 23R 4000 (41)

PROOF: From [11, p. 70] we know that for any €¢ > 0 there is a constant K, independent
of g9 and R, such that for any f € H%(R, +o0)

+oo +oo +o0
/ \F/(r)dr < Keg! / f(r)2dr + Keo / | (r)Pdr.
R R R

Taking f(r) = exp(ér)w(r) and gy = 7~ 2¢ for some € > 0 yields
lw'lI? + 26(w, w') + 8 ||w]|? < Kv2e™"||w||? + 4K772e (lw"||* + 46%[|w'|* + 6*||w||*)

where all norms are L(R, 4+00) norms, and the pairing (w, w') is the inner product in L(R, +00).
For any > 0 we have 2|(w,w')| < 77} ||lw||®+n||w’||?, so that 26(w,w’) > -6 (n7* ||lw||? + nllw’||?).
Since y~! < 1 it follows that

(1= 6én—16K8%)||lw'||* < (Ky%e™" +4Keé* + én7)||w||? + 4Ky 2¢||w”|*.
We now make the choice = (36)™" and require that 16K6%¢ < 1 to obtain
1
I'I* < 7*(Ke™ +aKeb* + 87" l|wl|? + 4Key ™ |w"|".

In particular when § < 1 we can set ¢ = (48K)~!, while if § > 1 we set ¢ = (48K 6%)~1. After
simplifying and taking square-roots, we finally obtain (4.1).
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LEMMA 4.2. Let by > 1 be given. Suppose that w(r) is a solution of (2.1)-(2.2), and that
max (btl,/z, |b|l/2) lwllL2(R,+00) < CllBllL2(R,+00) for a constant C = C(b, R,é,¢,|o|). Then there
is another constant C = C(b, R, é,¢,|o|), having the same type of dependence on the indicated

parameters as the first constant, such that

lw'll L2400y < C (1 + la(R)) Bl 2R, 4+ 00)- (4.2)
PROOF: From (2.1), the Minkowski inequality, and the assumed estimate we have

lo? — &l
lw" | L2(R,400) < I1BllL2(R,400) + [max(bo, [B]) + —5- | llwll L2(R,+00)
5 ] R

0’2 -1
< max (b:,/’, nbv/?) {1 +C (1 + ' 7 ‘l)} Rl L2 (R, +00)

Hence for a constant C; = 1 + C (1 + |g(R)|) and with ¥ = max (b(l,/z, |b|1/2) in (4.1) it follows
that

o'l 23R +o0) < Co [max(1, 6%) max (/2 b2 wll 3,40y + CallBllL3cm 000
< Co (Cmax(1,6%) + C1) IRl L2(R,400)-
This verifies (4.2).

According to Theorem 2.3 and its corollary, problem (2.1)-(2.2) has a unique solution @(r)
when 0 < € < § and b > 0. Since w(r), as given by (3.3) and (3.4) or (3.5) respectively, is a
solution of (2.1) that has been shown to satisfy (2.2) we have w(r) = w(r). When b < 0 there
is no longer a unique solution of the problem, but we have two particular solutions, @w(r) and
w(r) as given by (3.6)-(3.7), satisfying estimates (2.9) and (3.17) respectively. Notice that (3.17)
holds for R > 0 while (2.9) holds only for Ry sufficiently large. It is our purpose subsequently
to show that a unique representative solution can be selected by means of projection operators,
and that this solution satisfies both of these estimates. This in turn leads to H} estimates on
solutions. We first show that i(r) satisfies the same estimate (3.17) as the function w(r) defined
in (3.6)-(3.7).

LEMMA 4.3. Let by > 1 be fixed, and let €,6, R > 0 with € < §. Suppose that b > —b,
0> -1 andp(r) =b— (02 — 1) /r? in (2.1). If b < 0 we also assume § + 2¢ < B = |b]'/%. Then
the function @ of Corollary 2.4 satisfies

max (b7, bf1/*) 1]l

b-¢

(R,+00) < C(ba R,é,¢, 'ol)"h"ll}( R,+00) (4'3)
for a constant C(b, R, 6,¢,|o|) with the properties described in (3.10).

