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1. INTRODUCTION.

The concepts: reflexive, transitive, and elementary originally arose in invariant

subspace theory. It is known that every elementary algebra is 3-reflexive [3] ([2] for

more generality), but unknown whether all elementary algebras are 2-reflexive.

This paper is an attempt to generalize the nations of elementarity, reflexivity

and transitivity, (as they are defined on page 8 of [1]), to arbitrary convex subsets of

L(H) and linear subspaces of . This will lead into understanding of reflexivity as

external separation by appropriate linear functionals and elementarity as internal

separation. This helps provide perspective on the somewhat mysterious relationship

between the two concepts.

2. SEPARATION PROPERTY.

We begin by reviewing the relevant terminology and notation from the classical

setting in [1]: L L(H) being the algebra of all bounded operators on a separable

Hilbert space H with inner product denoted by <.,-> S being an arbitrary convex

subset of L T T(H) being the space of trace class operators, and Fk Fk(H)

being the set of rank k or less operators. For n a positive integer or c H")

denotes the direct sum of n copies of H We also write <a,t> for the trace of the

product at when a e L and e T. For a e L(H) a
(") will stand for the operator
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on H(") which is a direct sum of n copies of a, and if S is a subset of L(H) then

S-__ {a(") e L(H )[a e S}. We refer to a
(") and S(")

as ampliations of a and S

respectively. Given x, y e H the notation x (R) y will denote the rank one operator:

z <z,y>x Every operator in F(H) has this form and <a,x(R)y> <ax,y> for

all a e L(H) IS] will denote the weak" closure of the linear span of S

DEFINITION 2.1: Let S be a convex subset of L, x e L e T We say

separates x from S if the complex number <x,t> does not lie in the closure of

(<a,t>la S}. A subset A of T separates x from S if some e A does.

DEFINITION 2.2: Let S be a convex subset of L, _< k < oc.

(1) S is k-reflexive if F separates each x L\S from S.

(2) S is k-transitive if F does not separate any x E L from S

(3) S is k-elementary if F separates each x e S from each relatively weak" closed

convex subset C of S not containing x.

We will write reflexive for 1-reflexive.

When S isalinearsubspaceof L, S_l {t e Tit(a) <a,t> 0 all a S}.

In Definition 2.3 below, we establish an analogue of S_L for arbitrary convex sets.

NOTE: When S is a linear subspace of L(H) Definition 2.2 of this paper and [1,

Definition 2.1] are equivalent. More details can be found in [2]. In fact Definitions 2.1

and 2.2 are implicit in [2]. The main difference between the approach taken in the

present paper from that in [2] is the development of an analogue of S j_ for arbitrary

convex sets i L(H)

DEFINITION 2.3: (1) For a subset S of L,

S+ {(y,a) T x 1 y(x) > for a e s}

(2) Forasubset M
_
T I,

M+ {x LlRex(y) > a for all (y,a) e M}

NOTATION: S+ # F, {(y,a) S+ly F,}.

In the following proposition, we state some properties of S+ without proof.
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PROPOSITION 2.4" Let S be a subset of L and M a subset of T x R. Then,

1) S/ is a norm-closed convex set.

2) M is a weak" closed convex set.

3) (S+) -6 (S)

4) S (S+) if and only if S is weak" closed and convex.

5) (M+)+ e-6(M) and S+ ((S+)+)+

6) If S is a linear manifold in L, then S+ S.I x R-.

PROPOSITION 2.5: Let S be a convex subset of L(H) Then

(1) S is k-reflexive if and only if (S+ # EL) S.

(2) S is k-transitive if and only if S+ # F (0) x a-.

PROOF" (1) (=>) Always S c_ (S+ # F) Suppose Xo S. By hypothesis, there

exists Yo e F such that yo(xo) yo(S); (multiplying by some A C with IAI
if necessary), we may assume inf Re yo(x) > Re yo(xo) for all x e S, so there exists

xeS
aoe a such that

Reyo(x) > ao > Reyo(xo) for all x e S,

i.e., (Yo, ao) e S+ # F and Xo (S+ # F)+.

(=) Suppose Xo e L\S i.e., Xo (S+ # F) Therefore there exists (yo,ao)

S+ # F such that Re yo(x) > ao for all x e S and Re yo(Xo) < c,o hence

Re yo(xo) ; Re yo(S), so yo(xo) yo(S) i.e., S is k-reflexive.

