Internat. J. Math. & Math. Sci. 325
NOV. 14 NO. 2 (1991) 325-338

ON SEPARATION OF LATTICES

MABEL SZETO

Department of Mathematics
College of Staten Island
The City University of New York
130 Stuyvesant Place
Staten Island, New York 10301

(Received June 6, 1990 and in revised form October 4, 1990)
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(I) Introduction

In the first part of this paper we consider various separation properties pertaining
either to a single lattice £ of subsets of an arbitrary set .X or to a pair of such lattices £, and
L,. These separation properties will have strong implications pertaining to the associated
lattice regular measures. and in the particular case of 0-1 valued lattice regular measures,
these separation properties will have associated filter and topological implications.

In the second part of the paper we consider the converse situation and obtain re-
sults which imply various lattice separations under assumptions on the behaviour of the
associated lattice regular measures.

The results of both parts can be utilized to obtain many specific topological separations
by appropriately choosing the lattices in given topological spaces.

The approach will be measure-theoretic throughout since we will be concerned with
extensions and restrictions of measures and in the case of 0-1 valued measures for which
one could use analogous filter arguments, the measure arguments are simpler and more
natural in this setting, and more importantly, hold with minor modifications for non 0-1
valued measures for which there is no filter analogue.

In the next section we will review briefly the notations and definitions used throughout
this paper. The terminology is consistent with that of [1]. [3]. [7]. [8] and others. We
then consider lattice separations and some of its measure and topological consequences

in sections 3 and 4, and finally in section 3, we consider measure relations which imply

separation conditions between lattices and other lattice conditions.
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(IT) Background and notation
We collect here the notations and definitions that will be used throughout and supply
a bit of background material. so that the paper will be reasonably self-contained.
Let £ be a lattice of subsets of an abstract set X. We assume throughout that o.
X € £. We denote by:
(1) A(L) the algebra generated by L.
(2) o(L) the o-algebra generated by L.
(3) &(L) the lattice of all countable intersections of sets from L.
(4) 7(L) the lattice of all arbitrary intersections of sets from L.

) s(L) the lattice derived Souslin sets.

[

(

We denote by M(L) those finite valued, non-negative, finitely additive measures on
A(L) which are non-trivial. A, (L) denotes those u € M(L) which are o-smooth on L.
ie.L,€L,L,]| ¢, then u(L,) — 0.

If 4 € M(L). then p is L-regular if for any 4 € A(L), p(A) = sup{p(L)|L C A.L €
L}. We denote by Mg(L), the set of all L-regular measures of Af(L). By Mg(L) we mean
those u € Mg(L) which are o-smooth on L. Clearly. if 4 € MZ(L). then p is o-smooth on
A(L). and is, consequently, countably additive.

M?(L) denotes those u € M(L), which are countably additive on A(L).

We denote by I(L), I,(L), Ir(L), I°(L) the two-valued 0-1 measures of M(L). M, (L).
Mpg(L) and M?(L) respectively. It is not difficult to show that there is a one-to-one
correspondence between:

I(£) and all prime L-filters
Ir(L) and all C-ultrafilters
I,(L) and all prime £-filters with the countable intersection property

%(L£) and all L-ultrafilters with the countable intersection property.

We next note some standard lattice terminology: £ is called:

a) complemented if L € L implies L' € £ (where prime denotes complement),
that is. £ is an algebra.

b) separating if for any two elements z1, z, € X, r, # z there exists an element
L € £ such that r; € L and z, & L.

¢) Tz if. for any two elements 1, # 12 of X, there exists L, L, € £ such that

Ti€ll.r;€Llyand LiNL) = ¢,
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disjunctwve if for r € X and L € £ and such that r ¢ L. there exists an
dAelwithr€e diand ANL = o.

normal if for Ly. L, € £ and Ly N L, = o. there exists A, B € £ with
LicA" L,CcB.and A'NB' =o.

delta lattice (6-lattice) if &(L) = L.

compact lattice if for any collection {L,} of sets of L. NL, = o implies there

exists a finite subcollection with an empty intersection.

