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ABSTRACT. In this paper, a Green’s matrix function for higher order two point
boundary value differential matrix problems is constructed. By using the concept of
rectangular co-solution of certain algebraic matrix equation associated to the
problem, an existence condition as well as an explicit closed form expression for

the solution of possibly not well-posed boundary value problems is given avoiding
the increase of the problem dimension.
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1.- INTRODUCTION.

Two-point boundary value problems for higher order matrix of differential
systems of the type

xPlea X XM e A x =60 0 stsb

(1.1)

1

f{sux"'“(o)+|-”x"‘”(b)}=r ; 1s1sgq.
J=1

where f(t), X(t), r, are matrices in €™

cnxn

for 1sisq and Ak, E”, l:’lj are matrices in

for 1s=i=q, 1sj<p, O<ks=p-1, appear in different physical problems [1,chap 1].

The standard approach to study such problems is based on the consideration of
an extended first order problem

Y (t) = C Y(t) + F(t); BaY(a) + BbY(b) = R. (1.2)

where Y = (X,X',..., X" F

(0,...,f)'r are matrices in C™*" Ba and Bb are

appropriate matrices in C“qx"p, R is a matrix in C"qx", and C is the companion
matrix defined by
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[ o 1 0 }
C = (1.3)
1
L - Ay~ A - -Ap_l ]

See [1]1[3]1114].

This classical approach has the inconvenience of the lack of explicitness due
to the relationship X(t) = (I,0,...,0] Y(t), as well as the computational cost due
to the increase of the problem dimension. In particular it needs the computation of
the matrix exponential exp(tC) and it is well known that it is not an easy task
[11].

These inconveniences motivates the study of some alternative approach that
avoids the increase of the problem dimension. In [4], a solution for a very
particular second order problem of the type (1.1) is proposed avoiding the increase
of the problem dimension, however, the method is not applicable to more general
problems. In a recent paper [7] a method for solving problems of the type (1.1) for
the case p=2, without considering the extended system (1.2) have been proposed.
Results of [7] are based on the existence of an appropriate pair of solutions of

the characteristic algebraic matrix equation

2
2%+ Alz + AO- 0. (1.4)

Unfortunately, equation (1.4) may be unsolvable [6] and in such case, the
method given in [7] is not available.

The aim of this paper is to study an existence condition for the solution of
problem (1.1) as well as an explicit expression of a solution of the problem in
terms of a generalized Green’s matrix function G(t,s), taking advantage of the ideas
developed in [7] but without the restriction of the existence of solutions of the

associated algebraic matrix equation

P p-1 -
AR Ap_1 ARERE SRR AIZ + A 0. (1.5)

The paper is organized as follows. In section 2, we introduce the concept of
rectangular co-solution for the equation (1.5) and we state some results recently
given [8], that will be used in the following sections. In section 3, we construct a
generalized Green’s matrix function of problem (1.1) by using an appropriate set of
co-solutions of equation (1.5) and a procedure analogous to the one developed in [5]
for the scalar case. Finally, in section 4 an explicit closed form solution of

problem (1.1) in terms of a generalized Green’s matrix function is given.

If S is a matrix in ™", we denote by s* its Moore-Penrose pseudoinverse. We
recall that an account of uses and properties of this concept may be found in [2]

and that the computation of S* is an easy matter using MATLAB [10].
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2.- RECTANGULAR CO-SOLUTIONS OF POLYNOMIAL MATRIX EQUATIONS AND APPLICATIONS.

We begin by introducing the concept of rectangular co-solution of equation

(1.5), recently given in [8].

DEFINITION 2.1. We say that (X,T) is a (n,q) co-solution of equation (1.5) if X
ec™ Tec™, X#0 and

XTP + A XTP™' +...+ AX=0. (2.1)
p-1 (4]

DEFINITION 2.2. Let (Xi.T’) be a (n.ml) co-solution for 1sisk. We say that
{(X‘.T‘). 1=i=k } is a k-complete set of co-solutions of (1.5) if the block matrix
- 1-1
W—(WU). with NU= ijj for 1sisp, 1sjsk, is invertible.

THEOREM 1. ([8]) Let C be the companion matrix. If M = (M”) with MU e c™"y,

is a nonsingular matrix in PP, 1=i=p, 1sjsk, and if the Jordan canonical form J
of C is J = diag(Jl,...,Jk), with Jj e C"y "y, m, +...+ m = np, such that
Mdiag(Jl....,Jk) =CM (2.2)

then {(MIS,JS). 1ss=<k} is a k-complete set of co-solutions of (1.5).

