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ABSTRACT. Outer measures are used to obtain measures that are maximal with respect to
a normal lattice. Alternate proofs are then given extending the measure theoretic
characterizations of a normal lattice to an arbitrary, non-negative finitely additive
measure on the algebra generated by the lattice. Finally these general results are
used to consider o-smooth measures with respect to the lattice when further conditions
on the lattice hold.

KEY WORDS AND PHRASES. Lattice regular measures, normal lattices, o-smooth measures.
1980 AMS SUBJECT CLASSIFICATION CODE. Primary 28Cl5, Secondary 28A12.

1. INTRODUCTION AND BACKGROUND.

A measure theoretic (equivalently filter) characterization of normal lattices is
well known (see e.g. Frolik [1]) and we will give here an alternate proof of this. M.
Szeto has considered (see [2]) the relationship between measures that are maximal with
respect to a lattice and lattice regular measures in the case of normal and arbitrary
lattices of subsets. We consider here the case of a normal lattice, and first give an
alternate presentation to the one given by M. Szeto. We then apply these results to
extend the characteristic result of normal lattices from zero-one valued measures to
arbitrary non-negative, non-trivial finitely additive measures on the algebra
generated by the lattice (see Theorem 2.2). Finally in the third and last section we
extend the results of Szeto [2] by considering a measure which 1is o-smooth with
respect to a lattice, and give results about the associated maximal measure when the
lattice is normal (see e.g. Theorem 3.4), and also countably paracompact (see e.g.
Theorem 3.2).

We adhere to standard lattice and measure theoretic terminology consistent with
Frolik [1], Szeto [3] and Wallman [4], and we give the main definitions and notatiomns
that will be used throughout this paper before considering normal lattices.

Let X be an abstract set, and L denote the lattice of subsets of X. We assume

that ¢, X & L for most of our results. First:
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Lattice Terminology:
A(L) is the algebra generated by L.

g (L) is the .salgebra generated by L.

S(L) is the lattice of all countable intersections of sets from L . We have a
delta lattice (§-lattice) if &(L) = L.

1 (L) is the lattice of arbitrary intersections of sets of L.

L is complemented if L ¢ L => L' ¢ L (L is an algebra).

L is normal if for all L, L, eL such that LlﬂL2 = ¢ there exists ﬁ‘,fz el
such that L & f,; , chf.;' and ﬁ‘nﬁé = ¢

L ccallocates iteself 1if LCL{U LZ' where L, Ll’ L2 ¢ L then L = La"”% where
L')CLI' and LEL! and L_,L

i) 374 e L. Note L coallocates itselt 1t and only if L is

normal.
L is compact if every covering of X by elements of L' has a finite subcovering.

L is countably compact 1f every countable covering of X by elements of L' has a

finite subcovering.

L is countably paracompact 1if, whenever An+¢, An ¢ L there exists Bn ¢ L such
that ACB ' and B'+¢.
n- n n

Measure Terminology

We denote by M(L) the finitely additive bounded measures on A(L) (we may and do
assume all elements of M(L) are >0).
p € M(L) is L-regular if for any A ¢ A(L), u(A) = sup {u(L)ILCA,Ld—};
(equivalently) = inf {u(L')|AGL', Leh}.
p € M(L) is ¢ -smooth on L if Ln eL, n=1, 2,... and an => u(Ln) + 0.
p € M(L) is o -smooth on A(L) if Ane A(L), n =1, 2,... and Anw = u(An) + 0.
Note u is o-smooth on A(L) iff u 1is countably additive.
We will use the following notations:
HR(I.) = the set of L-regular measures of M(L).

Ho(l.) = the set of o¢-smooth measures on L of M(L).

Ma(l.) = the set of g-smooth measures on A(L) of M(L).

Hg(l.) = the set of L-regular measures of MG(I.). Note that 1if eMR(l.) and

[

N eHO(L) then p eMR(I.).

Also we denote by I(L), I (L), I (L), 1%L) and 1{(1.) the subsets of M(L),
MR(L), Mo(L)’ MU(L) and Mlg(l.) consisting of the zero—one valued measures.

Now we consider s My € M(L): My < uz(l.) means ul(L) < uz(L) for L ¢ L. Note
wo< uz(l.) and ul(x) = uz(x) => uy < ul(l.'). We have the following results:

1). If L 18 a normal lattice and if y ¢ I(L) and if VoV, € IR(L) and p < \al(l.),
u < uz(l.). Then v = V.