PROOF: As pointed out above this follows immediately by uniqueness when b > 0. Sup-
pose b= -2 <0and 0 < e < 6§ < 6+2 < B Since b > —by it suffices to show (4.3) holds
with max (b(l,/z, |b|1/2) = 1. Let w(r) be given by (3.6)-(3.7). Then there is a unique a € R such
that @(r) = w(r) + ar'/2K,(Br). For convenience we write o rather than |o|. Let Ry > 0 be the
number guaranteed to exist by Theorem 2.3. Then a must satisfy (note that w € L(R, +00))

+00
a=k7" / [@(r) — w(r)]r Ko(Br)e®rdr, k= l(-)""*Kqs (B()) IZ3(Re,+c0)-
Ro
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By writing 26 = (6§ — €) + (6 + ¢) and using the Schwarz inequality we find that

kla| < ||@ - w]|z;

b-¢e

(Rotoa) 1) 2K (B()) I3, (Ro o)

Since A > 6 + 2¢ and K,(fr) is monotonically decreasing we have K,(8r) < K,(yr), where
¥ = § + 2¢ for convenience. Using Q,(z) = €* (-;-)’ K,(z), ¢ > 0, as defined previously, and
noting that K,(z) is a positive function it follows that

+o00

||(.)1/2K, B ||’L, (Royo0) S / r (‘_721) —20 |Q,(7r)|28'2(7_5—')'d"

§+¢
Ro

Clearly vyr > (6 + 2¢)Ry > 0 so that (y7)~2° and |Q,(yr)| are both bounded at the lower limit.
Also y — 6§ —e = ¢ > 0 and Q, has at most polynomial growth at infinity; thus the integral on
the right is convergent. Let C(Ry,§,¢,0) denote its value. Then from (2.9) and (3.17) it follows
that

kla| £ C(o,6,¢, Ro)|| W — w]| 2

< C(o,6,¢,Ro) (||13||L§(Ro,+m) + llwll .z (R,+oo)) < C(b,R,6,,0)||hllL2(R,+00)

b-¢

(Ro,+00)

for a constant C(b, R, §,¢,0) as described in (3.10). Now changing variables z = 8r in the integral
defining k and using 8 < b:,/ ? shows immediately that k is bounded away from zero independent
of B = |b|*/2. Thus |a| < ClIhllL2 (R +00) for a constant C as above. It now follows from this,
(3.17), and the triangle inequality that i satisfies (4.3).

We now introduce the projection operators Qf', which will be used in determining unique
solutions. Let 0 < § < § and suppose that ¢ > 0. Let H*(R,+o00) = {w € L% R,+o0) :
w®) € L}(R,+00),0 < k < m} be the weighted Sobolev space as defined in Section 1. Since
B > & we have r'/2K4(Br) € H*(R, +00), R > 0. We define QF to be the orthogonal projection
in H*(R,+00) onto the 1-dimensional subspace spanned by r'/2K,(Br). Of course QF also
depends on R, § and 0. If 0 < 0 < % and m = 0 then QF is also well-defined for R = 0. In
general, however, we must have R > 0. Computationally, we have Q3 w(r) = arl/2K ,(Br) where

o = )2 Ko (BO) I poey (0 (V72K (B())) (44)

HP(R,4+00)

THEOREM 4.4. Let by > 1 be a given constant, and in (2.1) let p(r) = b — ¢(r) where
b> —bo and q(r) = (02 - 1) /r? witho > —}. If |o| < } let R = 0, otherwise assume R > 0.
Suppose that € = § in (2.2).

i) fb>0and0 < § < +oo then for every h € L3(R,+00) there is a unique solution w* of
(2.1)-(2.2).

ii) Ifb<0and0 < 6§ < B =|b|'/? then for every h € L}(R,+00) problem (2.1)-(2.2) has a
1-dimensional affine space of solutions. All solutions have the form w(r) = ar'/2K o) (Br)+
w*(r), where @ € R and w* is the unique solution satisfying Q%w =0.
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Moreover in either case there is a constant C = C(b, R, §, |o|), having the properties described in
(3.10), but being independent of ¢, such that the following estimates hold:

max (b2, 161172) [0 |38 400y < CllAllL3(R o0, (45)
lw*ll 53R 400y < C (1 + |a(R)]) IRl L2(R,+00)s R>0, (4.6)
w* ()] < Ce™ (1+ la(®D Iblligmaceyy 7> R>0, 7%)
[w* (r), 6 /2hw* ()] < Ce™ (1+ la(R)) Ihllgppeeyy 7> R>0.  (48)

