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ABSTRACT. Let Lx denote the linear operator associated with the radially symmetric form of

the wave operator 0t A -b A together with the side conditions of decay to zero as r Ilxll -- -boo

and T-periodicity in time. Thus L,w wtt- (wr,. -b Y--w,.) -b AT, when there are N space

variables. For , R, T > 0 let DT,R (0, T) x (R, -boo) and L(D) denote the weighted L space

with weight function exp(r). It is shown that Lx is a Fredholm operator from dom(Lx) C L2(D)
onto L(D) with non-negative index depending on . If [2rj/T]:z < A < [27r(j -b 1)/T] then the

index is 2j + 1. In addition it is shown that Lx has a bounded partial inverse Kx" L(D) --H(D)IqL(D), with all spaces weighted by the function exp(r). This provides a key ingredient

for the analysis of nonlinear problems via the method of alternative problems.
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1. PROBLEM STATEMENT AND NOTATION.
In this paper we are interested in discussing the existence of solutions for certain types of

boundary value problems in time associated with linear wave equations on spatial domains of the

form I]x[I > R, with IIx]] (Z x,2") 1/2. In dimensions N 1,2 or 3 we will allow R 0. One of

our primary goals is the development of a linear theory that can be used in studies of nonlinear

problems of the same type (cf. [1]). The most prominent case of interest is that of time-periodic

solutions. Although this case is of natural interest, it has only been in the last ten years that

contributions towards an understanding of this problem have been made. Many of the results

on the nonlinear problem have shown nonexistence of solutions [2],[31,[4],[5]. These works are

complemented by the existence results [6],[7] when g 1, and [8] when g 3. In this work

we will extend the linear theory of [9], which played a crucial role in the analysis of [8], to all

dimensions N and thus set aside the restriction of N 1 or 3.

Let n {z E 1N [[x[[ > R}. For a given real number A e [t we will be interested in the set

of solutions of the problem

u.- Au + )u f,

u(t,z) --, o a Ilzll-,/,

(t,x) (0,T) x fir (1.1)

e (0, T) (1.2)

which also satisfy certain boundary conditions in time. In particular these will be either a periodic

condition (1.3a), or the separated boundary conditions (1.35) (with a + a22 # 0, 5 + # 0 all

nonnegative constants) below
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u(t / T,x) u(t,x), (t,x) E I x R, (1.3a)
(0,1 u,(O,) 0,

lu(T,x) + 2ut(T,x) 0,
x ( R. (1.3b)

In the case of the periodic problem (1.1)-(1.2) should be satisfied for

In (1.1) the function f e L ((0,T) x R) is assumed to be radially symmetric in space, so that

f(t,x) F(t,r) where r Ilxll. We seek solutions u(t,x) U(t,r) also having this symmetry.

It is well-known in this case that Au Urr + -Ur. Thus the standard changes of variables

w(t,r) r’-u(t,x), h(t,r) r--f(t,x) transforms (1.1) into

(g- 1)(g- 3)
wtt-w,-+ A+ w=h, (t r)(0 T) x(R,+o) (1.4)

4r

Since solutions are to be at least square-integrable we observe that w,h L2 ((0, T)
(R, +c)) if and only if u, f e L ((0, T) R). In fact the solutions we find will be weak solutions

in the sense described below. In particular the decay condition (1.2) will be interpreted as

w(t,.) L2(R, +), (a.e.) e (0, T), (1.5)

Despite the apparant weakness of this decay condition it will turn out that in fact w(t, r) decays

exponentially to zero. In the case of the periodic conditions we can write (1.3a) in the form

w(t + T, r) w(t, r), (a.e.) (t, r) e It x (R, (1.6a)

while the separated conditions which become

(lw(O,r) (2wt(O,r) 0
r ( (R, +cx) (1.6b)

,w(T,r) + 2wt(T,r) O,

have only a formal meaning.
Our main result can be briefly stated as follows. Let Lx be the (unbounded) linear operator

associated with the boundary value problem (1.4)-(1.6). Then Lx is a Fredholm operator (cf.
[10]) with finite non-negative index depending on A. A description of the dependence of the

index on A, as well as the spaces involved, requires more notation.

For R > 0 let D denote either (R, +c) or (0, T) (R, +c). Let > 0 and define L(D) to be

weighted Hilbert space of function h e L2(D) for which h. exp(ir) is square-integrable over D.
For an integer m >_ 0 we set (cf. [11]) H(D) {h

_
L(D) Dah

_
L(D) for

0 < lal < m}. The derivatives are to be understood as distributional derivatives relative to

C(R, +cx) or DT,R as defined below, respectively. The norm used in L(D) will be

IlhllL](O)= Ihle2Srdl (d#=dr or drdt resp.),
D

and in Hn(D) we use

IlhllHr(D IIDhll2(o)
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Similarly we define LT’oo(D as the set of functions h L(D) for which IDhlexpOSr) is

bounded on D, for al 0 _< I’1 < m. When m 0 we more briefly write L(D).
The class of test functions to be used in defining solutions of (1.4)-(1.6) is

DT,n {q0 C (R (R, +co)) q0 satisfies (1.6) and qo(t, .) C(R, +co)}. Let qN(r)
(N 1)(N 3)/4r2. We say that w L ((0, T) x (R, +co)) is a weak solution of (1.4)-(1.6) if

T +oo T +oo

/ / w[9,t-rr+(A+qN(r))qo]drdt=/ / hcpdrd,,
o R 0 R

v0 e r,. (.7)

The operator Lx defined formally above is now to be understood as a closed linear operator in

L2 ((0, T) x (R, +co)), with dom(L) C HJ ((0, T) x (R, +co)).
The distributional definition above (cf. [12]) allows for an analysis based on separation of

variables. It is well known (cf. [131) that the eigenvalue problems

" + 82 0, 0 < < T, (1.8)

((0) (T), ’(0) ’(T), or (1.9a)

a(0) a2’(0) 0, (T) + fl2’(T) 0 (1.95)

admit countably infinite sequences of eigenvalues {8,} and eigenfunctions {(,(t)}. The eigen-

functions are known to be complete in the sense that linear combinations are dense in L(O, T).
Allowing for the different cases in (1.9) we assume {8,} is enumerated so that the sequence is

nondecreasing and includes repetition in the periodic case. In terms of these notations our main

result can be stated as follows.