2). Let ups iy EMR(I.), y < uz(l.) and ul(X) = uz(X), then M=y

We shall prove 1): Let X be an arbitrary set and L a lattice of subsets with
¢ X e¢L, and also let p ¢ I(L). For ECX, we define p'(E) = inf {u(L')lECL', Lel}.
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It is easy to sce that y t» a finitely subadditive outer measure, and p < p'(L).
Moreover p = p' on L if and only 1f p ¢ IR(I.). Next let p ¢ I(L) and define
F={L ¢ Llu'(L)=l}. It is easy to see that F is an L-filter.

We also have:

If L is normal, then F is an L-ultra filter.

PROOF. Suppose FCH = L-filter, then there exists L ¢ H and L ¢ F. Therefore

u'(L) = 0 which means LCf'. u(f’) = 0., This implies u(f) = 1, therefore L eFcH

using p < p'(L). Therefore £NL € H and since LEL' we get LAL = ¢ e H. This
contradicts the fact that H is an i.—filter. Therefore F is an L-ultra filter.

As 1s well known, with F is associated a v ¢ IR(L), and p < WL). Uniqueness
follows immediately, for if p < p(L) where p € IR(L), then p < p = p'(L').
Suppose p(A) = 1 and w(A) = yp'(A) = O where A el. Then ACL' ¢ L', and w(L') = 0, so
p(L') = 0 and therefore p(A) = 0 which is a contradiction. Thus we must have
p < L) so p = v, since p,v ¢ IR(L).

The more general case of p ¢ M(L) will be considered in the next section.

2. ASSOCIATED OUTER MEASURES.

Let y e M(L) and yu'(E) = inf{p(L'): ECL',L ¢ L} where E is an arbitrary subset
of X. Then 1t 1is easy to see that pu'(¢) = 0, u' is monotone, and €finitely
subadditive. We shall 1investigate p', and other such "outer measures” assoclated

with p in this section.

First, we note that if e M(L) and if m o< uz(l.), and ul(X) = uZ(X), then

1'%2
uz' < ui .
Let l.u = {L e L:y(L) = y'(L)} then we have
THEOREM 2.1. a) LIJ is a lattice

b) L =S'AL
M H

where SL is the collection of u'-measurable sets.

PROOF. Clearly we need just prove b). Since LuC SL we have Lun LCSLﬂL mmzaa)
LuCSLnL. Now 1let E ¢ S"j/ll. which implies p'(L') > u'(L'AE)+u'(L'NE'). From
which it follows that p'(X) > p'(E) + p'(E'). But u(X) = p'(X), and y = p'(L') so we
have p'(X) » p'(E) + p'(E') and p(X) > w(E) + u(E') implying u(E) = u'(E), E ¢L,
which implies E ¢ Lu.

We note that if eMR(L) then p = p' on A(L), and I.u = L.

Now let p e M(L), and define A(E) = sup {y(L):LCE, L ¢ L}. Then:

a) A=ponLand A < pon L'. Define ﬁ(E) = inf {AM(L'):ECL', L € L} then

b) ﬁ=).<u-u'onL'.

c) u=A<p <y onlL.

PROOF. (a) A = p on L follows immediately from the definition of A. Now let E =
L' then XL') = sup{u(L):LcL', TeL} and u(.f-) < w(L'), so u(L') 18 an upper bound
implies sup {W(L); LcL',L ¢ L} < w(L") implying A(L') < p(L') giving A < pon L',

(b) ﬁ‘* Aon L' follows immediately from the definition of ﬁand combining part
(a) and u = y' on L' we get ﬁﬂ A<u=yu" on L',
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(c¢) Let E = L then p(L) = inf {(M(L'):L€L', LebL} and ML) < ML'). But A < pon
L' so ML) < ML') < p(L'). So A(L) is a lower bound implying
ML) < inf{ML'):LCL', LeL} < inf {u(L'):LE€L', LeL} which implies
ML) < WL) < p'(L). Now p(L) = A(L),L ¢ L so y= A < < y' on L.

If L is normal lattice we can prove more, namely

(d) if L is normal then A is finitely subadditive on L', and ﬁis finitely
subadditive.

