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ABSTRACT. From the result in [I] it follows that there is a unique quadratic spline

which bounds the same area as that of the function. The matching of the area for the

cubic spline does not follow from the corresponding result proved in [2]. We obtain

cubic splines which preserve the area of the function.
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i. INTRODUCTION AND NOTATION.

Let {0 xo xl <...< x I} be a partition of [0, I] such that xl xi-1

h, i 1,2 n. We write r, for the class of all algebraic real polynomials of degree

m or less. Let

S(m, )= {s(x):s(x) r,., s(x) C"-I[0, I], x [xx-1, x],i 1,2 n}

denote the class of all polynomial splines, where m is a positive interger.

Approximation of function by cubic spline interpolation has been studied by

[3],[4]. Further studies in this direction are due to Sharma and Tzialario [I],

deBoor [5], Schoenberg [6] based on finding the splines which have the same integral

mean as the function has with respect to certain measure. The following theorem is

due to Dikshit [2].

THIK)RI i. Let f C2[0, I] be a 1-periodic locally integrable function with respect to

a non-negative measure du satisfying u(x+h)-u(x)= constant. Suppose further that either

h

a(x) d >0 or
0

where a(x)= 3xS-6hx2+h-.
conditions:

xl

x-i

h

a(h-x)d, > O,
0

Then there exists

(I.i)

unique s(x)E S(3, satisfying the

{f(x)-s(x)} du O, i 1,2 n; (1.2)

and s(O) s(1), r 0,1,2. (1.3)

One of the important cases of the associated measure function u(x) of Theorem 1 is
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when it is linear, i.e. u(x) x. This is not include, as in this case the value of

the integrals in (i.I) is-h/4. This special case is interesting because the function

and the spline bound the same area. We can see from Rolle’s theorem that this condition

forces the spline to match a continuous function f at least at one point of each

subinterval.

2. We prove the following:

THEOREM 2. Let f L[O,I]. Then there exists a unique spline s(x) S(3,A which

bounds the same area as the function does, precisely,

xi xi

J f(x)dx J s(x)dx, i 1,2 n, (2.1)
Xi-I X-i

if S"(O) S"(1) 0 and h(s"(1-h) s"(h))

We need the follof lema for the proof of Theorem

LMMA I. Let C(s.O) and C(O.O). n _> 4. e the follofn n-quaze quadruple diaonal

matrices of nonnegative real numbers s,r,p,q"

Cn(s,O)

q p 0 0.. 0 0 0 s

r q p 0.. 0 0 0 0

s r q p.o 0 0 0 0

0 0 0 0.. s r q p

0 0 0 0.. 0 s r q

Cn(O,O)

r q p 0 0.. 0 0 0

s r q p o.. 0 0 0

0 s r q p.. 0 0 0

0 0 0 0 0.. s r q

0 0 0 0 0.. 0 s r

Then C(s,O) is non-singular for odd n, if q2 4pr > 0 and r2 4sq > O. The result

also holds for even n if, in addition, Dn(O,O) sD’-1(O,O) > O, where Dn(O,O) and

D(O,O) are the determinants of Cn(O,O) and C(O,O) respectively.

PROOF. For the sake of convenience, we write

Q q -4pr, R r 4sq, u 2[(n-j)/2]+l, v : n-2[(3j+l)/2], w=(n-3j)-(l+(-l)J)/2

and set, for k > O,

f(n,j,k) f1(n,j,k)
u(u-2)... (u-2k+2)

v(v-2)... (v-2k+2)
for odd n;

f(n,j,k) : f(n,j.k)
u(u-2)... (u-2k+2)

w(w-2)... (w-2k+2)
for even n;

and f(n,j,O) f(n,j,O) f(n,j,O) = I.

[y] denotes greatest integer less than or equal to y.

