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(I) Introduction

In the fibt part of this paper we consider various separation properties pertaining

either to a single lattice of subsets of an arbitrary set X or to a pair of such lattices 1 and

These separation properties will have strong implications pertaining to the associated

lattice regular measures, and in the particular case of 0-1 valued lattice regular measures,

these separation properties will have associated filter and topological implications.

In the second part of the paper we consider the converse situation and obtain re-

sxlts which imply various lattice separations under assumptions on the behaviour of the

associated lattice regular measures.

The results of both parts can be utilized to obtain many specific topological separations

by appropriately choosing the lattices in given topological spaces.

The approach will be measure-theoretic throughout since we will be concerned vith

extensions and restrictions of measures and in the case of 0-1 valued measures for which

one could use analogous filter arguments, the measure arguments are simpler and more

natural in this setting, and more importantly, hold with minor modifications for non 0-1

valued measures for which there is no filter analogue.

In the next section we will reviev briefly the notations and definitions used throughout

this paper. The terminology is consistent with that of [1 I. [51. [7], [S] and others. We

then consider lattice separations and stone of its measure ,nd topological consequences

in sections 3 and 4, and finally in section 5, we consider meamre relations which imply

separation conditions between lattices and other lattice conditins.
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(II) Background and notation

\Ve collect here the notations and definitions that will be used throughout and supply

a bit of background material, so that the paper will be reasonably self-contained.

Let : be a lattice of subsets of an abstract set X. V’e assume throughot that o.

X . We denote by:

(1) .,4() the algebra generated by E.

(2) a(-) the a-algebra generated by E.

(3) 6(.) the lattice of all countable intersections of sets from ..
(4) r(E) the lattice of all arbitrary intersections of sets from ..
(5) s(E) the lattice derived Souslin sets.

We denote by M(E) those finite valued, non-negative, finitely additive tneasures on

which are non-trivial. M.(E) denotes those u fi M(:) which are a-smooth on 12.

i.e., L,, E, /’-, ,L , then #(/’-, 0.

If p M{). then tt is C-regular if for any .4 .A(t:), (A) sup{p(L)lL C A,L

:}. We denote by Mn(E), the set of all C-regular measures of 3[(E). By 3’/(t:) we mean

those/ Mrs(E) which are a-smooth on E. Clearly, if p M(E), then p is a-smooth on

.,4(). and is, consequently, countably additive.

M(-) denotes those/ M(E), which are countably additive on A().

We denote by I(E), L,(E), In(E), I(E) the two-valued 0-1 measures of 31(-). 3I(:).

Mn(.) and M"(E) respectively. It is not difficult to show that there is a one-to-one

correspondence between:

I(E) and all prime C-filters

In(C) and all E-ultrafilters

Ia(E) and all prime C-filters with the countable intersection property

I() and all E-ultrafilters with the countable intersection property.

We next note some standard lattice terminology; E is called:

a) complemented if L E implies E (where prime denotes complement),

that is, E is an algebra.

b) separatmgifforanytwoelementsx,x. X,x # x2 thereexists anolement

L such that x L and x ’ L.

c) T2 if, for any two elements x x of X, there exists /’,, L 5 such that
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d) d,sjuncttve if for x E X and L E and such that x q L. there exists an

A witha’.4, andANL =0.

e) normal if for LI. L2 and LI 1"3/]2 o. there exists A, B with

L! C A’. L C B’. and .4’ N/’ O.

f) delta lattzce (6-lattice) if 6() .
g) compact lattice if for any collection {L, of sets of . NL, o implies there

exists a finite subcollection with an empty intersection.

Similarly we define countably compact (also called semi-compact or quasiconpact by

some writers) and f,- regular. We note that there are equivalent measure characterization for

all these properties. In order to state these, we first define the supportof # 31(/2), denoted

by S() N{L ]/a(L) #(X)}. Hence, if p I(/2), then S(#) N{L ]I/.,(L) 1}.

If ,u, p2 M(). we write u < #(/2) when #(L) _< t,(L) for all L E .
It is then easv to show

/2 is complemented if and only if I() In(). (See section 5.)

/2 is separating if and only if for x, II X, x y, y S(#) and x Sit

where It is the measure concentrated at x. i.e. p(.4) if and only if

x A, where A A().

(3) /2 is T2 if and only if for any p fi I(/2). S(/) e or a singleton.

(4) /2 is disjunctive if and only if/ E IR(/2) for all a: fi X.