Similarly we define £ countably compact (also called semi-compact or quasicompact by

some writers) and L-regular. We note that there are equivalent measure characterization for

all these properties. In order to state these, we first define the supportof 4 € M(L). denoted

by S(u) =N{L € L|u(L) = p(X)}. Hence. if u € I(£), then S(u) = N{L € L|{p(L) = 1}.

If juy, po € M(L). we write gy < pp(L) when py(L) < pa(L) for all L € L.

It is then easy to show

(1)
(2)

(6)

(8)

L is complemented if and only if I(£) = Ir(L). (See section 3.)

L is separating if and only iffor . y € X. r #y. y € S(p,) and r & Sipy)
where p, is the measure concentrated at r. i.e. u,(4) = 1 if and only if
1 € A, where 4 € A(L).

L is T if and only if for any p € I(L£). S(u) = ¢ or a singleton.

L is disjunctive if and only if u, € Ir(L) for all r € X.

L is regular if and only if p; < p2(L), p1. p2 € I(L) implies S(py) = S(p2).
L is normal if and only if for any u € I(£) if ¢ < 11 (L) and u < (L) (we
recall that g < (L) if w(L) < vy1(L) for all L € £) and vy. v2 € Ir(L)
implies v; = v,.

L is compact if and only if S(u) # ¢ for any p € Ir(L): equivalently for any
u € I(L).

L is countably compact if and only if Ir(L) = IF(L): equivalently I(L) =

I,(L).

It is possible to go on in this manner. but the above should indicate the useful interplay

between measure and topological concepts.

The proofs of all the above are quite short; typically we prove:

(4): If £ is disjunctive, let L' € L', the complement lattice, and if u (L") = 1. then,
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by disjunctiveness, there exists an 4 € £, with z € 4. -0 pe(d) =1l,and A C L' It
follows immediately that u, € Ir(L). The converse is clear.
We assume throughout that £ is disjunctive. Let 4 € A(L), and define Wd)={pe

IR(L)|u(A) = 1}. Then it is clear that

(1) W(4AuB)=W(4)UlWV(B)

(2) W(ANB)=W(4)n(B)

(3) W) =u(4)

(4) W(4) cW(B)if and only if A C B.
Take Ip(L) with W(L) = {‘V(L)IL € L} as a base for the closed sets of a topology.
This is the Wallman space with the Wallman topology. It is easily seen to be T}, and is
compact. The compactness follows immediately if we just show V(L) is a compact lattice.
Let v € Ir(TV(L)), then v(1W(4)) = a(1W(4)), where in general 2(1V'(4)) is defined for
u € Ip(L) as follows:

AWV (A)) = p(4).
This gives a bijective correspondence between Ir(L) and Ir(1V(L)). Finally,
S(v) = S(p) = n{W(L)|a(W (L)) = 1},

but (W (L)) = 1 is equivalent to 4 € W(L). Hence. u € S(v) and this completes the
proof.

We note that if. in addition, £ is separating, then the map ¢ — p, is an embedding
of X into Ir(L) such that X = W(X) = Ir(L). If X is given the r(L) topology it is easily
seen to be a homeomorphic embedding,.

Specific topological lattices give rise to various well-known compactifications of X:

(1) fXisa T’i space and £ = Z, the lattice of zero sets, then Ir(Z) = fX,
the Stone-Cech compactification.
(2) I X is a T, topological space and £ = F, the lattice of closed sets, then

IR(F) = wX, the Wallman compactification.

(3) If X is a zero-dimensional T, space and £ = C ,the lattice of clopen sets,
then Ir(C) = 30X, the Banachewski compactification.