(2) (=) Since y(L) c_ y(S) for every y e F then for any 0 4: y e F, y(L)

y(S) =c and thus Rey is bounded below on S iff y=0. We conclude S+ #F

{(y,) F R[Rey(x) >_ a for all x S} {0} x

() Suppose S is not k-transitive. Then y(x0) y(S) for some x0 L\S and some

y F,. Then y 0 and (multiplying by some , c with [A[ if necessary)

Rey(x) > a > y(x0) for some a e i.e., S+ # F

PROPOSITION 2.6: Let S be a convex subset of L(H) Then,

(S+ # F,) {a L a(z) S(z) for all z H} B.

PROOF: (_D) Suppose ao (S+ # F,) Then there exists (bo,ao)

(bo z, (R) z for some z,, z H), such that Re<a(z), zt>>ao for all a S but

ae<ao(Z=), z,><ao. Thus ao(Z=) S(z).
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(_) S(z) is a closed convex subset of H for each z H. Suppose ao B then

there exists Zo e H such that ao(zo) S(zo) Then, by [5, Theorem 3.2.9] and the

Riesz Representation Theorem, there exists yo e H such that,

inf Re<a(zo),Yo> > 8o > Re <ao(Zo),yo>
zS(zo)

for all a S and some 8o 1. Thus, Re(yo (R) Zo)(a) > 8o > Re(yo (R) Zo)(ao) for all

a S The first inequality implies (Yo (R) Zo, 8o) S/ # F and the second inequality

implies ao (S+ # F)+. []

THEOREM 2.7: Let S be a convex subset of L(H)

only if az Sz for all z H implies a6 S.

PROOF: Apply Proposition 2.5 (1) and 2.6. 13

Then S is reflexive if and

EXAMPLE 2.8: The reflexivity of [S] is neither necessary nor sufficient for the

reflexivity of S.

PROOF: To see that the condition is not necessary, let S {( lit) [0 S < 1}.
Then [S] {( a) a,/ e (:} Clearly, [S] is not reflexive. To see that S is

reflexive, suppose bz q S(z) for all z () H where b
\b., b2)" Then given

z,, z2 e C there exists e [0,1] satisfying: b,lz, + b,z z + (1 t)z and

(z’) (),wesee b, 0 and 0 < b,, <bxz + bz tz Ting z z:
Taking z= (),wesee b, + b =1. Ting z= (),wesee b, + b: 1.

Thus b =b and b 1-b and 0 5 b, 5 where i,j 1, 2. So b e S

which implies S is reflexive.

To see that the condition is not sufficient, take S such that S {( 0V) la +7
and a, , 7 e C} Then IS] {( 70)[ a, #, 3’ C} which is reflexive.

/However S is not reflexive--to see that, let b (1/3 13)" Then b S. But bz

(z,) 2/3, 7 1/3 and 8 arbitrary, saySz for all z z e H" If z 0 set a

{2/3 0 ) e S If zx : 0 set 1/3 78 0 then bz az e Sz where a
\ 0 1/3

z, o=2/3 and #0= 1/3- then bz=cz Sz where c=
k80 2/3

S. 13

PROPOSITION 2.9: Let S be a reflexive convex subset of L(H)

elementary if and only if every convex subset of S is reflexive.

Then S is
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PROOF: (:,) Let A be convex subset of S and ao S.

Case 1" If ao S\A, since S is elementary, there exists f= z, (R) z F1 such that

f(ao) f(a---- Multiplying by scalar C (if necessary) with ]1 we get Pe f(a)

> 3o > Re f(ao) for all a 6 A and some o R The first inequality implies

(f,3o) A+ # FI and the second inequality implies ao (A+ # F,)

)+ which implies ao (A # F,)Case 2: If a0 L(H)\S, then a0

(,:=) Suppose S is not elementary. Then there exists a convex subset A of S and

a0 S\A such that f(a0) f(A) for all f F, therefore a0 (A+ # F,) /, so

A c (A+ # F,)+, so by Proposition 2.5, A is not reflexive. []

PROPOSITION 2.10: Let S be a convex subset of L(H)

(1) S is reflexive if and only if for every a L\S there exists x H such that

() S(x).

(2) S is elementary if and only if for every relatively weak" closed convex subset A of

S and a S\A there exists x H such that a(x) A(x).

PROOF: (1) is a restatement of Theorem 2.7.