THEOREM. //’82 < A _< 8_1.1 leor somej and0 < 6 < (A- 8)’/ then the operator Lx is

a Eredholm operator onto L ((0, T) x (n, +co)) with index equal to the dimension of the linear

space spanned by {,(t)},<,. Moreover, if the boundary conditions (1.9) are either periodic,

Dirichlet, or Neumann, then there is a bounded partiaJ inverse g L ((0, T) (R, +co))
H ((0, T) (R, +co)) such that Lw h if and only if w v + g;h, where v kez(Lx). In
addition range(gx) C ker(L)+/- with the orthogonMity in g ((0, T) x (R, +co)).

We loosely describe the arguments leading to the above result. Let 0(t, r) ,(t)(r) for some

C(R, +co). Then (1.7)implies

+oo

/ w, [-"+ (-8 + A + qN(r))1 dr / h,dr
R R

where
T T

tOn(F C-I /W(", ,$)n(l)d,, hn(v) C’I /
o o

for a constant

boundary value problem

(1.10)

(1.11)

Thus it follows that w,(r) is a solution of the generalized

iiw, + pn(r)w, -h,, e (e, +oo), (z.x2)

w. L2(R, +co), (1.13)
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where p,(r) 02 A-(N- 1)(N- 3)/4r2. On the other hand, if solutions of these problems can

be found for every n then w(t, r) w,,(r),(t) should satisfy (1.4)-(1.6) in the sense of (1.7).
In this way we may show existence of solutions. However we are interested in uniqueness and

continuous dependence as well as existence of solutions. Thus we must characterize all solutions

of (.2)-(1.13). n particular we need to show (1.13) is a property which guarantees uniqueness.

When 0 >_ A this can be done. When 02n < A an additional constraint is needed to obtain a

particular 1-dimensional affine space of solutions. Verification of these remarks requires several

steps.
First we show existence and uniqueness of solutions to a more restrictive problem in which

(1.13) is replaced by the requirement w . L(R, +o) for some 6 > 0. At the same time, a priori

estimates of solutions are given in the L](R, +oo) norm. These estimates are crucial for subsequent
developments, and are stronger than would be suggested by (1.13). To bridge the gap between

the competing desires for strong estimates on one hand and weak uniqueness conditions on the

other hand we consider an intermediate problem in which (1.13) is replaced by w e L]_e(R, +oo)
for some e, 0 _< e _< 6. We then show a priori estimates can be obtained when e 0, and that

uniqueness is implied when e 6.

The outline of the arguments for this are as follows. In the next section existence and uniqueness

is established with e < 6. Some a priori estimates, which require R large, are also given. Then

in the third section some special solutions are considered. These solutions are shown to satisfy

a priori estimates with arbitrary R but require e > 0. Finally in Section 4 the results of the

previous sections are combined to obtain a characterization of solutions and a priori estimates.

Throughout the developments we have outlined, it is essential to show that the constants

involved in the a priori estimates are independent of n. This allows for a passage to the limit

argument. This argument is given in Section 5 and is used to show that solutions of (1.4)-(1.6)
exist as limits of sums of the component functions described above.

2. A CHARACTERIZATION OF SOLUTIONS.
It is crucial for our purposes that we completely characterize solutions of the generalized bound-

ary value problems (1.12)-(1.13). Towards this goal we consider the problem

w" + p(r)w h, r

_
(R, +oo), (2.1)

w

_
L_,(R, +oo), (2.2)

where p(r) b- q(r) with b e I and q(r) r-2 (a2- 1/4). In particular we want to include

the case b b,, 8 A > -A (i.e. bounded below) and a (N 2)/2. With these choices

p p,, and q qv are the functions of the previous section. In general we assume $ > 0 and

ifb < 0 then also$ < Ibl/, R > O, 0 <_ <_ , and h oz. L(R,+o). When g 1 or 3so

that p(r) b is constant, and with R 0, an analysis of problem (2.1)-(2.2) has been given

in [9]. The analysis uses the classical Paley-Weiner Theorem [14] (cf. [15]) which characterizes

functions h e L2(0, +o) in terms of their Laplace transforms g(s) {h(r)}. We summarize a

number of the results obtained in [9] in the statement following.

THEOREM 2.1. Let denote a non-negative real number, and let p(r) b, R 0, and
g in (2.1)-(2.2).
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i) If b 2 >_ 0 and 0 < < -boo then, for every h E L(0, -boo), there is a unique solution

o/’(2.1)-(2.2).

ii) Ifb -2 < 0 and 0 < < then, for every h C L(0,+oo), (2.1)-(2.2) has a 1-

dimensional affme space of solutions. All solutions have the form

w(r) a exp(--flr) -b t(r) where a n is arbitrary and

t(r) -’ {[H(s)- H()]/(s 32)} is uniquely determined by h.

Furthermore the function t, in either case, belongs to H(O, +oo) and satisfies the a priori

estimates

IIllL0,+oo) < CllhllL0,/oo), [b[/2llllLO,/oo) < CllhllLO,+oo),

where C C(5) if b > O, or C C(5, 5) if b < O, is a constant independent of h and such

at C +oo as --, 0+, and as - if b < O.

REMARK: The above result shows that uniqueness is obtained by only requiring w

L2(0, +oo), and that the uniquely determined solutions actually belong to L(0, +oo) where $ > 0

is such that h q L(0, +oo). If we only know that h e L2(0, +oo) then there is no guarantee that

solutions exist (cf. [9]).

Below we need to consider (2.1)-(2.2) where generally we must have R > 0. We will comment

on the exceptional cases R > 0 subsequently. If 0 < < then exp(-/r) E L(R, +oo) for any

R > 0. Let .A/’R denote the 1-dimensional subspace of L(R, +oo) spanned by exp(-flr), and let

Q L(R, +oo) (2.5)

denote the orthogonal projection onto A/’R. An easy calculation shows Qh(r) cexp(-flr), where

c 2( )exp(R)Ha( 2t/) with Hn(s) {h(r + R)}. Clearly we have the orthogonal
decomposition L(R, +oo) A/’ + A/’, with Qw 0 for all w A/’-.

COROLLARY 2.2. Let/ denote a non-negative rea/number, and let p(r) b, R >_ O,

and e /n (2.1)-(2.2). Then there is a continuous linear solution operator in L(R, +oo) for

(2.1)-(2.2). i d=d odi=$ o oowig s:

i) Ifb =/2 _> 0 and 0 < < +oo then L(R, +oo) L(R, +oo) is

where t is the unique solution of the problem. Thus w satisfies (2.1)-(2.2) if and only if

w t =/cah.

ii) If b _/2 < 0 and 0 < g < then/Ca L(R, +oo) Af is defined by/Cah where

w is the unique solution of (.1)-(.) satisfying Qo O. Thus w satisfies (.I)-(.) if

=d only U w(r) a exp(-) + (r) where a e a d Kbh.