PROOF. Let A,B ¢ L and LEA'UB', L ¢ L. Then L = LlULZ’ Ll’ L2 € L and
L CA', L,€B' since L coallocates itself if L is normal. Then u(L) = u(LlU L)) <

"(L1)+"(L2) = X(Ll)*A(LZ) since p = A on L. Now since LlCA'. ch B', and A is

monotone we get u(L) < x(Ll)+X(L2) < MA")+A(B'). Now A(A'WB')
= sup {u(L):LEA'UB',LeL}, so AMAWB') < MA')+A(B'). Proceeding by induction we

get ) is finitely subadditive on L'. Now take EIC l.i, i=1,2,...,N and L1 e L. We
A € A N
can say A(Li ) < "(Ei) + N by definition of u. So u(U Ei) < MY L') where
i=1 i=1
N N N N N
V) E1C V] Li’ n Li e L. Now u( U E ) < My L') < I X(Li) using X is finitely
i=1 i=1 i=1 i=1 i=1 i=1
N N N N
subadditive on L'. So u( U E ) ¢ ¢ u(E + 3 fq' implying u( v E ) < & u(E ) + e
1-1 i=1 i=1 tl 1=]

Let ¢ + 0 and we get ﬁ is finitely subadditive.

(e) If L is normal, then A(L)C.Su, the frmeasurable sets, and ?: restricted to
A(L) 1s in Mp(L), and p < W(L), u(X) = ¥X).

PROOF. Let B' ¢ L'. It is not difficult to see that in order for B ¢ S,. we must
show u(A') < u(A'nB')+u(A'IIB) for all A' ¢ L'. Now let D ¢ L such that D¢ A'/\B' and
let F ¢ L such that FCA'AD'. It follows that A'AB' ¢ L', A'AD' ¢ L', DNF = ¢,
DUYFCA', and DUF ¢ L. Therefore p(A') = A(A') > W(DUF) = u(D) + u(F) using § = A
on L' and the definition of A. Therefore ﬁ(A’) > u(D)+sup {u(F):Fc A'QA D',F ¢ L} which
tmplies B(A') > w(D)+A(A'AD'). It follows that 2a") > wo)+fica’nD') as AMD' ¢ L'.
Also DCA'AB' ==> D'DAUYB ==> D'DB g0 A'IBCA'MN D', So by monotonicity of.'{;we
get W(A') > (D) + R(A'/A B) which implies p(A') > sup {u(D):DCA'AB',D e LH}(A'NB).
So WA') > MA'B')+MA'AB) = MANB')+H(A'AB). Therefore A(A') > &(A'nB')

+ ﬁ(A'nB) which implies L'C Sa. Therefore A(L')C Sﬁ, but A(L') = A(L), so A(l.)cs.a.
Now for E € A(L) we have, by definition, ﬂ(E)-inf {ML'):E€L',L ¢ L} which implies
T‘(E) = inf {ﬁ(L'):ECL',L e L}. This means we can cover E ¢ A(L) by L' on the
outside. In addition, since A(L)C S, then ﬁ is finitely additive. All this
implies ﬁ eMR(l.). Now u < ﬁ(l.) from par: (e). Using yu < ﬁ(t.), ﬁ <uwlL'), X eL,

and X ¢ L' we can say pu(X) < G(X) and ﬁ(x) < u(X) giving us p(x) = ‘.‘,(x).

As an immediate application we have:

THEOREM 2,2, 1If L is a normal lattice and if p € M(L) and if v 2
<y, < Ww(L) with u(X) = v (X = v, (X), then v = v,.

PROOF. From u < v(L), u < ‘b(l') we get u < vl. and 1 < Ch’ Now p = }

~

if eMR(I.) so u <y o= v EMR(L) and u < \h vy eMR(L). Therefore

f< v oeMp (L); and A <y eM (L). Now T(X) = u(X) therefore 1(X) = v (X) = v, (X).
Recall ﬁ eMR(I.), therefore u =y, u =V implying VP =Y.

€ MR(I.) , and
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This extends the result of section 1| to WR(L) from IR(L).

3. SMOOTHNESS CONSIDERATIONS.

If one assumes certain added smoothness conditions on y as well as further

demands on the lattice, then it is possible to improve some of the results of section
2.

First let p € M(L) and define

-] -]
WE) =inf{ £ w(L)):E€C Y L', L, eL) .
i=1 1 i=1 1 L

Then ﬁis an outer measure in the usual sense. Also we have: eMo(L) ==> py < E(L).