(2) () Apply [5, Theorem 3.2.9] and the Riesz Representation Theorem to find

F, such that f(a) f(A).

(=) Suppose the conclusion fails i.e., a(x) A(x) for all x H Then <a(x),y>

{<bx,y>lbA for all x, y H. Thus, (y (R) x)(a) (y(R)x)(A) for all x, y H,

i.e., f(a) f(A) for all f F. []

COROLLARY 2.11: [1, Corollary 2.4 All ampliations of L(H) are reflexive.

PROPOSITION 2.12: [1, Proposition 2.5].

(1) If t T(H), then there exists t T(H()) such that <a,t> <a(),t> for

all a L(H) and conversely.

(2) If t in (1) belongs to F(H), then t can be chosen to belong to Fa(H) and

conversely.

PROPOSITION 2.13: Let S be a convex subset of L(H) Then

{(S+ # F,)+} (*)

PROOF: Similar to the proof of [I, Proposition 2.?]. []

(S?)# F,)+=
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COROLLARY 2.14: Let S be a convex subset of L(H)

(1) S is k-reflexive if and only if S Ck) is reflexive.

(2) S is k-elementary if and only if S) is elementary.

PROOF" (1) Apply Proposition 2.13.

(2) () Suppose S is k-elementary, A is a relatively weak" closed convex subset of

S and ak) e S()\A() Then a0 S\A, so there exists s F(H) such that s(a0)

s(A) But then by Proposition 2.12 there exists F(H() such that

(k))s(a) <a,s> <a(),t> for all a L(H). Thus t(a0 t(A())
(=) Suppose S() is elementary, A is a relatively weak" closed convex subset of S

and a0 S\A Then a) S()\A() so there exists F(H()) such that

t(a0k)) t(A()) Proposition 2.12 implies that there exists F(H) such that

s(a) <a(),t> t(a()) for all a L(H). Thus s(a0) S(A). []

PROPOSITION 2.15: (Stability Properties). Suppose S is a convex subset of

(1) If S is elementary, so are all of its convex subsets, while if S is transitive, so are

all larger convex subsets of L(H)

(2) The following operations on S do not effect the enjoyment of the properties of

Definition 2.2: translation, multiplication on the left or right by an invertible operator,

replacement of S by S’.

(3) Ampliations of reflexive convex subsets are reflexive.

(4) Ampliations of elementary convex subsets are elementary.

PROOF: Similar to the proof of [1, Proposition 2.9]. []

PROPOSITION 2.16. Let S be a convex subset of L(H)

(1) S is transitive and reflexive if and only if S L(H).

(2) If k > dim(H), then S() is elementary and its weak" closure is reflexive.

PROOF: (t) () Suppose S is transitive and reflexive. Then S+ # Ft {0}

so

S (S+ # F) ({0} R-) L(H).

() Suppose S =L(H);then S+=(L(H))+= {0} -. Thus, S+ #F= {0} -,

i.e., S is transitive. It follows that

(S+ # F,) ((L(H))+ # F,) L(H)= S

which implies S is reflexive.
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(2) Since k >_ dim(H) then Fk x R T x R, so S is k-elementary which implies

that S(k) is elementary. Also S+ # F, (S+ # T)= S+ which implies (S+ # F,)

(S/) Thus the weak" closure of S is k-reflexive. El

SEPARATING VECTORS AND EXAMPLES:

DEFINITION 2.17: Zo e H is called a separating vector for S c_ L(H) if whenever

a,b e S satisfy a(zo) =b(zo) then a b.

THEOREM 2.18: Let H be a finite dimensional Hilbert space and S be a (weak’)

closed convex subset of L(H) If S has a separating vector then S is elementary and

2-reflexive.

PROOF: Let A be a (relatively) weak" closed convex subset of S and a0 S\A

Suppose Zo is the separating vector for S Then, by [5, Theorem 3.2.9] and the Riesz

Representation Theorem, there exists Yo E H such that Re<a(zo),yo> > o >

Re<a0(zo),y0> for all a E A and some /0 . Set f= yo (R) z0 then f F and

f(ao) f(S). Thus S is elementary.

To see that S is 2-reflexive, suppose b(2)(x (R) y) S()(x (R) y) for all x,y H.

Then for each y H there exists a S such that a(zo)= b(zo) and a(y)= b(y).

Since z0 is a separating vector for S, a is independent of y and b _= a S. []

EXAMPLE 2.19: The subset S {(a0 )[a + +7=1 and a, ,7 E C} of

Mx(C) is elementary but [S] is not.