(5) is regular if and only if # <_ p(), , p2 I(f..) implies S(It) S(,_,).

(6) /2 is normal if and only if for any p fi I() if I < tq() and < u() (we

recall that # < ul(/2) if #(L) <_ ul(L) for all L /2) and u. u IR()

(7)

implies u u.

/2 is compact if and only if S(p) for any p E In(/2): equivalently for any

#E I(E).

(8) /2 is countably compact if and only if IR() I(/2); equivalently I()

It is possible to go on in this manner, but the above should indicate the useful interplay

between measure and topological concepts.

The proofs of all the above are quite short; typically we prove:

(4): If is disjunctive, let L’ E ’, the complement lattice, and if p,(L’) 1, then,
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by disjunctiveness, there exists an .4 E E,, with x E A. ,o tt(A) 1, and A C L’. It

follows immediately that #z q In{ E,). The converse is clear.

We assume throughout that is disjunctive. Let .4 ff .A(), and define ti’(.4) {p

In(E,)I#(A) 1}. Then it is clear that

(1)

(2)

tt’(A U B) W(A)u W(B)

t’(A B) t’(A c tF( B

(3)

()

t’(A’) t’(.4)’

I4"(A) C W(B) if and only if A C B.

Take ln() with W(E,) {W(L)]L E E,} as a base for the closed sets of a topology.

This is the XVallman space with the Wallnmn topology. It is easily seen to be Tl, and is

compact. The compactness follows immediately if ve just show W(:) is a compact lattice.

Let v E IR(W(E,)), then u(IV(A)) #(It’(A)), where in general fi(W(A)) is defined for

/ E IR(E,) as follows:

i,(tv(a)) ,(a).

This gives a bijective correspondence between IR(E,) and In(IV(E,)). Finally,

s(.) s(R) n{v(r)l(’(r)) 1},

bnt #(W(L)) 1 is equivalent to / E W(L). Hence, u E S(v) and this completes the

proof.

We note that if. in addition, E, is separating, then the map x p, is an embedding

of X into In(E.) such that ." IV(X) In(E,). If X is given the r() topology it is easily

seen to be a homeomorphic embedding.

Specific topological lattices give rise to various well-known compactifications of X:

(I) If X is a Ta1/2 space and Z, the lattice of zero sets, then Int Z) X,

the Stone-Cech compactification.

(2) If X is a Tl topological space and -, the lattice of closed sets. then

IR(.T’) wX, the Wallman compactification.

(3) If X is a zero-dimensional T2 space and C ,the lattice of clopen sets,

then I(C) 3oX, the Banachewski compactification.

Other topological cases will be cited later in the examples. If E,’; i.e., if is an

algebra, then In(E,) I(), IV(L)’ IV(L’) IV() for L E , and we obtain the Stone

space associated with the algebra/2.
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Fin;,ll we list fi,r referen,’e the, fi)lh,wing two theorems:

TllEORE.Xl 2.1. If ;, _, ;,re latticc ,f subsets of X such that C 2. thon any p

311:(;1) cat bt’ extended to a u 3In(122 ). If 121 semise1arate" z, then the extension

will a/ways be tmblUC if and only if .,,parat,s 2 (i.e.. A. B ,_, A fq B c) implies

there exist C, D sch that .4 C C, B C D. and CnD O). lf t M( and if

is a 6-lattice, and 2 is cr( bounded or just Su, bomded, then v G M(e). (110 say in

general for any two lattices 1 and ; that is 1 bounded if B,, 6 for all . B, 0

implies there exist A, ;1 such that B, C A,, J. c)). Also, St,. denotes the l*-measurable

[2]).

TIlEOREM 2.2. Let be a &lattice of subsets of X such that a() C s(). then every

This theorem follows inimediately from the Choquet capacity theoreln.

(III) On normal lattices

Let X be an abstract set and a lattice of subsets of X such that ff and X belong

to . It was noted in section 2 that VV() is a T1 lattice and that In() with H;(;) as a

base for the closed subsets (the rVallman topology) is a compact T space.

We note that H() is alvays disjunctive, for suppose # ’ IV(A) where A G .
Then#(A’) 1 and there exists B , B C A’ vith I(B) 1. Thusp II’(B) and

W(A) W(B) W(A V B) .
Although the following theorem is generally known we show for completeness:

THEOREM 3.1. If is disjunctive, then I() with the Vallman topology is T2 if and

only i[ 12 is normal.