We first prove that

where

In/3]
Dn(O,O) a(n,t),

t:O
(2.2)
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a(n,O)=

(n-l)/2

qjEO= n-j >-J (pr

n/2
Qnl + 7 n+___l (n-j Q<nl- (pr),

j=l j (]j-i

for odd n"

for even n;

and for t > O,

a(n, t) =(p-s)t
(n-3t)/2]

)/2 E f(n, t, k)k+tn-2t-kQ[<n-3t)/2]- (pr)W
k=O \ t / k+t

We can see directly that (2.2) holds for n- 4,5,6. Now we assume that (2.2) is

true upto n-th place and n is even. From the matrix Cn(O,O) it can be seen that

Dn/(O,O) q Dn(O,O) pr Dn-(O,O) + p2s Dn-2(O,O)-

Since (2.2) is true for n, n-l, n-2, we have

q Dn(O,O) pr Dn-1(O,O)+ p2s Dn-2(O,O)

[(n-2)/3]
q a(n,O)-pr a(n-l,O)+ E {q a(n,t)-pr a(n-l,t)+(ps) a(n-2,t-l)} + X(n),

t=l
where the last term X(n) is

X(n) q a(n, [n/3] pr a(n-l, [ (n-l)/3]) + ps a(n-2, (n-2)/3]) for

X(n) q a(n, [n/3] + p2s a(n-2, (n-2)/3]) for

X(n) ps a(n-2, (n-2)/3]) for

(2.3)

(2.4)

n:6,

n 62,

with some positive integral values of m.

On simplification, we obtain

q a(n,O)-pr a(n-l,O) a(n+l,O). (2.5)

Now, we consider the following sum for relevant odd values of t in the susmation

of (2.4). Since by the assumption n+t is odd, the exponent of q in a(n,t) is I. By

writing q Q+4pr, we have

q a(n,t)-pr (n-l,t)+(pZs) a(n-2,t-l)

Q a(n, t)/q + 4pr a(n, t)/q pr a(n-l, t) + pZs a(n-2, t-l)

(p2s)t {f(n,t,O)(n2t)Q[<n-3t)/]/1 + f(n-2,t_l,O)(21t) Q.-s)/)]/ }

[(n-3t)/2]
+ (ps)t | . f=(n,t,k)(k+t/n-2t-kQ<n-s)/m]-w/z (pr)

k=l \ tZ\k+t

+4
(n-3t)/2]+l

;- f2(n,t,k-l) [k+t-lfn-2t-k+lQ(n-st)/’]-+x <pr)k
k=l kit k k+t-i /

(n-3t)/2]+1
;- f1(n-l,t,k-l) {k+t-ln-2t-k Q[

k=l \ t ]\ k+t-l

[(n-3t)/2]+l
E f(n-2,t-l,k) k+t-ln-2t-k Q[

k=l k--t-iAk+t-I /

(n-st)/]-/x (pr)W

(2.6)
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by taking the first terms from the first and last su,tions and changing the summing

index in second and third summations in view of the fact that [(n-3t)/2]

[(n-3t-l/2]. We first observe that

f2(n.t,k) {(n-t-2k+2)/(n-t+2)} f1(n+l,t.k)

f_(n,t,k-l) {(n-3t-2k+2)/(n-t+2)} f1(n+l.t,k)

f(n-l,t,k-l) {(n-3t)/(n-t+2)} fx(n+l.t.k)
[2.7)

and f2(n-2,t-l.k) {(n-t-2k+2)/(n-t+2)) fx(n+l,t,k)

In view of these relations, we first combine ((n-3t-l)/2) terms of the four

summations and then combine the last terms of the second,third and fourth summations.

Thus, the expression in (2.6) can be written as

(pZs) (n+tl-2t>
+ (p2s )t

[(n-3t)/2]
fz(n+l, t, k) /k+t:/n+l-2t-k Q<n-st/2]-k+z (pr)k

k=l \ J----t\ k+t /

+ (p2s)t [fz(n+l, t, k ( ]k+t(n+l-2t-k Q[(n-s)/2]-k/z (pr)k
t /\ k+t ! k=[(n-3t)/2]+l

This proves that, for odd t,

(2.8)

q a(n,t)-pr a(n-l,t) + p2s a(n-2,t-1)

(pZs)t q<Z-<-z>
(n+l-3t ]/2

k=O \ I--tk+t /

From the proof for (2.9) we can see that it continues to hold for even values of

t also.