630 M.W. SMILEY AND A.M. FINK

Furthermore we have in either case ]Cbh e L’(R, +c)fq H(R, +cx) and

II.bhllL(R,+cx)
_

CIIhlIL(R,+cx), Ibll/211bhllL(R,+cx)
_
C]]hL(R,+) (2.6)

IIbhllL,’,R,+ < CIIhlILn,+, (2.7)

for a constt C having the se ter (2.3)-(2.4). In pic there is a constt

Ko independent of R su that IIEII 5 Ko with the norm being the line operator norm in

L(R,+).

PROOF: Given a function w defined on (R, +) we set wR(r) w(r + R) to obtn the

trlate deed on (0, +). If w e L(R, +) L(R,+) then

l:0,+ -’:,+, r0,+ -’7,+- (2.s)

Suppose that w satisfies (2.1)-(2.2). Then w satisfies (2.1)-(2.2) on (0, +) with h replaced
by h. Hence either wR R is iquely deteined (b 0), or h the fo wR(r)
a exp(--r) + a(r) descMbed in Threm 2.1. It follows that the se is true for w(r)
wR(r R). Let (r) a(r- R). Then by (2.3) d (2.8)

Repeating this gument using the other nos involved shows that satisfies the estimates

(2.3)-(2.4) on (R, +),d when b 0 this veMfies (2.6)-(2.7). If b < 0 then we nd to show the

se estimates apply for (I- Q). But since Q is orthogonM projection in L(R,+)
(2.6) follows immediately. To obtn (2.7) we st obsee that if cexp(-r) Q(r) then agn
by orthogonty

e-(-8)R

Hence by the trigle inequMity

(2.7) now follows from these inequMities d the estimates Mready established for .
We now consider the variable coefficient problem originally stated. Assuming q(r) 0 as

r +c one might conjecture that this problem will admit unique or multiple solutions, according
to the value of b, in the same way as described in Theorem 2.1. That is the problems should be

asymptotically equivalent in the sense of solution sets.

THEOREM 2.3. Let denote a non-negative rea/number, and let 0 _< e < in (2.2).
Let p(r) b q(r) in (2.1) with b e I and q(r) (a2 i) /r2 Then there is a number Ro > 0

such that when R R0 in (2.1)-(2.2) the following

i) /f b 2 > 0 and 0 < d < +cx then,/’or every h E L(Ro, +x), there is a unique solution

o/" (2.1)-(2.2).
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ii) If b _#2 < 0 and 0 < 6 < # then, for every h E L(R0, +oo), problem (2.1)-(2.2) has a

1-dimensiona/ane space of’ so/utions. Moreover there is a solution of (2.1)-(2.2) such

that all solutions have the [orm w(r) aw0(r)+ t(r) where a It and w0(r) is a solution

of the corresponding homogeneous problem wba’ch satisfies (2.2).

In either case the solution satisfies the foflowing estimates for a constant C having the same

dependence on 6, and

IllllL(R0,+oo) _< Cllh]lh(Ro,+o) IbI’/2IIIIL(Ro,+) < CIIhllL]gRo,+o), (2.9)

,., < CI}h}L: ,+). (2.10)

PROOF" First we sume 0. For convenience set la2 i l" Let Eb be the line

operator deed in Coroll 2.2, d suppose b fl 0. Let K0 denote a bound for the operator

no of Eb in L(R, +). We cse K0 is independent of R. Choo > (Koco)a/*. By
the eoroay we know w L(,+) satisfies (2.1)-(2.2) if d oy if w Eb [qw + h]. Let
T L(,+) L(,+) be the bondede operator defined by Tw b [qw + h].
We have

IITw- TVllL](Ro,+oo) <_ IlIQIIIIqllL--(Ro,+oo)llw

K0-21lw- VIIL](Ro,+

It follows that T is a contraction by the oice of. Hence there is a uniquely determined fixed

point q L](, +). EquivMently, when 0 d R , problem (2.1)-(2.2) h a ique

solution @ e L(,+).
If b -f12 < 0 then w L](,+)is a lution of (2.1)-(2.2) if d only if w(r)

a exp(-#r) + (r), where ,[qw + h]. Now for a ed a e R, dee T o o by

Tw ,[qw + hi, where w(r) a exp(-r) + w(r). Then before we find

HTw, Tv, I1(o,+o) < KocoRo-llw,

for all wl, vl E Aft0. Therefore T has a unique fixed point wl E Aft0, and all solutions of

(2.1)-(2.2) belonging to L](R0, +oo) have the form w(r) a exp(-r) + wl (r).
For convenience of notation let e(r) exp(-r). Since the operator K:bq has norm less than

one it follows that w (I- ICbq)-llCa[qae + hi. Thus w, depends linearly and continuously on

both a R and h L(R0, +). In particular we may write w (r) aw2(r) + (r), where

w2 (I- K:q)-1K:qe, (2.11)

Hence w(r) cr (exp(-#r) + wz(r)) + (r), where dearly wo(r) exp(-#r) + w2(r) is a solution

of the corresponding homogeneous problem which satisfies w0 L(R0, +oo), and t is a solution

of (2.1) which is uniquely determined by h.

It remains to verify the estimates (2.9)-(2.10). First assume b >_ 0. Then the bound K0 is also

independent of b. Hence both/Cb and (I-ICq)- are norm bounded independent of b as operators
in L(R0, +oo). Therefore (I- ICq)-lCh satisfies the first estimate in (2.9). Using this

estimate in conjunction with (2.fi)-(2.7), with h replaced by qt + h, yields (2.9)-(2.10). Now
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suppose b < 0. Then the bound K0 depends on the difference -. It follows that

inherits this dependence. As before t, as given by (2.11), satisfies the first inequality in (2.9) with

the constant C now depending on t. Since t :b[qt + hi we c use the same bt-strap
gument above to obtn the remMng estimates in (2.9)-(2.10).

2Now suppose0 < < . Then$ - > 0 d h e L(,+) C L$(,+). Hence
by the gument jt given, with $ replacing , there is a ique solution of (2.1) satisfying

(R0, +) d therefore w in thisw L(R,+), when b 0dR R0. But L$
ce. If b < 0 only the existence of h bn clMmed. The chacterization of lutions follows

before.

REMARK" The gument above fls when . In ts ce we would have 0 d

hence b would not be well-defined.