PROOF: S has the separating vector (1), so it is elementary. To see that IS] is not

elementary; note that

and

Then
Isl _ {(g o) i, }.

( ) [S]+/- + F,, so [SIt +F, # M,x,(C).

EXAMPLE 2.20: The real subspace Mx2(R) of M2x(C) is elementary as a

convex subset of M2x(C) because it has the separating vector (i). However

(M2x2(R))+/- {0} ,so (M2x2())+/- + FI(C) # Mx2(C), so [1, Definition 2.1] cannot

be used as the definition of elementary real linear spaces.
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PROPOSITION 2.21" Let M c L(H) be a real linear subspace. Theu I is

elementary if and only if for every T there exists an FI such that

Ref(a) Ret(a) for all a M.

PROOF: () Suppose S is a relatively weak" closed convex subset of I and

b M\S. Then there exists T such that t(b) t(S). Multiply by some .\ c

(if necessary) where [A[ to get Re t(b) Re t(S) Then, by hypothesis, find

e F, whose real part agrees with Ret on S.

() Suppose M is elementary and 6 T. Define S {a 6 M[Ret(a)= 0}. If

S M take f 0 otherwise chse b e M such that t(b) Choose 6 F,

such that f(b) f(S) Multiplying by a complex scalar if necessary, f(S) g R

thenthen Re f(b) Re f(S) {0} So, ae(f]s Re(t]s Set, g Re f(b)
g e F and Reg(a)= Ret(a)for all ae M.

The following example shows the existence of weak" closed convex subsets of

M.x2(C) which are elementary whose real linear spans are not elementary.

EXAMPLE 2.22: Let S {(a0 )la + 3+’t=l and a, 3,-re (:}. Then S is

elementary because it has the separating vector (). Set B real span of

S {(0a 7)la + 3+’re I and a, 3,-re (:}. Let t= (10 )e T we show that

there is no fe F, such that

Re(t(a)) Re(f(a)) for all a B. (’)

Suppose f [f,, f,,) (0 a,:
kfl f. e F, For a

al a.} B we have

t(a) tr((10, )(0as, a]ja’] a, + a, and f(a) f,.a, + f,.a, + f.a.
If (,)holds, then Re(f, a, +f, a, +f a-a,-a,)=0 for all ae B. Set

a, d a, a 0 to conclude Re(f,)= 1. Similly ae(f,)= and

Re(f) 0. Set a, i, a, =-i and a to see Im(f, + f,)= 0. Set

a, 1 +i, a, 1-i and a =-1 tosee Re(f,-if, +f, +if,-f-2) 0

this implies ae(-if, + if,)= 0, so Im(f,)= Im(f) Thus Im(f,)= Im(f,)= 0.

Set a, 0, a, =-i and a + tosee Re(-if, + f + if + i) 0. Since

Re(i) Re(fro) 0 then Im(f) Im(f,) 0 Weconclude f, f, and

f 0 i.e., f F,. O

Example 2.23 presents a real subspace of L(H) which is not elementary and

Example 2.24 shows that half of this subspace can be elementary. Also Example 2.24
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shows that a convex subset of L(H) can be elementary without the existence of a

single f 6 F, that globally separates the subset from its complement; rather 6 F

depends on the point to be separated from the subset.

EXAMPLE 2.23: The real subspace B defined by B--{(0
7 6 C} is not elementary because there is no f 6 F such that,

Re(t(a)) Re(f(a)) for all a 6 B

{f, fwhere (10 ). To see that, fix f so that f_--
\fl f)

this f and all a (0a 73) 6 B,then

(*)

6 F1 If(*) holds for

3 + a Re(f(a))= 3. Re(f=1) + Re(f1=) + Re(v). Re(f==) Im(7). Im(f...)

for all a, 3 6 R and all 7 6 C. Thus Im(f==) Re(f==) 0, i.e., f22 0. Set

3=Re(7) =Im(7)=0, to see that a-Re(f,)=c, for all a 6 R,so Re(f,=)= 1.

Set a Re(7) Im(7) 0 to see that 3 Re(f=) 3 for all 3 6 R so

Re(f2l) 1. In particular, f2.f= 4:0 but f .f22=0 i.e., f F,. 0

EXAMPLE 2.24: Let S ((a0 73) 1Im(7) _> 0 and a, 3 6 R}. We show that S

is elementary. Suppose A is a (relatively) closed subset of S and b 6 S\A We

must separate b from A by a rank one linear functional.