Other topological cases will be cited later in the examples. If £ = L'; i.e., if £ is an
algebra, then Ig(L) = I(L), W(L) = W(L') € W(L) for L € L, and we obtain the Stone

space associated with the algebra L.
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Finally, we list for reference the following two theorems:

THEOREM 2.1. If Ly, £, are lattices of subsets of X such that £ C L. then any y €
Mi(Ly) can be extended to a v € Mp(Ly). If £y semiseparates L2, then the extension
will always be unique if and only if £y ~vparates Lo (ie.. 4. B ¢ L,, AN B = ¢ implies
there exist C, D € £y such that ACC, B Cc D.andCND =¢). If p € MZ(Ly) and if £,
is a 8-lattice, and L, is o(L, ) bounded or just S, bounded. then v € MZ(L;). (We say in
general for any two lattices £1 and L, that Ly is £1 bounded if B, € Ly for alln. Bn | ¢
implies there exist A, € L1 such that B, C A, | ¢). Also, S,+ denotes the j*-measurable

sets (See [2]).

THEOREM 2.2. Let £ be a é-lattice of subsets of X such that o(L) C s(L). then every

€ M°(L) is L-regular, i.e.. MF(L) = M?(L).

This theorem follows immediately from the Choquet capacity theorem.

(1II) On normal lattices

Let X be an abstract set and £ a lattice of subsets of X such that ¢ and X belong
to £. It was noted in section 2 that W(L) is a T lattice and that Ir(L) with FI'(£) as a
base for the closed subsets (the Wallman topology) is a compact T} space.

We note that W (L) is always disjunctive, for suppose u ¢ TW(A) where 4 € L.
Then u(A’) = 1 and there exists B € £, B C 4’ with p(B) = 1. Thus ¢ € W(B) and
W(A)NW(B)=W(ANB) = ¢.

Although the following theorem is generally known we show for completeness:

THEOREM 3.1. If £ is disjunctive, then Igr(L) with the Wallman topology is T if and

only if £ is normal.

PROOF: If £ is normal, then it is easy to sec that (L) is normal. Consequently 117(L£)

is Ty. disjunctive, and normal and therefore T, from which it follows that the Wallman
topology is T5.

Conversely, suppose the topology is T,. Then W (L) is T;. Let u € I(L£) and consider
4 € I(WI(L)), then there exists a unique v € S(1), and consequently a unique v € Igr(L)
with g < v(L).

Since W(C) is always disjunctive and compact T, one can show

THEOREM 3.2. The following are equivalent
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(1) W(L) is normal
(2) W(L) is regular

(3) W(L)is T;.

PRroo¥F: If (1) holds. then V(L) is normal and disjunctive and therefore clearly regular.
While if (2) holds. then V1'(L) is regular and T\ and therefore T,. Finally. if V(L) is T>.

then since it is compact. it must be normal.

We observe a few further facts about normal lattices which are of inrerest in their own
right. but which will not be used in the subsequent topological applications.

Again let X be an abstract set with £ an arbitrary lattice of subsets containing ¢ and
X.and let g € I(L). For any E C X. define /(E) = inf{u(L'): EC L'.L € L}. Clearly
i is a finitely subadditive outer measure. and p < j/(£) and g = p' on £ if and only if

i € Ip(L). Now we show
THEOREM 3.3. If £ is normal. then G = {L € £ : ¢//(L) = 1} is an L-ultrafilter.

PROOF: Clearly ¢ € G and G is closed under L-supersets. Now suppose L. £ € G. then
W(Ly)=1=p(Ly). ¥ y'(LyNLy) =0, then therc exists an L € L such that LiNLy C L'

and u(L') = 0. so g(L) = 1. But L C L} U L} and since £ is normal, L = 4, U 4, where
41 T Ly. A, € L) and 4. 4, € L. Since u(L) = 1. we have pu(4;) = 1 or utd;) =1

If u(4;) = 1, then 4} D L; and we get p'(L;) = 0. a contradiction. Similarly pu(42) =1
leads to a contradiction. Thus w'(L, N Ly) = 1, and G is an L-filter. Suppose § C H
where H is an L-filter. and L € H with L ¢ G. Then p'(L) = 0. Hence L C A'. A€ L
and u(A') = 0. Therefore u(A) = 1, p'(4) =1, and 4 € G C H,but ANL =o0.a

contradiction. Hence G is an L-ultrafilter.