COROLLARY 2.4. Le$ p(r) b- q(r) where b e d q(r) (a2 )/r. Assme
0 < . Then conclusio i) d ii) of he previous heorem e id with replaced by y
R > O. addition estimates (2.9)-(2.10) remn id for Ro sciently lge.

PROOF" This follows immeately by continuation of the ique solution to (0, +),
which is possible since p C(0, +).

3. SPECIAL SOLUTIONS.
In this section we consider some speciM solutions obtMned from the iation of petem

forma by ceMn oices of the fr constts. Letting p(r) b- q(r), where b d- differentiM equation (2.1) becomesq(r)=(a )/r2withaE ,
-i =h. (a.w" + b r

This is a nonhomogenus Bessel equation. All solutions have the fo

(= - (
e (+ + ( (, (a.l

R R

in wNeh c,c e bitry eonstts, w(r) d w(r) e linely independent solutions of the

corresponding homogenous problem, d W() is their Wronski. It follows immediately from

Abel’s foule that W() is

here et distinct ees to eoider. Let u 1- If b for me > 0 then we

functions of he 1st d 2rid kind respectively. Nrom known results (el. [1]) it follows that

Since we know the unique solution N of (2.1)-(2.2) tends to ero r +, wNle( .
w(r) d w(r) e ymptotieNly cosine d sine functions, we hueristieNly gue that the

choices
+

f / l/2J,()h()d,r s/2y(s)h(s)ds c=
R R

should yield . With these oices (3.2) becomes

+

w(r)= / Gb,(r,s)h(s)ds, where (.)

1/2v,(,) () [(Z)r(Z)- (Z)r(Z)]. (.4)
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Then (3.2) becomes

w(r)= / Gb,(r,s)h(s)ds, where (3.6)
R

Gb,u(r,s) ( -(rs)ll2l(s)K(r)’ R < s < r,
(3.7)

-()’/()K(), < < +.

Ultimately we nd estimates on I111 d Ibll/llwll in the L_t(R, +) norm for the functio

w(r) defined in (3.3)-(3.7). For convenience we sume that b0 1 is a fixed number. Then
(hl/2 /2)both w] d bllw] e bonded bym k0 bl wJ. Thus it sces to bound this lt

qutiW. N generN we have by H61der’s inequiW

+

I()1 Ilhll:(R,+) f IGb,(r,s)l2e-2s’ds,
R

Gb,(r,s) extended the zero function on R 5 s < r in c b 0. Setting b,(r,s)with

m= (bI, Ibll/) Gb,u(r, s) we thus obtn

m= (b12, lbl/) IIWIIL_,(R,+) C(b,R,,,)IIhIIL(R,+), suming (3.8)

IOb,(r,s)12e-2[s(’-)+t]dsdr C(b,R,,s,u). (3.9)

O goN is to show hat he eonstt (b,R,,e,u) is fiNte d h the following Wpes of de-

pendence on the vous pee:

(3.10i) C(b,R, 6,e,u) +oo as 6 - 0+
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(3.10ii) If b _> 0 then C(b,R, 6,,v) C(R, 6, e,v) is independent of b, and if b < 0 then

C(b,R,$,e,v) C (]b[ 1/2 -6, R, 6, e,v) depends on b only through the difference ]b] 1/

> 0 and tends to + as ]b[ 1/.

thenthen C(b,R, 8,e v) C(b,v,e, v) is independent of R, and if v >(3.10iii) If 0 _< v _<
C(b,R,5,,v) +oo as R 0+.

There are several cases that must be considered. First suppose that b 32 > 0 so that Gb,(r, s)
is given by (3.4). We define two related functions Fr, Qu R+ - R for v > 0 by the formulas

Q,,(x) Y,,(x)

From the well-known asymptotics (cf. [1]) for J,,Y it follows that F(x) O(1), Q(x) O(1)
Consequently

then Q e L(+). Also we have ()+1/2 F(x) bounded on +, andL(l+) and if 0 < v _<
Using these functions (3.4) takes the() 1/2- Q(x) bounded on I+ provided that 0 < v < 3"

form (recall b 32 > O, v > O)

hl/2 and b,v 1/2,, then both FuSuppose that 0 < b < b0 so that 0 < fl < 0 =o0 b, If0<v<

and Q are bounded on R+. Hence there is a constant C C(v), which is independent of b, R, t
and , such that

10,(,,)l<C, o<<5, 0<b<bo, O<r<s<-I-oo (3.11)

then Q,, is not bounded on I+ but Q(3x)/x-1/2 is bounded independentIf however v >
1/2of/ _< b0 for x > R > 0. Hence for any R > 0 there is a constant Cn Cn(v), which is

independent of b, and e, and which grows without bound as R 0+, such that

1Ib,u(r,s)l < CR8u+1/2 (v > , 0 < b < bo, 0 < R < r < s < oo) (3.12)

Suppose that b > b0. Then 1,,v(r,s)= Gb,v(r,s)= [(flr)V+1/2Fv(lr)(fls)1/2_VQv(fls)
-(3s)V+1/2F,(3s)(3r)1/2-Q,,(3r)]. Since ()+1/2 F(x) and ()1/2- Q(x) are both

bounded on + when 0 < v < , there is a constant C C(v), which is independent of b, R,
and e, such that

( 1 )10b,(,,)l _< c 0 < v < , b > b0, 0 < r < s < +oo (3.13)

When v > we only have () 1/2-v Q,(x) bounded on [R, +oo) for R > 0. Hence for any R > 0

there is a constant C C.(v), which is independent of b, and e, and growing without bound

as R -- 0+ such that
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Next we suppose that -b0 < b _f12 < 0. In this case b,v bo/2Gb,v with Gb,v given in (3.7).
We now also restrict 6 to lie in the range 0 < 6 < . As before we define two related functions

Fv(z) e ()-v Iv(x), Qv(z) e ()v Kv(x) for u > 0. From the known asymptotics we

Fv(x) O(1), Qv(x) o(1)asx- 0+ and Fv(x) 0 __(x-v-1/2)’ Qv(x) 0 (xv-1/2) asobtLin

x +o. In terms of these functions (3.7) becomes

ab .(, )
-()’/* ()" -.(-’)F.(#)Q.(#),

[ _(rs),/2 (_)v e_#(._,)Fv(flr)Qv(fls)
R < s < r < +oo,

R<r<s<+oo.

then Qv E L(R+). Hence there is aNotice that as before Fv E LO(R+), and if 0 < t, <
constant C C(u), which is independent of b, R, 6 and e, such that

-b0 <b<0, 0<s<r<+oo)Cre-(*-) (0 < u <
Ib,v(r, s)l < (3.15)

Cse-/(’-*) (O<u< 1/2, -bo <b<O, O<r<s<

Ifv>l then Qv is no longer bounded on R+, but Qv(x)/xv-1/2 is bounded independent of
ha/2< 0 for x > R > 0. Thus for any R > 0 there is a constant CR CR(v), which is

independent of b, 6 and e, and growing without bound as R 0+, such that

CnsV+1/2e_(,_o)
-bo <b<O, O<R<s<r<+oo)(r, > ,

(3.16)
(r,> , -b0<b<0_ O<R<r<s<+oo)._

The remaining cases, b 0 or v 0, are in fact limiting cases of those considered above. For

brevity we simply state that (3.11) and (3.12) apply when b 0, and (3.11), (3.13), and (3.15)
apply when r, 0.