By [5, Theorem 3.2.9], there is a linear functional on M2x2 whose real part

separates A from b i.e., for some fixed h > 0 we have Re (b)> h while A is

contained in the set {a 6 S Re (a) < h} There is no loss of generality in assuming

the latter set is A;we also assume takes the form ((0a 73)) cla + c3 + c37

for real c, c If cl c 0 or c3 4: 0,thereisa which makes f-- c3

belong to F Since [S f[s no further argument is necessary in this case.

Thus, we are reduced to the case when A {(0a 7) [ca + c3 _< h} with

c,.c2 :0. Left multiplication by the invertible matrix () cOs) sends S to itself

and preserves separation properties, so we may as well assume cl c2 Write

b (a00 0) Translating S into itself by the matrix (_a00 a0-h allows us to
-Re 70]

assume further that h s0 Re 70 0 multiplication by the scalar 1/30 leads to

our final reduction:

A {(a0 7),a + 3 < 0},while b=(00 li) with >0.
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We will complete the proof by showing that the vector x _= (6-1) separates b

from A. Suppose a (0a 7) belonged to S and ax bx. Then / and

a(+l) + 7 + =0. But a + < 0 and Im(7) > 0 implyRe[a(+l) + 7.i + ]

< -1 so this is impossible. B

NOTE: The choice of the vector x depends on b and consequently the choice of

f e F, such that f(b) f(A) depends on b.

3. COMMUTATIVE ANALOGUE OF THE CLASSICAL CASE:

The main results of this section are the characterizations of all k-elementary

subspaces of tP(Theorem 3.2) and all 2-reflexive subspaces of C" (Theorem 3.9).

Throughout this section T eq and L " for the dual of eq where

< p _< oo (also T L R" or C") F {x e x has at most k nonzero

entries}, and {e,} will denote the standard "basis" for ", , C" or I" Also,

throughout this section S will denote a linear subspace of (or C" or R") in the

setting, Definition 2.2 of the present paper coincide with [1, Definition 2.1].

Let S and S be subspaces of P or R" or C We say S and S are

equivalent if there exist a permutation matrix and a diagonal matrix , such that

S r/S This is clearly an equivalence relation. When the underlying space L is

finite-dimensional, there is an alternative way to describe equivalence which will prove

useful in the sequel. Suppose x (xl,x2,...) e R" or C Exchanging the positions of

two entries of x or multiplying one of its entries by a non-zero constant does not

change the rank of x These two types of operations on x will be called basic

operations. Suppose A {al,a2,...} is a basis for S.I" where S is a subspace of L

(L as above) and suppose the same basic operations are done to all of the a then it is

obvious that the resulting set B {b,b,...} is a set of independent vectors; we will

call B an equivalent basis to A. The space S ([B]) 1" will be called an equivalent

space to S If A is a canonical basis (Definition 3.6 below) for S then an equivalent

basis B will be called an equivalent canonical basis.

The proof of the following proposition is left to the reader.

PROPOSITION 3.1: Suppose S and S are two equivalent subspaces of ev (or a

or Ca). Then

(1) S is k-elementary if and only if S is k-elementary.

(2) S is k-reflexive if and only if S is k-reflexive.

(3) S is k-transitive if and only if S is k-transitive.
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In the sequel, we will often find it notationally convenient to replace subspaces of

L by equivalent subspaces.

THEOREM 3.2: Let S be a subspace of *P (or R" or C") Then S is

k-elementary if and only if dim(S) < k

PROOF: () Write {e,}=l for the standard "basis" of *’. Since dim(S)=

dim(,’/S.l_) at most k of the cosets {e, + S t [j E N} can be independent, so there

is a subset A0 of {e,} having cardinality at most k with [A0] + S+/- *’
() S is k-elementary implies S +/- + Fk *’ Define

{ A c {e, }o=, [A consistSisoffcardinalitydistinctvectorsk, and}

For each A E [A] C e, is a subspace of *P of dimension k The

collection is countable and O (S+/- + [A]) *’. Since S+/- is closed and each [A]
Am

is finite dimensional, then S+/- + [A] is closed for each A e Therefore, there exists

an A0 e such that S+/- + [A0] is of second category. This implies S+/- + [A0]

contains interior in ’ [1, Theorem 10.3], whence S+/- + [A0] ,’,so

dim(S) dim(*’/S+/-) < dim([Ao]) k. Q

REMARK 3.3: The proof of the above theorem shows that a subspace S of *n is k-

elementary if and only if there exists a subset A0 c {%}=t of distinct vectors and of

cardinality k such that S+/- + [A0] *q.