PROOF: Suppose that b > 0. Let & denote the unique solution of Corollary 2.4i, and
let w be the solution given by (3.3) and (3.4) or (3.5) respectively. Since w satisfies (2.1)-(2.2)
with 0 < € < § we have @ = w. Suppose that u(r) is a solution of (2.1)-(2.2) with ¢ = 6. Then
v(r) = W(r) — u(r) is a solution of the corresponding homogeneous equation which satisfies (2.2)
with € = §. From the form that v must take (cf. Section 3) it follows that v is identically zero.
Therefore (2.1)-(2.2), with € = §, has a unique solution w* = % = w where w is given by (3.3)
and (3.4) or (3.5) respectively.

To verify (4.5) we let Ry > 0 be the number guaranteed to exist by Theorem 2.3, and choose
€ = §/2. Clearly we have

Ro 400
e e R
R Ro

R
<e* °||w'||§,3_‘(k,+oo) + ||w'||§,g(no,+oo)

Thus from (2.9) and (4.3) we obtain

max (8%, 8/2) 10" L3R o) < ClbllL3(R 4+o0) (49)

for a constant C' = C(R,6,|0|). If |s| < } then we can allow R = 0 and take C independent of
R. We now apply Lemma 4.2 to obtain (4.6).

Ifb=—p% < 0and 0 < € < § then all solution of (2.1)-(2.2) have the form w(r) = @(r) +
ar'/2K,(Br) as described in Theorem 2.3. Again we write o rather than |o|. Since § < 3 all of
these solutions belong to L}(R, +oo) with R > 0if 0 > }, and with R=0if 0 < 0 < }. Ifu(r) is
a solution of (2.1)-(2.2) with ¢ = § then v(r) = @(r) — u(r) satisfies (2.1) with h identically zero.
Thus v(r) = ¢;7/2K,(Br) + c;r'/2L,(Br) for some c;,c; € R. But then v(r) — ¢;r1/2K,(8r)
belongs to L?(R,+o00) which implies ¢; = 0. Thus u(r) = @(r) — ¢17'/2K,(f8r). This shows all
solutions of (2.1)-(2.2), with € = §, have the form w(r) = @&(r) + ar'/2K,(Br).

Now set w* = (I — Q%). Clearly w* is well-defined and satisfies (2.1)-(2.2) when ¢ = é.
Moreover ||w*|| < ||@]| in the L}(R, +00) norm since Qj is an orthogonal projection. By choosing
€ = min (%, QZ—Q) we have 0 < € < § < § + 2¢ < 3. Hence we can repeat the argument above
leading to (4.9), with & replacing w*. Then using [|w*|| < ||®]| yields (4.9). The estimate (4.6)
then follows from Lemma 4.2.

To obtain (4.7) we use (4.5) and the fact that w*(r) — 0 as r — 400 to estimate

“+o00

lw*(r)| < / lw*'(s)lds < 67 e~ [lw*' || L3 (R, 400y < Ce™" (1 + la(R)) 1Al L2 +00)-

To obtain the two remaining estimates we begin by multiplying (2.1) by w' where for convenience

we write w in place of w*. Integrating from r to 400, and using the limits w(r),w'(r) — 0 as
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T — 400, we obtain (with ¢(s) = (6% — 1) /s?)

+oo +o00
[w'(r)? + blw(r)|? = -2 [/ h(s)w'(s)ds + / q(s)w(s)w'(s)ds] .

T T

By the previous estimate it suffices to consider b > b;. Bounding the first integral on the right

we have
+o0 400
I2/h(3)w'(3)dsls2/ |h(3)|€6‘|w'(3)|es‘e‘26‘d3

< e (14123 R opony + 1012 3R 1)

< Ce 27 (1 + |¢(R)|) ||h||§,g(n,+oo)

for a constant C = C(b, R, §,0) as described above. Similarly for the second integral we find

+o0
2 [ a(uls)u'(s)ds] < Clar)le™" (0 + (R IhNE3cp, o

r

Estimate (4.8) now follows.