LEMMA 3.1. Let bo > 1 be a ,given constant, and let e, 6, R > 0 with < 6. Suppose that

b > -bo, a > -1/2, and p(r) b- (a2 1/2)/r2. If b < 0 a/so assume that 6 < IbiS/. T
the solutions of (2.1)-(2.2), given by (3.3) with Gb,ll given by (3.4) when b > 0 and (3.5) when

b O, or given by (3.6)-(3.7) when b < 0, a//satisfy

max (bo/2, Ibl /2) IlwllL$_,(,+oo) < C(b,R,,, Il)llhllL$(,+o) (3.17)

where C(b,R, 6,, Il) is , constant of the type described in (3.10).

PROOF: First consider the case b > O. According to estimates (3.11)-(3.14) we have

Ib,lal(r,s)l2 < Csv, for a constant C independent of b, 6, and , and power p with 0 <_ p <

max(2,21a + 1). Using the inequality (r + s)v < 2V(rv + sv) we have

4-o0 4-00

/ spc-2(s-r)d3- /(s+r)pc-2Sd3 <_Cl__c2rp,

o

for constants Cl, C2 > 0 depending on 6 and p but independent of b, R and . Since rp exp(-2er)
is integrable on R+ for p _> 0, > 0 it follows that the integral in (3.9) is bounded by a constant

then the bound on (,lal is valid for 0 < r < s < +.C(R,,,Ia[) independent of b. If I,1 _<
Therefore we may let R - 0+ in (3.9) without loss of convergence in the integral, and take

c(, , I1)independent of R.
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When b _/2 < 0, and 0 < 6 < /3, it follows from (3.15)-(3.16) that
CrPe-2(r-’), s < r, and Ib,l,l(r,s)l2 < CsPe-2(’-r), r < s, for a constant C independent
of b, 6 and e, and a power p as above. Hence

+oo

R

<_ C r1e-2(-5)(r-")ds + C sPe-2(+)(’-")ds <_ Cl + c2rI

R

where cl, c2 > 0 are constants depending on 6, p, and the difference/3 6, but independent of e,
R. Again it follows that the integral in (3.9) is bounded by a constant

thenC C(/3 6, R, 6, e, lal) which in this case depends also on the difference

the integral remains convergent with R 0 and C C(/3 6, 6, e, la]) can be taken independent
of R. Estimate (3.17) now follows from (3.8)-(3.9).

4. A PRIORI ESTIMATES.
The purpose of this section is to establish a priori estimates on certain solutions of (2.1)-(2.2).

Throughout we assume that p(r) b- q(r)in (2.1) with b E R and q(r) r-2 (0.2- 1/4) for

a>-.l Also we assume 6 > 0 and if b < 0 then 6 < [b[ 1/2. It is crucial for later developments
that the constants involved in these estimates be independent of b, for b -- +oo. It will be
convenient for our purposes to assume b > -b0 for some fixed b0 > 1. We begin with some

technical lemmas showing that it is sufficient to establish L(R, +oo) estimates on solutions in

order to obtain HI (R, +oo) estimates. The first is a variant of a well-known interpolation estimate.

LEMMA 4.1. Let 7 >- 1 be given and suppose 6 >_ O, R >_ O. Then/’or a11 w H(R, +o)
Shere is a constant Co independen of 7, 6, R such hat

][w’IIL(R,+o.) _< Co [max(l,62)llwllL(R,+)4-"y-IIIw"IIL(R,+oo)] (4.1)

PROOF: From [11, p. 70] we know that for any e0 > 0 there is a constant K, independent
of e0 and R, such that for any f H2(R, +o)

+oo +oo

Taking f(r) exp(6r)w(r) and e0 7-2e for some e > 0 yields

I1’11 ’ + 2(,o,,o’) + llwll _< K-r- I1o11 + 4K-’ (11o"11
where all norms are L(R, +oo) norms, and the pairing (w, w’)is the inner product in L’(R, +oo).
For any r/> 0 we have 21(w w’)] <_ rl-1]lw]12+rl]lw’]] 2, so that 26(w, w’)
Since 7-1 _< 1 it follows that

(1 6 lK’)llw’ll _< (K-r-’ + 4K’ + 6.-)llwll + 4K-r-ll,"ll.
We now make the choice r/= (36)-1 and require that 16K62e < - to obtain

1 72llw’ll < (K-a /4K / S-)llwll / 4K-llw"ll
In particular when 6 _< 1 we can set e (48K)-1, while if 6 > 1 we set e (48K62)-1. After

simplifying and taking square-roots, we finally obtain (4.1).
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LEMMA 4.2. Let bo >_ 1 be given. Suppose that w(r) is a solution o[(2.1)-(2.2), and that

(a&/, lal ’/*) Ilwll:n,+) _< Cllhll:n,+) fo o=ttm

i, other constt C C(,a,,e, I1), hving the se type of dependence on the indicated

peers the firs const, such that

IIw’ll(n,+ 5 C(; + Iq(R)l)llhll{n,+). (4.2)

PROOF" From (2.1), he Minkowski inequiy, d he sumed estimate we have

a
I1"11(,+ Ilhll{,+ + m(0,1l)+ a I111,+

{ ((#/ /,) a*-
m ko ,11 +C + m IIlln,+

Hence for & eons C 1 + C (1 + [q(a)[) d wih m o [[ in (4.1) i follows

[[w’[[#(,+) C0 [m(1,)m k ,Ibl )Ilwllgl(,+)
C0 (Cm(1,52) + C])IIhlIL](R,+).

This veeries (4.2).