PROOF. 1). First we consider the following: Can we have X =% L!, L, ¢ L and

i
a0
b u(Li) < u(X)? We claim no, this cannot occur and that n(X) = u(X). The proof of
i=1
-
this follows: ¢
i=

n n
WL = lm £ u(L)) > 1lim w( Y L) = u(X) using
1 n+o =1 n+o 1=1

n n n n
[] ] 1 ' (-
u(i(ilLi) < I "(Li)’ 1(-/1L1 eL' and lim Y L X, since p sMG(L). So

=1 nsw i=l T

I "(Li'.) > u(X). Now XCL' and 3 < y' = pon L' so ux) < u(x).
i=1

So W(X) < WX) < I u(Lj). This implies W(X) < W(X) <inf{ I w(L{):X€VU L, L €L}
i=1 1=1 i=1

implying w(X) = n(X).

2). Now back to the proof. Suppose p(L) > ;(L), L ¢ L. This implies

Z u(L]) < w(L) by definition of J. Now X = LU L' s0 n(X) < n(L) + n(L') by
i=1

countable subadditivity of outer measure 'ﬁ. So ;(X) < ﬂ(L)-H‘I(L') < ﬁ(L)"'u( L)
since § < pon L'. Now n(X) < p(L)+u(L') < u(L)+u(L') since n(L) < u(L), but
p(L)+u(L') = u(X), so ﬁ(X) < u(X). This is a contradiction therefore p < B on L.

Now if L is a normal lattice and countably paracompact, we have some further
results:

THEOREM 3,1. If L is normal and countably paracompact, u(X) = WX) and y < von
L. Then y eMo(l.) implies v eMo(I.).

PROOF . Let An+ $» An € L then there exists Bn e L such that AnC B!'l , and B;.+ ¢
since L is countably paracompact. Now it follows that A‘{\Bn = ¢, 8o using L is normal
there exists Cn,Dn € L such that Anc Cl_'l, Bls Dt'l and C"lf D;l = ¢. Then C"l < Dn and one
iees A“fct'1 < Dn < B;:’ Now u(Ani < v(An) and v(An) < v(An) for An ¢ L. In addition
wA) < v(C;.) by monotonicity of V and it 18 easy to show that p < von L implies
v<ypuon L', So u(An) < v(An) < ?;(An) < '&(Ct'l) < "(Cr'l) < u(C‘;). Using monotonicity of
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wve get: w(A) < wA) < YA ) < ACH < ACH) < u(C!) < WD ). But
B +¢ =>D +pand u eMa(L) ==> u(Dn) + 0. So u(An), u(Dn) +0 as A +¢. Therefore
lim v(An) +0 as A +¢ by the last inequality. Therefore v ¢ M (I‘-)

THEOREM 3.2. If L is normal and countably paracompact, then ueM (L) implies
ﬁ eHg(l.) (where u is as defined in Section 2).

PROOF. Since u(X) = u(X) and u < B on L from Section 2 this implies 2 sMo(L) by
Theorem 3.1. Now since ﬁ eMR(L), therefore ﬁ eMlg(L).

THEOREM 3.3, 1If L is normal, countably paracompact and p eMo(L)' then ﬁ < ;on
L.

PROOF. From Theorem 3.2 we get y eMg(L). Since this is true, we assume ﬁhas

] [}
been extended to o(L) and call it u still. Now u(L) = inf{ I u(L') Le Yy L!, Lie L}
i=] i=1

@
for L ¢ L. Now G(L) < ﬁ( [V} Li) by monotonicity of G and this expression is valid
i=

@
since 191Li e L). Also 7 U L ) < 2'. u(L') since u eM (I.) and u < pon L' from
1-1 =1

Section 2. So (L) < fi( U Li) < }: u(Li). Therefore
' i=1

ML) < 1nf{ L wLy):Le u L;,L, €L} which implies ML) < ML), L e L.
| =1

i

Therefore ﬁ < ﬁ on L,

Finally we note:

THEOREM 3.4. If L is a normal lattice, and if p eMc(l.) then arestricted to A(L)
M ' .
is in O(L n HR(Li .
PROOF. Using u = X\ on L' and the definition of A we have u(B';) = ).(B"l) =
sup {y(A ):ACB', A ¢ L}. Therefore there exists A such that A € B' and
n"""a n® n n n n
'B(Bl;) <ud) + e Let B'+ ¢we may assume A + ¢ Now u eM (L) since L 1is
normal, y e¢M (L) and let ¢ + 0 we get ﬁ(B') + 0. Therefore y e M (L' )I\H (L).
REMARK. If M (L')c M (I.), then we can improve Theorem 3.4, and state that
u restricted to A(I.) is in MO(L) This condition 1s clearly satisfied if L 1is
countably paracompact.
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