Lastly, we consider the term X(n) for n 6m+4. We have

X(n) q a(n,[n/3]) pr a(n-l,[(n-l)/3]) + ps a(n-2,[(n-2)/3])

t=[n/3]

[ (n t+l pr+ (ps)(pZs) -2tt-2) Ql:<n-a-’)/’] + f,(n-2,t,1)( t )(h-2t-3t+I/ t:[(n-2)/3]

n+/ [(n+l-3t)/2]

k=O \tlk t+k /

where t=[(n+l)/3]. Similarly, it can be seen that the relation (2.10) holds for n 6m

and n=6m+2. Now on combining (2.5),(2.9) and (2.10) we get

[(n+l)/3]
qD,(O,O) prDn-z(O,O) + p=sDn-=(O,O) : ;- a(n+l,t). (2.11)

t=O
If we start with odd vanes of n instead of even values we get the relation

(2,11).We can obtain in a similar way that
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where

Dn(0,O) E (n,t),
t=O

(n-1)/2
r E [n-j R(<n-l)/2)-J Lsq)J,

n/2
Rn/=’ + n+l (n-j)j: -3-

for odd n"

R<n/2)-J (sq)J, for even n"

(2.12)

nd for t O,

(n,t) (s2p)t )/22-R (sq)R

Now Lemma I follows from the following relation"

Dn(s,O) Dn(O,O) + (-I)n-1 s D-I(O,O). (2.13)

3. PROOF OF THE THEOREM 2. For i 1,2 n, we set

xi

F ] f(x) dx,
xi-I

s"(xl) Mi and s"(xo) Mo. (3.1)

We see that for x e [xi-1, x]

s’(x) -(I/2h)Mi-1 (x-x)2 + (I/2h)M(x-x-x)2 + c

where i 1,2 n and c’s are the constants. As s’(x) C[O,I], we have

Mh ci/x cl, i 1,2 n-l.

(3.2)

(3.3)

From (3.2) we get

s(x) (i/6h)[M,-z(x,-x)s + Mi(x-x,-x)s] -(i/2)c,[(x,-x)-(x-x,-1)]+d,. (3.4)

Continuity of s(x) yields

h(ci +ci/m) 2(di/m-dl), i 1,2 n-l. (3.5)

Applying the interpolatory condition (2.1), we obtain

6F, (hS/4) [M,- + M,] + 6d,h, i = 1,2 n. (3.6)

Equations (3.5) and (3.6) give

(hS/4)[M,/ -M,_x]+3h2(ci+c,+1) 6(F,/x-F,), 1=1,2 n-i (3.7)

Now using (3.3), we get

Mi+mha/4 3Miha M+/--mhS/4 + 6h2ci/m 6(Fi/I-Fi).

Finally we get the system of linear equations,for i 2 n-l,as

Mi+mh/4 + llMih/4 + llM+/--mh/4 + Mi-mh/4 6(Fi/m-2F,+Fi-z)h-Z. (3.8)

From (3.3) and (3.7)and that Mo O, we obtain

24c 24h- (F_ -FI) 12Mmh- M2h.

Hence the boundary condition gives

Mah/4 + llM1h/4 + Mn-zh/4 6(Fm -Fm)h-m. (3.9)
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Thus (3.8) id (3.97 give n-I equations. Since hy the boundary conditions Mn
Mo O, the spline exists if the system of linear equations in M’s gives unique

solutions. We take q llh/4, r llh/4, s : h/4 and p : h/4. We have Q > 0 and R > O.
Consequently by Lemma i. the solutions exist for odd n. In order to prove that it is

also true for even n, it is sufficient to show that

D,(s,O) D(O,O)- s l-z(O,O) > O.

From (2.2) and (2.12) we get
[(n-l)/3]

Dn(s,O) u(n,O) s (n-l,O) + - {u(n,j) s (n-l,j)} + u(n,[n/3]). (3.10)
j=l

We have

afn,O) s B(n-l,O) Qn/2 + n I___) Q(n/2)-w (pr)W > O. (3.11)
k=l

In order to show that the remaining part is also positive, we first observe from

(2.7) that

f(n,t,k-l) (n-3t-2k+2) fz(n-l,t,k-l)
n-3t

Cnsequently,

u(n,j) s B(n-l,j)

In a similar way we can show that the inner sum is positive for even values of t.

This completes proof of the theorem.
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