According to Thereto 2.3 d its corolla, problem (2.1)-(2.2) h a que solution (r)
when 0 e < d b 0. Sin (), e by (3.3) d (3.4) or (3.5) spetiely,

solution of (2.1) that h bn shown to satisfy (2.2) we have 6(r) w(r). When b < 0 there

is no longer a ique mlution of the problem, but we have two picul solutions, (r) d
w(r) ven by (3.6)-(3.7), satisfying estimates (2.9) d (3.17) respectively. Notice that (3.17)
holds for R > 0 while (2.9) holds only for su6ciently lge. It is o pueose subsequently

to show that a uque reprentative lution be selected by mes of projection operators,
md that this solution satides both of these estimates. Ts in tm leMs to HI estimates on

mlutions. We first show that 6(r) satisfies the sine estimate (3.17) the function w(r) defined

i (3.6)-(3.7).

LEMMA 4.3. Le 1 befixed, dle,5,R>0 withe < . Supposetha b-bo,,-, dp() b (, )/i(2.). fb<0oum+2e<=lbln Th

the function of CoroHy 2.4 satisfies

(b/, Ibln) IlellL_.,+) C(b,R,,e, I’I)IIhlIL{R,+) (4.3)

0 0C(b,R,,e, I’1) *h *h popeidd (3.0).

PROOF: As pointed out above this follows iediately by uniqueness when b 0. Su
pose b=- < 0 d 0 < < < +2 < . Since b - it su6ces to show (4.3) holds

with (b&/, Ibll/*) 1. t () b by (3.6)-(3.7). Th th
that e() ()+ /*K,(#). Fooei t thth I1. t > 0 b the

numbertd to exist by Thereto 2.3. Then a must satisfy (note that w e L(R, +))
+

k-’ [ [() ()] ’/*K,()**,d, I1(’)’/*K
R0
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By writing 2, (- ) + (g + ) and using the Schwarz inequality we find that

kll < I1 wllLL.Ro,+oo)ll(’)l/2K ((’))

Since > + 2 and K=(r) is monotonically decreasing we have K(r) < K=(vr), where

7 + 2 for convenience. Using ((z) e ()= K=(z), tr > 0, as defined previously, and

noting that K(z) is a positive function it follows that

R0

Clearly 7r >_ ($ + 2e)R0 > 0 so that (7r)-2, and IQ.(,=)I both bounded at the lower limit.

Also 7- - > 0 and Q, has at most polynomial growth at infinity; thus the integral on

the right is convergent. Let C(Ro,g,,a) denote its value. Then from (2.9) and (3.17)it follows

that

1-1 < c(,,,o)116-WllL_,(Ro,+oo)

for a constant C(b, R, , , tr) as described in (3.10). Now changing variables z r in the integral

defining k and using /< ,1/2 shows immediately that k is bounded away from zero independent0

of Ibl/. Thua I1 -< CIIhllL:,+oo) for constant C as above. It now follows from this,

(3.17), and the triangle inequality that t satisfies (4.3).

We now introduce the projection operators Q", which will be used in determining unique

solutions. Let 0 < < and suppose that > 0. Let H"(R, +oo) {w E L(R, +oo)
w(k) Ls(R, +oo),O < k <_ m} be the weighted Sobolev space as defined in Section 1. Since

> we have r/2Ks(r) H’S"(R +oo), R > 0. We define Q’ to be the orthogonal projection

in H"(R, +oo) onto the 1-dimensional subspace spanned by r’/2K(r). Of course Q’ also

depends on R, and tr. If 0 < tr < 1/2 and m 0 then Q" is also well-defined for R 0. In
general, however, we must have R > 0. Computationally, we have Qw(r) ar/2K(r) where

. II(.)/K. ((.))i1- i ))).r(n,+oo).r(,+oo) (w, (.) K. ((. (4.4)

THEOREM 4.4. Let b0 > 1 be a given constant, and in (2.1) let p(r) b- q(r) where

If Il < 1/2 let R O, otherwise assume R > O.> -o = () ( 1/4)/ ,it > -.
Suppose that in (2.2).

i) /f b _> 0 and 0 < < +oo then for every h L(R, +oo) there is a unique solution w* of

(2.1)-(2.2).

ii) /f b < 0 and 0 < < [b[ ’/2 then for every h C L(R, +oo) problem (2.1)-(2.2) has a

1-dimensional attine space ofsolutions. All solutions have the form w(r) ar/2Kl,l(r)+
w*(r), where It and w* is the unique solution satisfyingw O.
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Moreover in either case there is a constant C C(b, R, , [a[), having the properties described in

(3.10), but being independent of e, such that the following est/mates hold:

max (bo/2 Il ’/2) II’llq(,,+) < Ollll,.:(,,+oo)
I1,,,*11,,(,+oo) < 6’(1 + Iq(R)l) Ilhll;(,+oo), R > 0,

(4.5)

(4.6)

IIL(R0,+oo)
Thus from (2.9) and (4.3) we obtain

(4.9)

then we can allow R 0 and take C independent offor a constant C C(R,,, [hi). If [hi <
R. We now apply Lemma 4.2 to obtain (4.6).

If b - < 0 and 0 < e < then all solution of (2.1)-(2.2) have the form w(r) (r)+
arl/UKa(r) as described in Theorem 2.3. Again we write a rather than [a[. Since < 3 all of

If u(r) isthese solutions belong to L](R, +oo) with R > 0 if a > , and with R 0 if 0 < a _< .
a solution of (2.1)-(2.2) with e then v(r) (r) u(r) satisfies (2.1) with h identically zero.

Thus v(r) crl/2g(r) + c2r/2I(flr) for some c,c

_
It. But then v(r)- clr/2g(r)

belongs to L2(R, +oo) which implies c2 0. Thus u(r) t(r)- clr/2g(r). This shows all

solutions of (2.1)-(2.2), with e , have the form w(r) (r) + ar/2ga(flr).
Now set w* (I- Q)t. Clearly w* is well-defined and satisfies (2.1)-(2.2) when e .

Moreover [[w*[[ _< [[t[[ in the L(R, +oo) norm since Q is an orthogonal projection. By choosing

e rain (, (")) we have 0 <e < 5 < i + 2 < ft. Hence we can repeat the argument above

leading to (4.9), with replacing *. Then using {1*11 <- I111 yields (4.9). The estimate (4.6)
then follows from Lemma 4..