PROOF" If is normal, then it is easy to se,’ that W() is normal. Consequently 11"()

is T. disjunctive, and normal and therefore T2 from which it follows that the Wallman

topology is T2.

Conversely, suppose the topology is T.z. Then IV() is T2. Let t 1() and consider

ft I(FV()), then there exists a unique v S(ft), and consequently a unique v In(E)

with < v().

Since W() is always disjunctive and compact T, one can show

THEOREM 3.2. The following are equivalent
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(1) I’I’(E) is normal

(2) H’() is regular

IV(E) i.s T2.

PltOOV" If (1) holds, then II’() is normal and disjunctive and therefore clearly regular.

While if i2) holds, then II’() is regular and T1 and therefore T2. Finally. if II’() is T.,,

then sinco it is compact, it must be normal.

We observe a few flrther facts about normal lattices which are of interest in their own

right, but vhich will not be used in the subsequent topological applications.

Again\ let X be an abstract set with an arbitrary lattice of bubsets containing 0 and

X, and let/ I(;). For any E C X. define t’(E) inf{/(L’) E C L’,L }. Clearly

t’ is a finitely subadditive outer measure, and/ <_ t’(E) and/ ’ on if and only if

l

_
In(E). Now we show

TIIEOREX! 3.3. If is normal, then {L ,’(L) is at, -ultralilter.

PROOF: Clearl.v 0 and is closed under -supersets. Now supp,se 1. 2 , then

I’(L) 1 =/d(L2). If p’(L qL2) 0, then thero exists an L such that Lt OL C L’

and since is normal, L .4 U .4, whereand(L )=0. so(L) 1. But LC L’UL
.4 C L’x. A2 ,Z L and .4. A2 E. Since p(L) 1, we have (.41) or I(.42)= 1.

If !.41) 1, then .4’ D L1 and we get I’(L) 0, a contradiction. Similarly (.42)

leads to a contradiction. Thus ’{L cl L2) 1, and is an E-filter. Suppose g7 C T/

where’H ib an G-filter. and L ( 7"/ with L t$. Thenp’(L) 0. Hence L C .4’, .4

and g(A’) 0. Therefore g(A) 1, p’(A) 1, and .4 i J C 7-, but AL o. a

contradiction. Hence is an -ultrafilter.

If u In(E) goes with the -ultrafilter G (see section 2), then/ _< v(). Thtts if

is normal, to each/ [(t2), we can construct a v i In(E) such that / < v() directly

without recourse to Zorn’s lemma. We can also prove the uniqeness of v quite simply

from this For if/ <_ ,\t ) where A ( In(E), then ,X _< /a I’(’). Suppose ,k(A)

wher,. A -2 . and ’(A1 0. l’h-n .4 C B’, B and #(B’) 0. so ,\(B’) 0. but then

(.4) 0. a contradiction. Hence ,\(.4) 1 implies p’(A) v(.4) 1. and A <: u(). so
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In the more general case of p 6 31(), p >_ O, we must proceed in a slightly more

complicated way since there is no -filter or -ultrafilter to assist us. For p 6 M(),

/ >0, we define forECX, A(E) =sup{/(L) :L C E,L }. Ifis normal, then

is finitely subadditive on ’: namely let A, B fi and L C A’ U B’ where L , then

L L, U L2 where L,, L2 and L1 C A’, L2 C B’. Now (L) (L) (L tO L2) <

#(L) + #(L2), but t(L1)+/t(L2) ,(L1)+ (L2) < ,(A’)+ ,(B’) from which it follows

that (A’ UB’) < $(A’)+A(B’). Next, for E C X, let/t(E) inf{$(L’): E C L’.L 6 }.

It is now routine to show that/ is a finitely subadditive outer measure. Now we show

(3.1) E C X is/-measurable if and only if

/](A’) >/(A’ O E) + (A’ CI E’) for all A fi .
PROOF" Let S C X be arbitrary and let A with S C A’, then

(A’) p.4’) > (A’ n E) + p(A’ n E’)

>_ p(s n E) + p(S n E’)

from which we get/t(S) > fi(S E) +/](S [3 E’) and we are clearly done.

Next we have

(3.2) Every element of ’ is fi-measurable.

PROOF" Let B’ 6 ’, then by (3.1) we must show that /(A’) > ’(A’ r B’) + (A’ n B)

for all .4’ ’. Let D 6 such that D C A’ O B’, and let F fi , and F C A’ n D’, so

D f F , and D U F C A’. Then/2(A’) X(A’) >_ p(D U F) p(D) + #(F), and this

immediately implies that

/(A’) _>/(A’ n B’) + (A’ Iq B).