COROLLARY 1.([8]) Let us suppose the notation of theorem 1, and let ((M“,J‘),
1<s<k} be a k-complete set of co-solutions of equation (1.5). Then, the general

solution of the matrix differential equation (1.1) is given by

k
X(t) = z M exp(tJ )D_ (2.3)
s=1

where Ds, is an arbitrary matrix in €™s*™. If W is the block partitioned matrix
associated to the set ((MH.J'), 1ss=k} by definition 2.2, the only solution of
(1.1) satisfying the Cauchy conditions X('”(O) = Cj, Osjsp-1, is given by (2.3),

where the matrices D‘, for 1sis<k, are uniquely determined by the expression

Dl (:o
_ oyl :
=Wl (2.4)
D
k cp-l

For the sake of clarity in the presentation, we recall a result about the
solutions of rectangular systems of equations, that will be used in the following

sections.

THEOREM 2. ([13,p.24]) The matrix system SP=Q, where S, P, Q are matrices in
c™", ¢ and ™ respectively, is compatible if and only if S S‘Q = Q and in
this case, the solution of the system is given by

P =5s'Q+ (I -s's)z,

where Z is an arbitrary matrix in c™r.
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Note that under the conditions of theorem 2, a particular solution of system
SP=Q is given by P=s'Q.

3.- CONSTRUCTION OF GREEN’S MATRIX FUNCTIONS.
Let us consider the homogeneous problem

(p-1)

xPea X oo+ A xM e A X =0 ostsp (3.1)

f{ E,, x99 0y + F,, X9 () } = 0; 1sisq. (3.2)
1

and let ((M1|’J1)’ 1=i=k} be the k-complete set of co-solutions of equation (1.5)
provided by corollary 1. Then, the general solution of equation (3.1) is given by

k
X(t) =ZU1‘”D. (3.3)
i=1

m Xm

where D‘ is an arbitrary matrix in Ci and

U‘(t) = Ma: exp(tJi).

i=1,...,k.
Let us consider the matrix function G(t,s) defined by

k
ZU|(t)P|(s), Ostss
i=1
G(t,s) = (3.5)
k
Zunqum' sstsb
i=1

where the €"i1*™ valued matrix functions P|(S)' Q‘(s) have to be determined so that

1.- G(t,s) is a continuous matrix function in [0,blx[0,b] and moreover,
8(J)G/8t(1) is a continuous function in (t,s), for (t,s) in the triangles Ost<ssb
and Oss<tsb for J=1,...,p-2.

2.- If 1 is the identity matrix in €"*", one gets the jump discontinuity

3P g Pt

(s+0,s)- W

(s-0,s)=I. (3.6)
at P v at

3.- As a function of t, G(t,s) satisfies (3.1) and (3.2) in [0,b], if t=s.

From (3.5) the continuity condition at t=s of Green’s function gives us that

k k
ZU‘(S)P‘(S) = ZU‘(S)Q‘(S).
i=1 1=1
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or

k
ZUI(S)(P'(S) - q(s)) =o. 3.7
i=1

On the other hand, by the continuity condition of the partial derivatives of

the Green’s function until order p-2 at t=s, we obtain

k
)k:u"’(s)P () =Y U (s)0,(s) 3= 1,072
A ! 2!

and then
x - (3.8)
ZU(“(S)(P‘(S) -Qs)) =0, J=1,....p2.
12 !
From (3.5) and (3.6) it follows that
Kk
ZU(p'l)[s)(Pi(s) -q(s) = L (3.9)
i=1 !
Let us write
R‘(s) = P!(s) - Q‘(s) , i=1,...,k (3.10)
then, conditions (3.7) - (3.10) may be written in the compact form
Rx(S) 0
u(s) =1 (3.11)
o]
Rk(s) I
where
Uts)....... U (s)
U(s) =
(3.12)
(p-1) (p-
Y (s) ... Ukp Yis)

Note that the matrix function U(s) defined by (3.12) is invertible for all s,
because we may decompose U(s) in the form

U(s) = W diag (exp(sJ‘), 1sisk} (3.13)
where sz ....... Mak
ool ) (3.14)
LIRS N
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is invertible since ((Mxl‘Jx)’ 1=i<k} is a k-complete set of co-solution of equation

(1.5).

m Xn

Let us denote Y = [Y ] with Y € C'i the inverse of the

1) 1Sisp,1=jsk 1)

matrix W. Then, from (3.11) and (3.13), it follows that
Ri(s) = exp(-sJ|) Ylk ; 1sisk (3.15)

If we impose that G(t,s) defined by (3.5) satisfies the initial conditions
(3.2), we obtain

’21{5;, Zluli—t’(o)Pu(s) +F, -zluzj-i)(b)o.(s)} -0, (3.16)
i=1, ,q
From (3.10) we have
Q,(s) =P, (s) - R, (s), t=1, ... .k (3.17)