To obtain (4.7) we use (4.5) and the fact that *(r) - 0 as r / to estimate

< ] I*’()ld < ,-e-’"llw"llz,(n,+oo) _< Ce-’" (1 + Iq(R)l)IlhllL(n,+oo).I*(")1

To obtain the two remaining estimates we begin by multiplying (2.1) by w’ where for convenience
we write w in place of w*. Integrating from r to +oo, and using the limits w(r), w’(r) 0 as

I*(,’)1 < c-’" (I + Iq(R)i)Ilhll.(a,+), ,- > R > O, (4.7)

I"(,)1, Ibl’/=lw*(,)l < C-’" ( + Iq(R)l)Ilhll,,,,(,+o), , > R > 0. (4.8)

PROOF" Suppose that b > 0. Let t denote the unique solution of Corollary 2.4i, and

let w be the solution given by (3.3) and (3.4) or (3.5) respectively. Since w satisfies (2.1)-(2.2)
with 0 < e < we have w. Suppose that u(r) is a solution of (2.1)-(2.2) with e t;. Then

v(r) (r)- u(r)is a solution of the corresponding homogeneous equation which satisfies (2.2)
with e . From the form that v must take (cf. Section 3) it follows that v is identically zero.

Therefore (2.1)-(2.2), with e ti, has a unique solution w" t w where w is given by (3.3)
and (3.4) or (3.5) respectively.
To verify (4.5) we let R0 > 0 be the number guaranteed to exist by Theorem 2.3, and choose

e /2. Clearly we have
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r -- +oo, we obtain (with q(s)= (as 1/4)/s)

I’()1 + bl()l -2 ()’()a + q(s)w(s)w’(s)ds

By the previous estimate it suffices to consider b > b0. Bounding the first integral on the right
we have

+oo +oo

[2/h(s)w’(s)dsl<2/ [h(s)[eSSlwt(s)lesse-2SSds

L](R,+) + IIL](R,+oo)
< Ce-’( + Iq(R)l)II

for a constant C C(b,R,,,o) as described above. Similarly for the second integral we find

12 / q(s)w(s)w’(s)dsl < CIq(r)le-s ( + Iq(R)l)

Estimate (4.8) now follows.

In the preceeding theorem it was shown that there is a uniquely determined function w satis-

fying (2.1)-(2.2). When b < 0 the uniqueness property was obtained by adding the constraint

Ow=O (4.10)

with m 0. Since Q’ is well-defined for all m >_ 0 when R > 0 it is clear that uniqueness can be

obtained by adding the constraint (4.10) for any choice of m < 2. By the nature of the a priori

estimates (4.5)-(4.8) we have established it turns out that the case m 1 also allows a passage
to the limit to the original problem (1.4)-(1.6). Thus we also record the following.

THEOREM 4.5. Under the hypotheses of Theorem 4.4, with the exception that R > 0 is

now required un/ess I1 12, all conclusions of Theorem 4.4 remain va/id with Q, replacing Qo.
PROOF" When b >_ 0 the results are identical. When b < 0 we set Ibla/ and

w** Qw*, where w* is the unique solution obtained via the projection Q. Since Q is an

orthogonal projection in H(R, +oo) the inequality (4.6) follows immediately. Since 1511/2 < "o

the first inequality (4.5) then follows from (4.6). Having verified (4.5)-(4.6) for w** we may repeat
the same argument as before to obtain (4.7)-(4.8).

5. PASSAGE TO THE LIMIT.

Our goal in this section is to prove existence of solutions and to characterize the set of solutions

of problem (1.4)-(1.6). As in Section 1 we set qN(r) (N- 1)(N- 3)/4r2. We begin by
considering the finite dimensional approximating problem

ot--w. -gw + ( + q()) wa Ha, (.)

(t,) e (O,T) (, +oo),
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Win(t, .)
_
L2(R, E (0,T) (5.2)

w( + T,)= W..(, ), (, ) a x (, +oo), or (.a)

0 Win(0, r 2Wm(0, r O, e (R, +),
(5.3b)

fl, W(T,r)+fl (T,r) 0, r fi (R,+),ot

where R > 0 d H(t,r) h,(r),(t). The fctions h,,, were deed in Section 1.

We ek a solution Wm(t,r) w,(r)(,(t) having the se fo. Let a a (g- 2)/2
so that (N- 1)(N 3)/4r (a )/r qN(r) in the previous ctions. Recling that,, 0 and that , satisfies the boundy conditions (1.9) we e le to the componentwise

equations

w + (bn qN(r))w,, -h,,,

w,

_
L2(R, +oo),

r>R,

in which b, 02,-A. There are actually two cases to consider: i) A < rnin 8 and ii) 0 < A < 0+,
for some j. However the arguments are similar so for brevity we only consider the more delicate

second case. Also, since we are interested in the limit of Wm as rn +oo we assume rn > j.
,Then for some b0 > 1 we have -bo < bn < bj < 0 for n < j, and bn > 0 for n > j. Set n Ibn 11/2
for n < j. According to Theorem 4.4 all solutions of (5.4)-(5.5) are either uniquely determined

when n > j, or given by

w,(r) w,(r) + a,r’/2K(#,,r), a, , (5.6)

when n < j. Hence all solutions of (5.1)-(5.3) have the form

W.,(t,r) Z w,(r)(,,(t) + Z a"rl/2K(#"r)"(t) (5.7)
-_<-, -_<

Let QO.. L(R, +oo) --} span{rl/2K=(#,,r)} be the orthogonal projection defined in (4.4),
with m 0 and# /,. Then 0Q#.w,, 0 where w,, is the function appearing in (5.6) and

defined in Theorem 4.4.

Clearly the functions

,(t,) l/g=(z.),(t) (, < j) (5.S)

satisfy (5.1)-(5.3) with g,,, identically zero, and also (1.4)-(1.6) with h identically zero. Let

Lx denote the (closed unbounded) linear operator associated with problem (1.4)-(1.6), so that

Lxw wtt-wrr +(A + qN(r))w for smooth functions w satisfying (1.5)-(1.6). Then vn
_
ker(Lx)

for n < j. We define an orthogonal projection Px L ((0, T) (R, +oo)) span{v,,},,</ by

pw E .’/g(.).(t), where

r (.9), C2.,()/’/=g=(,), ,,() f (t, ).(t)dt.
o

Then W,,(t,r) (I- Px)W,,(t,r) is the first summand appearing on the fight in (5.7), and is a

uniquely determined solution of (5.1)-(5.3). Moreover since the functions n(t) are othogonal in

L2(O,T) we have

w(r)k(t)w,(r),(t)e2Srdrd
,,11 (z
o

o R
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Hence from (4.5) it follows that