PROPOSITION 3.4: Let S be a subspace of * (or R or Ca) If S is

m-elementary, then S is (m+l)-reflexive.

PROOF: Without loss of generality, assume el + S+/-, em + St is a basis for

*f/S_l Since S is m-elementary, by [2, Proposition 7.5], S is 3m-reflexive i.e. S+/- f

F3,, is dense in S+/- let y E S.l" f F3,, Write y as sum of rank one (or less)
3m

vectors: y y We can write each y1 z + w where z e let ,e,,] and
j=l

each w e S t. Since y e F we in fact have

w e S+/- F,+t so y= (-z) + (yw,) E IS+/- F.+,]. El

PROPOSITION 3.5: Let S be a subspace of ,v (or Ra or

reflexive if and only if for every e N either e, S or e, e S+/-.

ca). Then S is
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PROOF: (=) S reflexive implies S_I_ n F, spans S +/- Therefore, if e, S +/- then

e, [S+/- n F,] hence [S+/- t3 F,] consists of vectors with zero ’h coordinate i.e. every

vector in S+/- has zero in its ’h coordinate, so e e S

(=) The hypothesis implies, for each either the ’ coordinate of each vector in S t

is zero or e, e S+/-. Hence S.l" n F, is spans in S+/-. [:1

DEFINITION 3.6: Let S be a subspaceof R" (or C"). Suppose

dim(S+/-) dim(,"/S) k.

A canonical basis for I"/S is a basis of the form {e,+ S, e,+ S} The dual

basis {6,, 6} for S+/- _= ("/S), is called a canonical basis for S+/-.
NOTE: The i,th coordinate of 6, is one, while its ist, ind, i3rd, i,_st

i+st ith coordinates are all zeros.

PROPOSITION 3.7: Let S be a subspace of I" (or C"). Suppose {6,, ,6} is a

canonical basis for S+/- Then S is transitive if and only if each 6, has rank >

PROOF: (=) Clear.

() The hypothesis implies rank(6) > 2 for all k By definition of

canonical basis, any non-trivial linear combination of 6,’s generates a vector of rank 2

or more. Hence S is transitive, rl

PROPOSITION 3.8: Let S be a subspace of R" (or C"). Suppose {6, 6} is

a canonical basis for S t Then S is reflexive if and only if each 6, has rank one.

PROOF: (=) Clear.

(=>) Suppose for some i0, 6 has rank >_ 2 By the definition of the canonical basis,

each non-trivial linear combination of 6 with any one (or more) of the other

generates a vector of rank >_ 2. Therefore,

6, g [S+/- F,],

i.e., S is not reflexive.

THEOREM 3.9: Let S be a subspace of " (or C"). Suppose {6, 6} is a

canonical basis for S+/- Then S is 2-reflexive if and only if each 6, has rank < 2
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PROOF: () Clear.

() Suppose some 8, say 1 has rank _> 3 Apply Proposition 3.1, we may assume

(1,0,. ,0,1,1., ,.) the one’s are in the positions 1, k + and k + 2 and

asterisks denote arbitrary numbers. We classify ,’s according to their entries in the

positions k + and k + :2 as follows"

A {6, 6, has (at most) one non-zero in k+l position or k+2 position or the

entries in these positions are equal}

A {8, 18, $ A,}

Note that if x, is anon-zerovectorin [A,] for 1, 2, then x + x has rank at

least three.

It follows that Sj. n F2
_
J ([A,] 3 F2). Hence,

j----I

dim([S.l F]) < dim([[A,] F]) + dim([[As] Fs]) < dim(S_t).

If dim([A,]) m, and dim([A])

dim([[A,] 3 F]) <_ mr- 1. Therefore,

then m + ms <_ k also note that

dim([S.l Fs]) _< m, + ms- _< k- < k dim(S_l_),

i.e., S is not 2-reflexive. 13

REMARK: 3.7-3.9 do not generalize to easily stated characterizations of k-transitive

subspaces of C" for k > 2 or k-reflexive subspaces of C" for k > 3.

(Research partially supported by Southern Arkansas University Research Fund.)
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