Substituting (3.17) into (3.16), it follows that

& k
f {El Yul e s+ F  Ful M @e s - R (s)]} =0
3=1 i m=1 R L] m

and

f (E u9 ) + F,, ""’(b)]P (s) =
ll_’l n L]

m=1 j=
(3.18)
& (J-1)
) f F,, u ™ ) R (s), =1, ... .q.
w1 =1
Let S be the block matrix
= gt v (j 1)
S [JZI[E’j (0) + F '3 (b)]] (3.19)

1515q, 15wk

and let S* be the Moore-Penrose pseudoinverse matrix

+ | Xn

S = [T-|]1s.sk,1sxsq' with T_l € C . (3.20)
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Note that the conditions (3.18) may be written in the form

P (s) i fr U™ (bR (s)
1 o251 1j = »

(3.21)
’ & (j-1)
P (s) Z ir Y (b)R_(s)
k m=1)=1 al =

From theorem 2, the equation (3.21) is solvable if and only if

& (j-1) & (j-1)
Z EF U (bR (s) ): fr u (b)R (s)
1j m m 1) m [ ]
m=1j)=1 m=1j=1
(3.22)
i fr v (bR (s) i fr v (bIR (s)
m=1j=1 o = - m=1j=1 . -

Let us suppose the algebraic equation (3.21) is compatible. Then, from theorem
2 and (3.20) a solution of (3.21) is given by

k
(J-1) a

P, (s) Ty vee T f ZF”U_ (b)exp(-sJ )Y

J=1m=1
' ' ' & (j-1)

- -sJ )Y

P (s) LA T f quju_ (b)exp(-sJ )Y

J=1m=1

and then,
) (-1 (3.23)

P (s) = f t ZT” F, U, (b) exp(-sJ ) ¥ __ .

1=1 j=1 m=1
i=1, ... ,k
Hence and from (3.15),(3.17) it follows that

(s) =P (s) -R (s) =
4N ' (3.24)

k
(3-1) _ - exp(-sJ ) Y
= [ f T,, FIJ u (b) expl sJ_) Y_p] exp ' 1p

171 J=1 m=1

Thus the following result has been established

THEOREM 3. Let ((MI‘.J‘), 1sisk} be the k-complete set of co-solutions of
equation (1.5) given by theorem 1 and let (U‘(t). 1sisk} be defined by (3.4). If
condition (3.22) is given, then the boundary value matrix problem (3.1) - (3.2) has
a generalized Green’'s matrix function defined by (3.5), where P (s) and Q (s) are
given by (3.23) and (3.24). ‘ ‘
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REMARK. If the matrix S has full rank, then, from (2,p.12] s's=1, (3.21) has

only one solution and there exists a unique Green’s matrix function.

- SOLUTION OF THE NON-HOMOGENEOUS BOUNDARY PROBLEM.

Let us consider the intermediate boundary value problem,

x'Ps A P Ve e Axx(“ +AX = £(t)
(4.1)
iE X9V +F xYVw) =0, 1=1, ... .,q
1) i)
351
where f(t) is a €™ valued continuous matrix function in [0 b].
Let X(t) be defined by
b
X(t) = [G(t,5) £(s) ds =
o
(4.2)

t b
- I G(t,s) £(s) ds + J' G(t,s) f(s) ds.
[o] t

Taking derivatives and using the Leibniz’ rule, we have

t
. 8 G(t, >
X' (t) = J'o {2:5) £(s) ds + Glt,t) £(t) + [ 26008 £(s) as -

b
_ - d G(t,s)
G(t,t) £(t) Io 25 £(s) as.

¢ 02 b .2
X' (t) = I G(t,s) f(s)ds + 8 G(t,t) £(t) + I 8°G(t,s) f(s)ds -
o at? 8t at?

b 2
SEEICHS = [ ZELS) pi) as.

at?
(p-1)
xP-1)( j’ 9~ G(t.s) (g gs
(p 1)
8a®G(t,s) 8" Vg(t, t-0)
x® ) = J’ 8_6Lt.2) p(s) g + 2 CLLt=0) (y) o
at® at'P
a"”c.(t s) a® VG (t,t+0)
I £(s) as - 2—CLt0) £y &
at'P”
(p) (p 1) (p-1)
= +I 8 G(t s) f(s) ds +[ (G(:,t 9.2 (Gf:;um]“t) -
at'P” at'P
J 8 G(t s) f(s) ds + f(t).
Tt
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Hence and from the properties of G(t,s) it follows that

X(p)+ A x(p-t)+ A x(1)+ AX =
p-1 1 o]
(p)
Ia 6t.5) £(s)as + (1) +
o 4at'P
(p-1) b
I 0" G(ts) i)y gs+ ... + A IG(t,s) f(s) ds =
p 1 (p 1) 0
Y [
b1 5"®G(t,s) 3" MG(t,s)
I 8 _Glt,s), , & Sls), . pces) | fis)ds + £(t) =
0 at("’ p-1 at(p-l)

= f(t).

and

f E xUV ) +F x”'“(b)}=
PAWE 1)

b (j-1) (j-1)
J‘ t{ g 8 6lo,s) F, 3 (tj:f:;;s) } f£(s) ds = 0,
ARG atO-v 3 at

i=1,...,q.