(R,+)
.(m

< c(6, , , N, )llhll,Ls((O,T)x( R,+oo))"
Here c(6, flj -6, N,R) is used to denote a constant depending on the indicated quantities, but

independent of rn and h. In general c --, +oo as 6 -, 0+ and as 6 flj-, and also c + as

R0+ifN>3.
From basic Hilbert space theory (cf. [18]) it follows that there is a unique function w*(t, r)

lim Win(t, r), belonging to L ((0, T) x (R, +)), with the limit meant in the sense of

/, ((0, T) x (R, +oo)) convergence. Also we must have

[[W*IIL$((O,T)(R,+oo) < C(6,j 6, N,R)llhllL$((O,T)(R,+oo)), (,5.10)

and according to (4.5) if N < 3 we can take R 0 and c c(6,//i 6, N).
Let /)T.a be the set of test functions defined in section one. Then

T +oo T

/ / Wn [9tt-rr+(A+qN(r))]drdt= / / Hmqodrdt,
o R o R

I 6. T,R. (5.11)

Since qa 6 VT,R implies ,t qarr + (A + qN(r))99 L2 ((0, T) x (R, +oo)) we may pass to the
limit in (5.11) to obtain

T +oo T

/ / w*[tt-tPrr+(,+qN(r))cp]drdt=/ / hcpdrdt,
o R 0 R

V
_
VT,R. (5.12)

Hence w" is a solution of (1.4)-(1.6), and depends continuously on h according to (5.10). If
w 6/,2 ((0, T) x (R, +oo))is another solution then the argument leading to (1.12)-(1.13) shows

w,(r), as defined by (1.11), must satisfy (5.4)-(5.5). Hence w,(r)- w,(r) a,rl/2K,(,r)
for n_<j and somea. 6 R. Ifn >j then w,(r)-w,’(r) 0. Thereforew w*+v where

v 6 span{v,} with vn as defined in (5.8). In particular this shows ker(Lx) span{v,},<j. We
have verified the following result.

for some j and define . 18 A] 1/2THEOREM 5.1. Suppose that 8i < A < 8j+
n < j. Then for a/1 6 6 (0,fli) and any h L ((0, T) x (R, +oo)) there is a finite dimensional

affme space of solutions of (1.4)-(1.6). All solutions have the form w w* + v, where w* is the
solution uniquely determined by Pxw* 0 and v ker(Lx). Furthermore the solution w* satisfies

(5.10), and if N < 3 then R 0 is allowed.

For certain choices of the boundary conditions (1.6) it is possible to show that solutions have
more regularity than stated above. For instance when the boundary conditions are periodic,
Dirichlet, or Neumann we have

T

,(t)t(t)d 8,cn, n k,
O, n#k.o

Thus for a function of the form Wm(t,r) E w,(r),(t) it follow that

(5.13)
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--Wm L((O,T)(R,+c))

With these choices of the boundary conditions (1.6) in mind we again consider the sequence
2of problems (5.4)-(5.5). As before we assume 0 < X <_ 0,i+x" By applying Theorem 4.5 we find

that all solutions have the form (5.7), with w uniquely determined by the constraint Q.w 0

when n _< j. Here Q, denotes the projection defined in (4.4) with m 1 and f,. We
now define P g ((0, T) (R, /c)) span{v,},,< as in (5.9), but with Q replacing Q.
Then as before W (I- P)W, is the first summand on the right in (5.7).

THEOREM 5.2. Suppose that the boundary conditions (1.6) are such that the associated

eigenvalue problem (1.8)-(1.9) has eigenfunctions which satisfy (5.13). Assume that

+ o om j .d dn I.- 1/, , <_ j. T. o e (0,,)
i ((0,T) x (R, +)) there is a ite-dimensionM ne space of solutions of (1.4)-(1.6). All

ooo. to H ((o, T) x (R, +)) vtom " + , "
solution satisfying Pw* 0 d v ker(L). Fthermore w* satisfies the a prio estimates

where c c(, -, N, R) is a constt with the se propeies in (5.10).

PROOF: The existence d iqueness of w* follows in the se way before. To verify

(5.15) it remMns to show that w, w exist d satisfy appropriate estimates. Fimt we consider

w. Since 9 b. + X it follows from (5.14), applied to W (I- P)W, d (4.5) that

where c c(, I, N, R, ) now also depends on I, but is independen of m. his shows that

a converges in ((O,T) x (R, +)), d a stdd gument verifies that

in h sense of distributions. Essentially the se gument applies o w lira , with

(4.6) ud in place of (4.g).
o verify (g.16) we agNn e orthogonty, d estimate (4.7), to obtMn

T

lW(t,)lat c.lw:()l
0 nm

c-( + IqN(R)I) IIh.

Sil estimates apply for W d W. These combine to ve
T }IW(,.)l’ + I +

c( + Iqu(R)l)e-llhllLo,T)n,+))
where once agMn c c(6, j -6, N,R,) is independent of m. Now from this estimate d the

Sobolev embedng H(0,T) C(0, T)it follows that (a.e) (t,r) (0, T) x (R, +)

Iw(t, )l _< clIW,(’,)IIH’(O,T) < -"( / IqN(/)I)IlhllL((0,,)(,+)).

Since W,(t, r) - w(t, r) (a.e) (t, r) (5 (0, T) (R, +c), the same estimate holds for w(t, r), which
in turn implies (5.16).
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REMARK" When A < min0, analogous arguments apply and show there is a unique

solution w* E H ((0, T) x (R, +oo)) of (1.4)-(1.6) which also satisfies (5.15)-(5.16).

COROLLARY 5.3. The (dosed unbounded) linear operator Lxw wtt-wrr+(A + qN(r))w,
where qN(r) (N- 1)(N 3)/4r2, associated with (1.4)-(1.6) is a Eredholm operator from

dom(Lx) C L2 ((0, T) x (R, +oo)) onto L ((0, T) x (R, +oo)) with non-negative index. The pa-

rameter > 0 and the index ofL depend on A in the following way. H" A < min/2 then > 0 is

otherwise up.restricted and the index is zero. If 19 < A < t9i+ then 0 < < 13j IX -/gj[ 1/2 and

the index is positive and equal to the dimension of the linear space spanned by {,,(t)},,<j. /n ad-

dition Lx has a  ou=a d (partial) inverse Kx L] ((0, T) x (R, +oo)) H2 ((0, T) (R, +))
L ((0, T) (, +oo)) a rm a y the correspondence h -- w*, where w* is described in Theorem

5.2.
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