From (3.2) it follows that A() C S the fi-measurable sets, and that/ restricted

to A() (which we continue to denote by/) is in Mn() since for L’ ’,/(L’) $(L’)

sup{p(A) A C L,A 6 }. Also it is clear that/(X) p(X), and p < (:).

Suppose there exists a v 6 MR() such that p(X) v(X), and p < v(), then

# </ < f, u(:), but since both and t, belong to MR(.) and/(X) u(X), it follows

that/ u. In summary we have

THEOREM 3.4. IrE is a norma/lattice of subsets ofX, and if# 6 31(), then there exists

a unique u 6 %a() such that t <_ u() and p(X) u(X).
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REMARK" In a similar manner, one can show that if 1 and are lattices of subsets of

X such that 1 C 2, and . X 6 1, and if for any A C B’U C’ A 6 , B. C 6 2,

there exists .4, A2 6 such that A AI tO A2, A1 C B’, .42 C C’, then any # 6 3/n(/.:

can be uniquely extended to a v 6 MR{2 ), and v is actually -regular on all sets of ..
Related material can be found in [4].

(IV) Lattice separation

Suppose that and 2 are lattices of subsets of an abstract set X.

DFFINITION 4.1" sernt-separates 2 if .4fqB , A 6 , B 6 2 implies there exists a

C 6 t such that B C C, and AfqC . separates 2 ifBt, B2 6 2, and B NB. o

implies there exists AI, Az 6 1 such that B C A1, B2 C A2, and A f A2 0.

We assume now that C 2 and , X 6 1, and although it is generally known (see

[2] ). for convenience, we prove:

LEMMA 4.1. If, as above, C 2 and 1 semi-separates 2, then for any u 6 IR(/2).

the restriction # of u to A(,) belongs to MR(1 ).

PROOF" Consider any A’ where A 6 1. Since v 6 2tIR(2), for any e > 0, there exists

B 6 2 such that B C A’ and

utA’) ,(A’) < ,(B) + .
Then, by semi-separation, there is a C 6 1 with B C C C A’, so #(A’) _< v(B)+ e <

v(C) + e #(C) + , and it follows easily that # M( ).

Under the assumptions of Lemma 4.1, we have, in particular, that for an.v v fi IR(2 ),

the restriction # of v to A( belongs to IR(1 ). Hence we have a mapping IR(2)

IR(1) where, for r, Ia(2), (v) p is the restriction of v to .A(). It is easy to

see that .E’ is continuous with respect to the Wallman topologies on IR(2) and IR(1)

respectively. Moreover, , is onto since, in general, any # fi MR() can be extended to

a v :tla(z) such that p(X) v(X), and if # IR(1) one can find a t, I(2) (see

[2]). We note that in the case of 0-1 valued measures that any It q IR( can be extendod

to a v 6 IR(2) can be established by simple lattice filter arguments.

Finally, we note that if, separates 2, then it is easy to see that $ is homeomorphism.

Consequently, if separates 2 and if either IR(/:I) or IR(/:2) is T2, then so is the other.
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but assuming disjunctiveness, this is equivalent to normality of the particular lattice as

was shown in Theorem 3.1 and we have:

TltEOREX! 4.1. //’1 and = are disjunctive lattices of subsets of X such that , X E 121

where . C : and if separates ., then 1 is normM In(E1) is T In(2) is

T2 2 is n,zmal.

\Ve now give several applications of these results.

(1) Let X be a T 1/2 topological space and .T" the lattice of closed subsets, and 27 the

lattice of zero sets. In(U) wX, the Wallman compactification of X, and In(Z)

the Stone-Cech compactification of X. Then if fix wX, wX is T2 and, therefore X

is normal by Theorem 3.1. Conversely, if X is normal, then Z separates .T" and IR(Z) is

homeomorphic to In(U) via the map , and in general, in the disjunctive case, ,(t

using g again for the restriction, where/ is the measure concentrated at x, so X wX.

Similarly, we have, denoting the regular closed sets of X by .T’n and the generated

&lattice by 8(.T’n), that Ii(5(.T’n)) BX implies that 6(.T’n) is normal. Conversely. if Z

separates 6(.T’n), then In(6(.Y’,q)) BX, and 6(.T’R) is normal.