Now let us consider the auxiliary problem

(p) (p-1) (1)
X+ Ap~l X + L.+ AIX + AOX =0 (4.3)
(3-1) (J-1) _
j21E|J X (0) + FIJ X (b) = ro (4.4)
i=1,...,q.

Then, from the corollary 1, the form of the solutions of (4.3) is

k
X(t) = z u_(t)q,.

m=1

The boundary value conditions of (4.4) give us the next expression

k
(j-1) (3-1)
,Z,{E‘J ...;U‘ (@ +F ZU (b) Q} r,

m=1

or k
(3-1) (J-1) -
f Z{EU u (0 +F U (b)} Q=r,.

1
J=1 m=1 " J
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If we set the last expression in matrix form

Ql rl
s| |=|r, (4.5)
Q, T

From theorem 2 of section 1, under the compatibility condition

ss*|r |=]r |, (4.6)

and taking into account (3.20), a solution of (4.5) is given by

T ..... r
Ql 11 1q 1
= r

.1

Qk Tkl ..... qu rq

Thus, Q-= 2 'l'-l T 1 sm sk, and a solution G(t) of (4.3) - (4.4) is given by

the next expression

G(t) = Z u (t)[ )tr r] @mn

m=1

Thus, the following result has been proved:

THEOREM 4. Let ((Ml‘,J‘). 1sisk} be a k-complete set of co-solutions of
equation (1.5) and let (Ul(t). 1sisk} be defined by (3.4). If the conditions (3.22)
and (4.6) are satisfied, 1i.e., the algebraic equations (3.21) and (4.5) are

+
compatible, S 1s defined by (3.19), S'= [T-l]1$-$h,1$ISq is the Moore-Penrose
pseudo-inverse and f(t) is continuous, then the boundary value problem (1.1) has a

solution given by

b
X(t) = J' G(t,s) £(s) ds + G(t),

where G(t), is given by (4.6) and G(t,s) is the generalized Green’s matrix function
constructed by theorem 3.
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REMARK. It is interesting to recall that the Jordan canonical form of a matrix
may be efficiently computed with MACSYMA [9] and the matrix exponential of a Jordan

block has a well known expression [12,p.66].

In the next example, we construct a generalized Green’s matrix function for a

not well-posed boundary value matrix problem.

EXAMPLE Let us consider the second order differential equation,

X't (t) + A1 X' (t) + Ao X(t) =0 telo,1] (4.8)

Eu X(0) + F“ X(1) =0

(4.9)
EZZX'(O)+F22X'(1)=0
and
[ 1 _[oo _[o1 _[oo
A1‘[0—2]"‘0’[01]";:: [01]'F11 [01]'
(4.10)
00] p _[oo
2 | -ee |’ 22 01
. M=
and 100 9
_v|lo1ttie
diag[exp(le)]—e 001 ¢t
000 1

Thus, a complete set of co-solutions is

s

(BEN NS

and we can compute the expressions Ux(t)’ Uz(t). theirs derivatives and Rx(t)'
Rz(t).

1 v _[O
Ul(t) = [o]' Ul(t) = [O]n

2
_ot[ v 1-t —tP2eta R R e e 7
U, (t) e[ 0 1 t-1 ], Uz(t) e[ 01 t ].

Rl(s) = exp(-le)sz = [-1,0],

&2
|t
Rz(s) = exp(-st)Yzz =e o 1-s

0 1
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From the boundary value conditions (4.9) the corresponding matrix S defined by
(3.19) takes the form

[eNeNeoN)
® OO0
-
OO + =
LR

that clearly is not invertible. Thus problem (4.8)-(4.10) is not well posed,

however, the equality

a b (VY]
s|o e:: - els | 01-s
0 e (1-s) 00
0 e *(1-s) 0 2-s

means that the corresponding algebraic equation (3.21) is compatible. Then, the
Moore-Penrose pseudo-inverse is given by

0 o o0 o
1+¢! et 0o e7!

=] et et o o

-1t et 0 o

Therefore, we can obtain Pl(s) and Pz(s),

Pl(s) = [o0,0],
0 1
P,(s) =e" |0 1-s
0 1-s
and : Q,(s) = [1,0].
2
1 1l4s-
_ -8 2
Qz(s) =e 0 o
(o] -s

Finally, a generalized Green’s matrix function of problem (4.8)-(4.10) is given

by
2 2
e Ost<s
o] -st-s+t+1
G(t,s) = 4
2 2
1 0 eee | 1 s; +;—-s-1
+e " s<ts1.
00 0 -st
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