If v € Ir(L) goes with the C-ultrafilter G (see section 2), then u < y(L). Thusif £
is normal. to each p € I(L), we can construct a v € Ir(L) such that u < v(L) directly
without recourse to Zorn's lemma. We can also prove the uniqueness of v quite simply
from this For if g < ML) where A € Ig(L), then A < py = p'(L"). Suppose A(4) =1
where 4 = £.and p'(4) =0. Then 4 C B', B€ £ and pu(B') = 0. so M(B') = 0. but then
A 4) = 0. a contradiction. Hence M 4) = 1 implies p'(A4) = v(4) = 1. and A < v(L). so

A=,
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In the more general case of p € M(L). p > 0, we must proceed in a slightly more
complicated way since there is no L-filter or L-ultrafilter to assist us. For g € M(L).
¢ = 0, we define for E C X, ME) = sup{u(L): L C E,L € L}. If £ is normal, then A
is finitely subadditive on £': namely let A, B € £ and L C A' U B' where L € L. then
L=L,UL; where L;, L € Land L, C A', L, C B'. Now ML) = p(L) = u(Ly U Ly) <
u(L1) + p(Lz), but p(Ly) + p(Ly) = MLy) + MLz) < MA') + A(B') from which it follows
that A(4'UB’) < M(A')+ A(B'). Next, for E C X.let i(E) =inf{\ML'): ECcL'.LeL}.

It is now routine to show that j is a finitely subadditive outer measure. Now we show

(3.1) E C X is gi-measurable if and only if

LAY > (A NE)+ (A" NE') for all A € L.
PROOF: Let § C X be arbitrary and let 4 € £ with § C 4’, then
MAY =AY > p(A'NE)+a(A'NE")

> MSNE)+iSNE")

from which we get i(S) > 4(SN E)+ 4(S N E') and we are clearly done.
Next we have
(3.2) Every element of L' is ji-measurable.
PROOF: Let B' € L', then by (3.1) we must show that a(4') > 4'(4' N B') + 4(4A' N B)
for all 4' € £'. Let D € L such that D C A'NB',and let F € £, and F C A'N D', so
DNF=¢,and DUF C A'. Then g(A") = MA") 2 p(DUF) = ,u(‘D) + u(F), and this

immediately implies that
A(A") > p(A'NB") +a(4'NB) .

From (3.2) it follows that A(L) C S; = the fji-measurable sets, and that j restricted
to A(L) (which we continue to denote by 1) is in Mr(L) since for L' € L', (L") = M(L') =
sup{u(4): A CL,A € L}. Also it is clear that 4(X) = p(X), and p < a(L).

Suppose there exists a v € Mg(L) such that u(X) = v(X), and ¢ < v(L), then
p < i < =wv(L), but since both £ and v belong to Mp(L) and 4(X) = v(X), it follows
that 4 = v. In summary we have
THEOREM 3.4. If L is a normal lattice of subsets of X, and if u € M (L), then there exists

a unique v € Mg(L) such that p < v(L) and p(X) = v(X).



332 M. SZETO

REMARK: In a similar manner, one can show that if £, and £; are lattices of subsets of
X such that £, C £;,and é. X € £;,and ifforany A C B'UC' , 4 € L,,. B.C € L;,

there exists 4, A2 € £; such that A = 4, UA;, 4; C B', 42 C (", then any p € Mp(L,)

can be uniquely extended to a v € Mg(L;). and v is actually £;-regular on all sets of £}.

Related material can be found in [4].

(IV) Lattice separation

Suppose that £, and £ are lattices of subsets of an abstract set X.

DEFINITION 4.1: £, semi-separates L, if ANB = ¢, A € L1, B € L, implies there exists a
C € L, such that BC C,and ANC = §. L, separates L, if By, B, € L5,and BiNB; = o
implies there exists A;, 42 € £; such that B; C 4,, B C A, and 4, N 42 = ¢.

We assume now that £; C £; and ¢, X € L), and although it is generally known (see

[2]). for convenience, we prove:

LEMMA 1.1, If, as above, £, C £, and L, semi-separates L3, then for any v € Mgr(L;).

the restriction p of v to A(L,) belongs to Mr(Ly).

PROOF: Consider any A’ where A € £;. Since v € Mg(L;). for any € > 0, there exists

B € £, such that B C 4’ and
wA')=v(4d")<v(B)+e.