(2) Since a 0-dimensional topological space is strongly 0-dimensional if and only if

C, the lattice of clopen sets separates 27, the lattice of zero sets, we obtain similarly that

fl0X fiX if and only if the 0-dimensional space X is strongly 0-dimensional, where

3oX In(C) is the Banaschewski compactification of X.

(3) Since, in general, the regular open sets On separates the open sets, we also obtain

that In(On) In(O), where we view On as the lattice generated b the regular open sets.

If in addition, X is 0-dimensional and extremally disconnected, then C separates O. and

in this case IR(O) oX. It is not difficult to show that In(O) can be identified with the

Stone space I(R(X)), where R(X) is the complete Boolean algebra of regular closed sets of

X with VA, (UA) and A A (glA,,), for A, R(X). It follows immediately from

well-known facts about the Stone space that I(R(X)) and, therefore, In(O) is extremally

disconnected.

(4) Recall that a T space X is called seminormal if .T’n, the lattice generated by the

regular closed sets, separates .T’. We then have In(.T’n) ,X, the Wallman compactifi-

cation if X is seminormal. The space In(.T’n) is the same as w,X, defined by Ponomarev

and studied by Zaic6v.
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(5) Finall.; we note that if X is a regular TI space, then X is quasinormal if

the lattice generated by the regular closed sets is normal. Ve immediately get from the

theorem that if X is quasinormal and seminormal, then X is normal. We observe that if X

is a T 1/2 space, it is known that ,okX ’3X if and only if X is quasinormal. Consequently.

if X is also seminormal, then ,X a.’,X ’3X.

We note that part of Theorem 4.1 can be extended to nondisjunctive lattices, namely"

THEOREM 4.2. If ’1 and ’2 are lattices of subsets of X .,ch that , X E ’1 where

and if separates 2, then ’1 is normM if and only if is normal.

PROOF" If/ E I(’) and if/ _< 1"(’) and/ _< 1"2(1) where 1"1, 1’2 IR(’I ). No,,-/

extends to a ,k I(’2) and 1"a, 1"2 extend to r, r2 fi In(’2) respectively. We show that

A < r1(’2). Suppose there exists L2 fi 2 such that .k(L2) 1, but r(L2) 0. Then

rl(L) 1 and since rl fi In(’), there exists an A C L’2, A2 .2 and r1(.42) 1.

Since ’ separates ’2, there is an L1 : such that 2 C L C A. Then t(L) 1.

so 1 1"x(Ll) r(L1), and r(A’2) 1, a contradiction. Thus _< r1(’2), and similarly

, _< r2(’2). Hence if ’2 is normal rl r and therefore 1" 1" and ’ is normal. The

converse follows immediately by using the fact that the restrictions of elements of In(’)

are in In() and are distinct.

DEFINITION 4.2: If and ’2 are lattices of subsets of X, then 1 coseparates if

A B . A. B ’2 implies there exists C, D such that A C C’, B C D’, and and

C’ f3 D’ .
In a normal topological space X, the lattice of closed sets .F coseparates itself, as does

the lattice of zero sets in a Ta 1/2 space. Any algebra of subsets of a set X clearly cosepaxates

itself.

The following is easy to prove:

TttEOREM 4.3. Let , and .2 be lattices of subsets of X.

(1) /f coseparates ,2, then/’or any A C B’U C’, A fi ,x, B,C . .2. there

exist A1, A2 . 1 such that A A1 tO A, A C B’, A2 C C’ (see remark

after Theorem 4.1).

(2) IfX ’, the converse of statement (1) holds.

(3) //" 6, X C 2, then if1 coseparates 2, separates 2.
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(V) On semiseparation

We noted in section 4 that if 1 C 2, and if 1 semiseparates

(1 ), where , is the restriction map. In this section we consider parti converses of this

statement. denote the bic closed sets of IR(E) with a subscript 1, such VI(L)

where L ,d thee of/R(2) with a subscript 2, such as II(L2), L2

If ’" IR(2) I(), d if 2 is disjunctive then clearly must dso be disjunc-

tive, since pr 6 IR() where pr is the meure concentrated at x 6 X. XVe continue

to denote this restriction by p,. Also, if ," Ia(2) Ia(1), then , is continuous with

resct to the Wallm topologies since ,-(lt(L)) It(L2), where L .
LEMMA 5.1. If 2 is di6unctive and if is norm d if /R(2) [R() where

C z, then (I(L2)) {fi(Lo)[L2 C L,L e where L2 2.