In the preceeding theorem it was shown that there is a uniquely determined function w* satis-

fying (2.1)-(2.2). When b < 0 the uniqueness property was obtained by adding the constraint
Qpuw=0 (4.10)

with m = 0. Since QF is well-defined for all m > 0 when R > 0 it is clear that uniqueness can be
obtained by adding the constraint (4.10) for any choice of m < 2. By the nature of the a priori
estimates (4.5)-(4.8) we have established it turns out that the case m = 1 also allows a passage
to the limit to the original problem (1.4)-(1.6). Thus we also record the following.

THEOREM 4.5. Under the hypotheses of Theorem 4.4, with the exception that R > 0 is
now required unless |o| = 1/2, all conclusions of Theorem 4.4 remain valid with Q}, replacing Qg.

PROOF: When b > 0 the results are identical. When b < 0 we set 8 = [b|'/? and
w** = Qjw*, where w* is the unique solution obtained via the projection Q. Since Q} is an
orthogonal projection in H}(R,+00) the inequality (4.6) follows immediately. Since [b]'/2 < b)/*
the first inequality (4.5) then follows from (4.6). Having verified (4.5)-(4.6) for w** we may repeat
the same argument as before to obtain (4.7)-(4.8).

5. PASSAGE TO THE LIMIT.

Our goal in this section is to prove existence of solutions and to characterize the set of solutions
of problem (1.4)-(1.6). As in Section 1 we set gn(r) = (N — 1)(N — 3)/4r2. We begin by
considering the finite dimensional approximating problem

O WL w0 W, = H, (5.1)
37 m-a_rz' m+( +9N(7')) m = dm, .

(t,r) € (0,T) x (R, +00),
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Wa(t,) € IA(R,+00), 1€ (0,T) (5:2)
Wa(t+T,r) = Wn(t,r), (t,r) € R x (R,+00), or (5.3a)

{ ay Wi (0,1) — C!z%Wm(O, r)=0, r € (R, +00), (5.3b)

ﬂIWm(Tv 7‘) + ﬂ2 Eaiwm(Tyr) = 01 LS (Ra +°°)’

where R > 0 and Hp(t,r) = Y ha(r)én(t). The functions h,,&, were defined in Section 1.
n<m

We seek a solution Wy, (¢,r) = 3 wa(r)éa(t) having the same form. Let 0 = oy = (N — 2)/2

so that (N — 1)(N — 3)/4r? = (02 — 1) /r? = gn(r) as in the previous sections. Recalling that

" +6%¢, = 0 and that &, satisfies the boundary conditions (1.9) we are lead to the componentwise

equations
wp + (ba — gN(r))wn = —ha,  r >R, (5.4)
wy € LY(R, +0), (5.5)

in which b, = 6% — . There are actually two cases to consider: i) A < min 62 and ii) 62 < A < 63,
for some j. However the arguments are similar so for brevity we only consider the more delicate
second case. Also, since we are interested in the limit of W,, as m — +o0o0 we assume m > j.
Then for some by > 1 we have —by < b, < bj <0forn < j,and b, > 0forn > j. Set B, = |ba |12
for n < j. According to Theorem 4.4 all solutions of (5.4)-(5.5) are either uniquely determined
when n > j, or given by

wa(r) = wy(r) + anrllzKo(.Bnr)’ a, €R, (5.6)
when n < j. Hence all solutions of (5.1)-(5.3) have the form

Win(t,r) = ) wi(r)én(t) + Y anr /2K (Bar)én(?) (5.7)
n<m n<i
Let Q% : L}(R,+00) — span{r!/2K,(fB.r)} be the orthogonal projection defined in (4.4),
with m = 0 and f = (,. Then Q%"w; = 0 where w}, is the function appearing in (5.6) and
defined in Theorem 4.4.
Clearly the functions
va(t,r) = 12K (Bur)én(t)  (n <) (5.8)
satisfy (5.1)-(5.3) with H,, identically zero, and also (1.4)-(1.6) with h identically zero. Let
L) denote the (closed unbounded) linear operator associated with problem (1.4)-(1.6), so that
Lyw = wy —wyr +(A + gn(r)) w for smooth functions w satisfying (1.5)-(1.6). Then v, € ker(Ly)
for n < j. We define an orthogonal projection Py : LZ((0,T) x (R,+00)) — span{va}a<; by
(recall cn = [|€all2(0,1))
Pyw = Z.a,.rl/zK,(ﬂ,.r).f,.(t), where

n<

T (5.9)
ap = Qoﬂnw,.(r)/r‘/zK,(ﬂ,,r), wa(r) =c;! bfw(t, r)€n(t)dt.