Then, by semi-separation, there is a C € £; with B C C C A', so u(4") S v(B)+¢€ <
U(C) + €= u(C) + ¢, and it follows easily that u € Mr(L1).

Under the assumptions of Lemma 4.1, we have, in particular, that for any v € Ir(L2),
the restriction u of v to A(L;) belongs to Ir(L;). Hence we have a mapping v : Ir(L2) —
Ir(L,) where, for v € Ir(L2), ¥(v) = p is the restriction of v to A(L;). It is easy to
see that ¢ is continuous with respect to the Wallman topologies on Ir(L;) and Ir(L,)
respectively. Moreover, ¢ is onto since, in general, any u € Mg(L;) can be extended to

a v € Mg(L;) such that u(X) = v(X), and if 4 € Ir(L,) one can find a v € Ir(L2) (see

[2]). We note that in the case of 0-1 valued measures that any u € Ig(L,) can be extended
to a v € Ir(£;) can be established by simple lattice filter arguments.
Finally. we note that if £, separates £,, then it is easy to see that i is homeomorphism.

Consequently, if £; separates L, and if either Ir(L;) or Ir(L;) is T;, then so is the other.
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but assuming disjunctiveness, this is equivalent to normality of the particular lattice as

was shown in Theorem 3.1 and we have:

THEOREM 4.1. If £, and L, are disjunctive lattices of subsets of X such that é, X € (,
where Ly C (. and if £, separates L;, then L, is normal & Ig(L,) is T & Ir(L2) is

T, & L5 is noimal.

We now give several applications of these results.

(1) Let X bea T, 3} topological space and F the lattice of closed subsets, and Z the
lattice of zero sets. Ir(F) = wX, the Wallman compactification of X, and Ig(Z) = 3X.
the Stone-Cech compactification of X. Then if X = wX, wX is T, and, therefore X
is normal by Theorem 3.1. Conversely, if X is normal, then Z separates ¥ and Ir(Z) is
homeomorphic to Ig(F) via the map 9, and in general, in the disjunctive case, y'(p;) = p..
using p, again for the restriction, where u, is the measure concentrated at z, so 83X = wX.

Similarly, we have, denoting the regular closed sets of X by Fr and the generated
é-lattice by 8(Fr), that Ir(6(Fr)) = 8X implies that 6(Fr) is normal. Conversely. if Z
separates 6(Fg), then Ir(8(Fr)) = 85X, and é6(Fg) is normal.

(2) Since a 0-dimensional topological space is strongly 0-dimensional if and only if
C, the lattice of clopen sets separates Z, the lattice of zero sets, we obtain similarly that
30X = BX if and only if the 0-dimensional space X is strongly 0-dimensional, where
80X = Ir(C) is the Banaschewski compactification of X.

(3) Since, in general, the regular open sets Og separates the open sets, we also obtain

that Ir(ORr) = Ir(©), where we view ORp as the lattice generated by the regular open sets.
If in addition, X is 0-dimensional and extremally disconnected, then C separates O. and
in this case Ir(O) = 5o X. It is not difficult to show that Ir(O) can be identified with the
Stone space I(R(X)), where R(.X) is the complete Boolean algebra of regular closed sets of
X with VA, = (UA?) and A Aq = (Ndq)°, for A, € R(X). It follows immediately from
well-known facts about the Stone space that I(R(X)) and, therefore, Ir(O) is extremally
disconnected.

(4) Recall that a T} space X is called seminormal if Fg, the lattice generated by the
regular closed sets, separates . We then have Ir(Fgr) = wX, the Wallman compactifi-
cation if X is seminormal. The space Ig(FRg) is the same as w;.X, defined by Ponomarev

and studied by Zaicév.
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(3) Finally, we note that if ' is a regular T space, then X is quasinormal if Fpg,
the lattice generated by the regular closed sets is normal. We immediately get from the
theorem that if X is quasinormal and seminormal, then X is normal. We observe that if X’
isa Ty 4 space. it is known that wi X = 3.X if and only if X is quasinormal. Consequently.
if X is also seminormal, then w X =« X = 3X.