PROOF" Since I(Lx) is closed, it is compact. Therefore (I’t(L2)) is compact, and

therefore, closed since is normal. Hence,

where the Lt , and it follows by the disjunctivens of 2 that L2 C Lo.

We now have:

THEOREM 5.1. Let C 2 be lattices d subsets o[ X. I[ 2 is disjunctive d is

normM, d i IR(2 IR( ), then semisepates 2.

POOF" Supse L2 2 d L d L2 L $. Then

Consequently, (W2(L2)) W(L) , for if V(L), if p (v) where

v W2(L2), then v(L) 1 d v(L) p(L) 1, a contradiction. Thus (W2(L2))

W(L) $, d by mma 5.1, {I(L)[L2 C L,L e } W(L) $, and by

the compactns of W(), we get

but then

L2C L1,=LE1

and L N LI which proves that 1 semiseparates 2. As an immediate consequence, we

have
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COrIOLLAnY 5.1. Let Z, C ,2 be lattices of subsets of X. If 2 is disjunctive and

countably compact, and if 1 is &normal. and if a(1) C s( El ), then 1 semiseparates

PROOF" Let v E /R(E2) I(:2)since 2 is countably compact. Now e(v) p E Ia(E2)

and by Choquet’s theorem (see section 2), we have that p I(1) which, by Theorem

5.1. completes the proof.

Another immediate consequence, which is easy to prove, is:

COROLLARY 5.2. Let 1 C be lattices of subsets of X **’here 2 is disjuncti,,e and 1

is normal. If ," It( E2 Itt(,l is a homeomorphism, then ,1 separates

We note that if and 2 are both separating and disjunctive lattices so that X is

d,,nsely embedded in both In(Z:1) and It(Z:2) (see section 2), and if 1 C 2, then if

f" IR(2) I(:1) is a homeomorphism leaving X fixed, we can, again assuming E is

normal and using standard denseness arguments, show that

As another application of Theorem 5.1, we note that if Z: is a lattice of subsets of X

such that I(L:) IR(,), then is clearly normal. Now if 2 is an algebra of sets containing

then 2 is, of course, disjunctive. Moreover, " In(E2) 1(2) I(E) In(E).

Therefore, : semiseparates E2. But, L’ 2 where L :" hence, there exists an A fi

such that L’ C A, and A Cl L 0. so L’ A 5 , and is complemented, i.e. ’.

This results holds true even if/: is just an abstract distributive lattice (see [3] and [6]).

COROLLARY 5.3. If is a lattice of subsets ofX such that I() It(), then ’.

DEFINITION 5.1" If E1 and Z:2 are lattices of subsets of X, 2 is :l-bounded if B,, $ ,
implies that there exists A,, 1, B,, C A,, for all n and A,, J. .

As a supplement to Corollary 5.1, we have

THEOREM 5.2. //"/:1 C E2 are lattices of subsets of X, then

a) I2 is disjunctive and countably compact and if1 is 6-normM, and a(t C

s(E ), then E1 semiseparates E2 and, of course, .t is countably compact.

b If 2 is i-bounded and if is countably compact, then .2 is countably

compact.

PROOF" a) This is just Corollary 5.1.
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b) Let v E I(2), and let # be the restriction of v to .A(). Then B,, I . B, E 2

in:plies that there exist A. E , B,, C A. I so v(B,,) < v(A.) #(.4.) 0, since

tt E I(/dl) I,(/2t). Therefore. 1(2) L,(2), and 2 is countably compact.

As a special case of this theorem, we get

COROLLARY 5.4. Let X be a completely regular T2 topological space. Then

a) If X is countably compact, then X is pseudocompact and Z, the lattice of

zero sets semiseparate iF, the lattice of closed sets.

b) If X is a pseudocompact cb-space, th,’n X is co,tntably compact.

PROOF" The proof is immediate from Theorem 5.2, taking 2 iF, and Z Z.

The corollary is well-known, and we note that it has also been shown that in cb-spaces.

semiseparates iF. To proceed in this spirit, we must replace It() and W(E) in our

discussion by I() and Wa() 11"()f3 I,(), and use the fact that if is disjunctive,

then I4"() is a replete lattice. We do not pursue these matters here since they take us

out of the main spirit of this paper.

Finally, it is clear, as in section 4, that many other applications of these results can

be given for other specific choices of Z and 2 as topological lattices.
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