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ABSTRACT. Lp-approximation by the Hermite interpolation based on the zeros of the

Tchebycheff polynomials of the first kind is considered. The corresponding result of Varma and

Prasad [1] is generalized and perfected.
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1. INTRODUCTION.
Let -l<xn<xn_l < <1 be the zeros of Tn(x)=cosnS,(cosS=x), the nth degree

Tchebycheff polynomial of the first kind.

If f (5 CI[ 1,1], then it is known that a Hermite interpolation H(f,x) of degree _< 2n-1
which satisfies the conditions

is given by

where

H(f, xk) f(xk) and H’(f, xk)-- f’(xk) k- I, .,n

H(S,,) s(-),()+ s’(,),(-)
k=l k=l

hk(x (1 xxl,) [ Tn(x) 2 r

kn(x_ xk))
>_0, Z hk(X) =- 1

k=l

(1.1)

(1.2)

Tn(x) (1.3)ak(x (x- xk)l(x), Ik(x T,n(Xk)(x xk
Concerning the polynomial H(f,x), Varma and Prasad [1] proved the following:

THEOREM A. Let f (5 CI[- 1,1], then we have

_i- (f,)- f() d _< ,:E,_ (f’), (.)

where E2n_ 2(f’)is the best approximation to f’(x) by polynomials of degree at most 2n 2 and is

a positive absolute constant.

Naturally, one raises the problem that if there is similar result of (1.4) in /.,(p > 0) norm.

Here we give an affirmative answer for the above problem, we shall prove the following:
THEOREM 1. Let J" (5 C[- 1,1], then we have

/

r---l H,(f,x)- f(x) < E2n_
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Therefore the corresponding result of [1] is generalized and perfected.
LEMMAS AND THE PROOF OF THEOREM 1.

At first, we state and prove several lemmas.

LEMMA 1 (FSjer [21). If

k=l
therefore it follows that

(2.1)

II(z) <c r=3,4,-... (2.2)
/:=1

LEMMA 2. Let k be even and 91,92,’" ",Yk be distinct integers between 1 and n, then we

have (k 2m)
1 (z)r.t2(z)... (z)dz 0 (2.3)

1_---’ trT1 tr7
k

and

PROOF. Since

cos4m- ln
22(2m 1) cos (4m- 2j- 1)n0

j=

(4m 1)n (4m 1)n
icosiO= uiTi(x) (2.4)

i>n

T.()
(x )... (z qn- 2m(x) (2.5)

x71 z7
k

where qn-2m(z) is a polynomial of degree < n- 2m.

On using these ideas together with orthogonality of Tchebycheff polynomials, we obtain

-1 1 x2 tr’tl(X)’t2(x) trTk(x)dx
1

(4m- 1). ! 1
[y(z.tl) T,(x. /:)]2 ,> n

Yi(x)qn 2m(x)dx 0

This proves Lemma 2.

To prove Theorem 1 in the general case, we again follow the method of ErdSs and Feldheim

[3], it is enough to prove for even values of p only. To illustrate the method we hmit for the case

p 4. For arbitrary fixed even p the proof is similar. Let S2n_ l(X) be the polynomial of best

approximation to f(z) by the polynomials of degree < 2n-1. One can easily see that for

-1 <z< 1:

/’/(f, z)- f(z) H(f- s2n_ 1,z) 4- s2n- 1(x) f(x)

One notes that
la4-blP<c(p)(lalP4- Ibl p)

where c(p) is a constant of dependent of p only.

1- gr(’,)- f(,) z

_< c
’1 z2

(f- 2- 1,(z)d + 1_2(2n 1(z) f(z))4d
-1

_< (r + r)

(2.6)

(2.s)
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From the definition of s2n l(X) we have

132.- 1(x) f(x)[ _< E2n l(f)
where E2n_ l(f) is the best approximation of f(x).
From (2.9) we have

I2 -< rE42, l(f)
On using (1.1) and (2.7) we have

4

I c S2n
k=l

4

c(I3 + 14)
Now from (1.2) and (2.9)it follows that

n
4

I3 [ (f(xk)-- s2n_ l(Xk))hk(x) dx
_1 k=l

Let a k f’(xk)- Sn- l(Xk) k 1, .,n

One notes that
4

:() =4 4

k=l kl

k#j#i k#j#i#s

One notes also that
T,(x) <_ 1

xl A k < 40E2,-2(/’)
and

I 1 lk(x)lj(x)dx={ 0

Therefore from (1.3), (2.2) and (2.14)-(2.16) we have

One notes that

(See [41)

k=j

n IX i 1 T4(x)l(x)dx
-1 l-x21 Ll(x)dx =k=l T’4n(xk)_

_<"2
k=l

1--zl /Xkl 112k(X)dX_<
n4-

L() n() a:() L()
k=l k-1

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.5)

Using (1.3), (2.2), (2.14-(2.17) and the Cauchy inequality we have
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L2(x) dx
-1

k-1 n3
-1

E
(--1)t ll--z/kk E2n-2(/’)

n Tn(z)It(z)ldz + c
n4k=l

< cEn- 2(f’)

1 (-1)t-14i-
-1 1--x2 k=

(-(f’) (--1)n4 l--x2 k=

< cn- 2(if)

rom (1.a), (2.1), (2.15) d the estimetion of I 1 L2(x) dx we note that

=1 =1

Thus we have also that

Using Lemma 2 we have

One notes that

cE2n 2(f’)
-1

l----lL3(x) ldx < n4

-1

L4(x)dz 0

2

k=l

and similar to estimation of [ 1 La()ld we he

1

-I i’-
Ls(z) dz < c

n4

From (2.17) (2.21) we have
E2,_ 2(f’)I4<-c 4

Combining (2.11), (2.12) and (2.22) we obtain

-1 - z2 H(f’z)- f(x)14dz < c

This proves Theorem 1.

3. REMARKS.

En- 2(if)
n4

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

1. Concerning quasi-Hermite interpolation [5] based on the zeros of Tchebycheff polynomial of

the second kind, there is similar result in Theorem 1.
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2. For almost-Hermite interpolation [6] based on the zeros of (1-x)J(n1/2’ -1/2)(x)(or
(1 +x)J(n-1/2’l/2)(x)) (where J(na’3)(x) be the Jacobi polynomial), there is similar result of

Theorem also.

Here we omit the details.
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