We note that part of Theorem 4.1 can be extended to nondisjunctive lattices. namely:

THEOREM 4.2. If L, and L, are lattices of subsets of X -uch that ¢, X € L, where

Ly C Ly and if L, separates L,, then L, is normal if and only if £, is normal.

PROOF: If p € I(L;y) and if p < (L) and pu < vo(Ly) where vy, vy € Ip(L;). Now
extends to a A € I(L;) and vy, v, extend to 71, 72 € Ir(L2) respectively. We show that
X < 11(L;). Suppose there exists Ly € L2 such that A(L;) = 1, but 71(Lz) = 0. Then
71(L}) = 1 and since 1y € Ir(Ly), there exists an A2 C Ly, A; € £, and 1i(42) = 1.

Since £, separates L2, there is an L; € £; such that Ly C Ly C 4. Then u(L,) = 1.

so 1 =vy(Ly) = ri(L1), and 71(4}) = 1, a contradiction. Thus A < r(£;). and similarly
A € 13(L2). Hence if £ is normal 7, = 7, and therefore v; = v; and £, is normal. The
converse follows immediately by using the fact that the restrictions of elements of Ir(L2)
are in Ip(L,) and are distinct.
DEFINITION 4.2: If £, and £, are lattices of subsets of X, then £, coseparates L, if
ANB = ¢. A. B € L, implies there exists C, D € £, such that A C C', B C D', and and
c'nD =¢.

In a normal topological space X, the lattice of closed sets F céseparates itself, as does
the lattice of zero sets in a Ty space. Any algebra of subsets of a set X clearly coseparates
itself.

The following is easy to prove:

THEOREM 4.3. Let £, and L, be lattices of subsets of X.
(1) If £, coseparates Lo, then for any A C B'UC', A € L,, B,C € L,. there
exist Ay, A, € L, such that A = 4; U A2, A; C B', A; C C' (see remark
after Theorem 4.1).
(2) If X € L, the converse of statement (1) holds.

(3) Ifé, X € Ly C L, then if Ly coseparates L2, L1 separates La.
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(V) On semiseparation

We noted in section 4 that if £; C C2, and if £, semiseparates £, then ¢ : Ir(L2) —
Ir(L,y), where ¥ is the restriction map. In this section we consider partial converses of this
statement. We denote the basic closed sets of Ir(L;) with a subscript 1, such as Wi(L,)
where L; € £,, and those of Ig(L;) with a subscript 2, such as W3(L2), L2 € L,.

If v : Ir(L2) — Ir(Ly), and if £, is disjunctive then clearly £, must also be disjunc-
tive, since Yu, € Ir(L,) where p, is the measure concentrated at ¢ € X'. We continue

to denote this restriction by u,. Also, if ¢ : Ir(L2) — Ir(L;). then y is continuous with

respect to the Wallman topologies since v~ ! (1 (L)) = W2(L2), where L, € L;.

LEMMA 3.1. If £, is disjunctive and if £, is normal and if ¥ : Ir(L2) — Ir(L,) where

Ly C L3, then ¥(Wa(L2)) = N{W(L1a)|L2 C Lia, L1a € £1} where L, € £L,.

PROOF: Since W,(L,) is closed, it is compact. Therefore y"(W2(Lz)) is compact, and

therefore, closed since £, is normal. Hence,
lr/’(ua(['? )) =N, (Lla) [}

where the L, € £;, and it follows by the disjunctiveness of L2 that Ly C Ly,.
We now have:

THEOREM 5.1. Let £; C L, be lattices of subsets of X. If L is disjunctive and L, is
normal, and if ¢ : Ir(L2) — Ir(L,), then £, semiseparates L3.