Then W7 (t,r) = (I — PA)Wn(t,r) is the first summand appearing on the right in (5.7), and is a
uniquely determined solution of (5.1)-(5.3). Moreover since the functions £,(t) are othogonal in
L%*(0,T) we have

/

Ck"w;"ig(gﬂ.w) (k=n)

* * ér —
W (r)e(t)wr(r)En(t)e?* drdt = { 0 (k #n)

N\-ér
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Hence from (4.5) it follows that

2 *
IIWf:,lL;((o,T)x(R,+oo)) = Z Cnllwnllig(n,+w)

n<m

<c(6,8, - 6,N,R) Z ||hn||2L§(R.+oo)

n<m
< o8,y = 6, N, R)IRI L2 0,1y (R, 4o0))-

Here c(é,8; — 6, N, R) is used to denote a constant depending on the indicated quantities, but
independent of m and k. In general ¢ = +o00 as § — 0% and as § — B, , and also ¢ = +o0 as
R—0Yif N> 3.

From basic Hilbert space theory (cf. [18]) it follows that there is a unique function w*(¢,r) =
"}i_{nw W(t,r), belonging to L% ((0,T) x (R, 400)), with the limit meant in the sense of
L%((0,T) x (R, +00)) convergence. Also we must have

lw*ll 20,y x (R, 00)) < (6, B8y = 8 N, R)||BlIL3((0,T) x(R,+00))s (5.10)

and according to (4.5) if N < 3 we can take R =0 and ¢ = ¢(é, 8; — 6, N).
Let Dt g be the set of test functions defined in section one. Then

T +oo T +oo
/ / W [pwe — orr + (A + gn(r)) o] drdt = / / Hppdrdt, V¢ € Dr,p. (5.11)
o R 0 R

Since ¢ € Dr,g implies ¢ — orr + (A +gn(r)) ¢ € L2((0,T) x (R, 400)) we may pass to the
limit in (5.11) to obtain

T +oo T +o0
/ / w* [pe — orr + (A + gn(r)) @l drdt = / / hedrdt, Vo € Dr,g. (5.12)
o R o R

Hence w* is a solution of (1.4)-(1.6), and depends continuously on h according to (5.10). If
w € L2 ((0,T) x (R, +00)) is another solution then the argument leading to (1.12)-(1.13) shows
wa(r), as defined by (1.11), must satisfy (5.4)-(5.5). Hence wn(r) — wi(r) = anr'/2K,(Bar)
for n < j and some a, € R. If n > j then w,(r) — w}(r) = 0. Therefore w = w* + v where
v € span{v,} with v, as defined in (5.8). In particular this shows ker(L)) = span{vn}n<;. We
have verified the following result.

THEOREM 5.1. Suppose that 0? <A< 912-“ for some j and define 8, = |62 — \|'/?,
n < j. Then for all § € (0,5;) and any h € L%((0,T) x (R, +00)) there is a finite dimensional

affine space of solutions of (1.4)-(1.6). All solutions have the form w = w* + v, where w* is the
solution uniquely determined by Pxw* = 0 and v € ker(Ly). Furthermore the solution w* satisfies

(5.10), and if N < 3 then R = 0 is allowed.

For certain choices of the boundary conditions (1.6) it is possible to show that solutions have
more regularity than stated above. For instance when the boundary conditions are periodic,
Dirichlet, or Neumann we have

T
A _ | Oica, n =k,
o/ eoeon={ o 0 (519

Thus for a function of the form W,,(t,r) = 3 w,(r)é.(t) it follow that

n<m
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2

0
”&Wm

=Y c,.93,||w,.||2L;( Roto00)* (5.14)
LUOT)X(R+)  n<m

With these choices of the boundary conditions (1.6) in mind we again consider the sequence
of problems (5.4)-(5.5). As before we assume 62 < A < 6%,,. By applying Theorem 4.5 we find
that all solutions have the form (5.7), with w} uniquely determined by the constraint le” wh =0
when n < j. Here Q} denotes the projection defined in (4.4) with m = 1 and § = Bn. We
now define P} : H} ((0,T) x (R,+00)) — span{vs }n<, as in (5.9), but with Q} replacing Qj_ .
Then as before W}, = (I — P})W,, is the first summand on the right in (5.7).