PROOF: Suppose L, € £; and L; € £, and Ly N Ly = ¢. Then Wy(Ly) N Wa(L,) = ¢.
Consequently, $(Wa(Lz)) N Wi(Ly) = ¢, for if u € Wi(Ly), and if ¢ = ¥(v) where
v € Wp(L3), then v(L;) = 1 and v(L;) = u(L;) = 1, a contradiction. Thus $(W3(L2)) N
Wi(L1) = ¢, and by Lemma 5.1, N{W;(L1a)|L2 C Lias L1a € £2} NWi(L1) = ¢, and by

the compactness of W;(L,), we get
A Wi(Lie)NWi(L) = ¢,

but then

L, C r’ﬁlL,m=Lecl,
=

and LN L, = ¢ which proves that £, semiseparates £;. As an immediate consequence, we

have
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COROLLARY 5.1. Let £y C L; be lattices of subsets of X. If L, is disjunctive and
countably compact. and if L, is é-normal. and if o(L,) C s(L,), then £, semiseparates

L.

PROOF: Let v € Ir(L2) = I§(L2) since L is countably compact. Now ¢(v) = u € I°(L3)
and by Choquet’s theorem (see section 2), we have that u € I%(L,) which, by Theorem

5.1. completes the proof.

Another immediate consequence, which is easy to prove, is:

COROLLARY 5.2. Let £; C L; be lattices of subsets of X where L, is disjunctive and £,

is normal. If y : Ir(Ly) — Ir(L,) is a homeomorphism, then L, separates L;.

We note that if £; and £, are both separating and disjunctive lattices so that X is
densely embedded in both Ir(L,) and Ig(L2) (see section 2), and if £; C L., then if
f i Ir(L2) — Igr(L;) is a homeomorphism leaving X fixed, we can, again assuming £, is
normal and using standard denseness arguments, show that f = 1.

As another application of Theorem 5.1, we note that if £ is a lattice of subsets of .X
such that I(L) = Ir(L), then L is clearly normal. Now if £, is an algebra of sets containing
L. then L, is. of course, disjunctive. Moreover, ¢ : Ir(L;) = I(L2) — I(L) = Ir(L).
Therefore, £ semiseparates £,. But, L' € £ where L € L; hence, there exists an 4 € £
such that L' C A, and ANL = é.s0 L' = 4 € £, and L is complemented, i.e. £ = L'.

This results holds true even if £ is just an abstract distributive lattice (see [3] and [6]).
COROLLARY 5.3. If L is a lattice of subsets of X such that I(LY = Igr(L), then L = L'.
DEFINITION 5.1: If £; and £, are lattices of subsets of X, £, is £,-bounded if B, | ¢,
B, € L, implies that there exists A, € £;, B, C A, for all n and A, | ¢.

As a supplement to Corollary 3.1, we have
THEOREM 5.2. If £; C L, are lattices of subsets of X, then
a) IfL, is disjunctive and countably compact and if £, is §-normal, and a(Ly) C
s(Ly), then L, semiseparates L, and, of course, L, is countably compact.

b) If £ is £1-bounded and if L, is countably compact. then L, is countably

compact.

PROOF: a) This is just Corollary 5.1.
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b) Let v € I(L;), and let u be the restriction of v to A(L,). Then B, | 0. Bn € L,
implies that there exist 4, € £y, B, C 4, | ¢ so v(B,) < v(A,) = p(4,) — 0, since

€ I(Ly) = I,(L,). Therefore, I(L;) = I,(L2), and L3 is countably compact.

As a special case of this theorem, we get

COROLLARY 5.4. Let X be a completely regular T, topological space. Then
a) If X is countably compact. then X is pseudocompact and Z, the lattice of

zero sets semiseparates F, the lattice of closed sets.

b) If X is a pseudocompact cb-space, then X is countably compact.

PROOF: The proof is immediate from Theorem 5.2, taking £2 = F, and £, = Z.

The corollary is well-known, and we note that it has also been shown that in cb-spaces.
Z semiseparates F. To proceed in this spirit, we must replace Ir(L) and W (L) in our
discussion by I§(L) and W,(L) = W(L)NIZ(L), and use the fact that if £ is disjunctive,
then W, (L) is a replete lattice. We do not pursue these matters here since they take us
out of the main spirit of this paper.

Finally, it is clear, as in section 4, that many other applications of these results can

be given for other specific choices of £; and £ as topological lattices.
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