THEOREM 5.2. Suppose that the boundary conditions (1.6) are such that the associated
eigenvalue problem (1.8)-(1.9) has eigenfunctions which satisfy (5.13). Assume that 62 < A <
62,, for some j and define B, = |62 — \|'/?, n < j. Then for all § € (0,4,) and any h €
L2((0,T) x (R, +00)) there is a finite-dimensional affine space of solutions of (1.4)-(1.6). All
solutions belong to H} ((0,T) x (R, +00)) and have the form w = w* + v, where w* is the unique

solution satisfying Pyw* = 0 and v € ker(L,). Furthermore w* satisfies the a priori estimates
llw* 2 0,1y x (R 400y < €(1 + lan (R RllL2¢0,1) x(R,+00))» (5.15)
lw* |l Lee 0,1y x (R4 < €(1+ lan(R)]) IRl 2((0,7) x (R +00))» (5.16)
where ¢ = ¢(6, 3, — 6, N, R) is a constant with the same properties as in (5.10).

PROOF: The existence and uniqueness of w* follows in the same way as before. To verify
(5.15) it remains to show that w], w} exist and satisfy appropriate estimates. First we consider
w}. Since 62 = b, + A it follows from (5.14), applied to W3, = (I — P} )Wy, and (4.5) that

9. .
Nézwm

< cllhll 20,1y (R, +00))>
L}((O.T) x(R,+00))

where ¢ = ¢(6,8, — A, N, R, \) now also depends on A, but is independent of m. This shows that
2 W converges in L ((0,T) x (R, +0)), and a standard argument verifies that w§ = lim 2wy
in the sense of distributions. Essentially the same argument applies to w; = lim %W,:,, with
(4.6) used in place of (4.5).

To verify (5.16) we again use orthogonality, and estimate (4.7), to obtain

T
/ Wit = 3 calwn(r)f?
0

n<m

_ 2
<ce 7 (1+ |gn(R)]) 2 "h""i}(il,-t-oo)

nlm

Similar estimates apply for ;%W;, and ;;%W;,. These combine to give

T 1/2
7] a
* 2 * 2 * 2
{ [ (Wanp g waenf +15Wanl )dt}

0
< c(1+ lgn(R)) e IRl a0,y x (R +00))

where once again ¢ = ¢(6, 8, — 6, N, R, ) is independent of m. Now from this estimate and the
Sobolev embedding H'(0,T) — C(0,T) it follows that (a.e) (t,r) € (0,T) x (R, +00)

[Wa(t, 0] < cllWin ()l o,my < ce™® (1 + lan(R)) 1Bl 20,0 x (R +00))-

Since W2 (t,r) — w(t,r) (a.e) (t,7) € (0,T) x (R, +00), the same estimate holds for w(¢,r), which
in turn implies (5.16).
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REMARK: When A < min#6, analogous arguments apply and show there is a unique
solution w* € H} ((0,T) x (R, +00)) of (1.4)-(1.6) which also satisfies (5.15)-(5.16).

COROLLARY 5.3. The (closed unbounded) linear operator Lxw = wy—wyr+(A + gn(r)) w,
where gn(r) = (N — 1)(N — 3)/4r?, associated with (1.4)-(1.6) is a Fredholm operator from
dom(L,) C L?((0,T) x (R,+00)) onto LZ((0,T) x (R, +00)) with non-negative index. The pa-
rameter 6 > 0 and the index of Ly depend on ) in the following way. If A < min 62 then § > 0 is
otherwise unrestricted and the index is zero. If §2 < A < 67, then 0 < § < B, = |A — 6,|*/? and
the index is positive and equal to the dimension of the linear space spanned by {£n(t)}n<,. In ad-
dition L has a bounded (partial) inverse K : L%((0,T) x (R, +o0)) — H} ((0,T) x (R, +00))N
L ((0,T) x (R, +00)) defined by the correspondence h — w*, where w* is described in Theorem
5.2,
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