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ABSTtCT. We consider functions f(z)= z + that are analytic in the unit disk and satisfy

there the inequality Re (f’(z)+ zf’(z)) > a, < 1. We find extreme points and then determine

sharp lower bounds on Re f’(z) and Re (f(z)/z). Sharp results for the sequence of partial sums

are also found.
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1. INTRODUCTION.
Denote by A the family of functions f(z)= z +... that are analytic in the unit disk

A {z:lz < 1} and by 5’ the subfamily of functions that are univalent in A. Let R be the

functions f in A for which Re(f’(z)+ zf’(z)) > 0,z E A. Chichra [1] showed that R C S. In fact,

he proved that Reft(z) > 0, z E A, and hence R C C, the class of close-to-convex functions. R.
Singh and S. Singh [4] showed that R C S*, the family of starlike functions. They later found in

[5] for f_R and zA that Re(f(z)/z)> 1/2 and that the partial sums S,(z, f satisfy

Re(S,(z,f)/z) > 1/3. Neither of these results is sharp.
In this note, we find the sharp bounds. Our results will be put into a slightly more general

context. Denote by R(c), c, < 1, the subfamily of A consisting of functions f for which

Re(f’(z) + zf’(z)) > a,z A. Denote by P(a),a < 1, the subfamily of A consisting of functions f
for which Ref’(z) > a,z A. It was shown in [5] that R(o)C S" for a.> 1/4. We improve this

lower bound and also find the smallest a for which R(a)C S. Our approach in this note will be

to characterize the extreme points of R(a), which lead to sharp bounds for certain linear

problems.
2. MAIN RESULTS.

THEOREM 1. (i) The extreme points of R(c) are

f. (2c 1)t + (2c- 2) g Io9(1 zt)Ix(z) Jo dr, Ix 1.

(ii) A function f is in R(c)if and only if f can be expressed as

F(z) [ fx(z)d#(x),x
where p varies over the probability measures defined on the unit circle X.

PROOF of (i). Hallenbeck [2] showed that the extreme points of P(c) are

{(2c- 1)z + (2c 2) log(1 zz), Ix 1}. (2.1)
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Since (zf’)’ f’+ zf", we have f E R(o) if and only if zf’ P(o). Hence the operator L
defined by L(f)= [(f(t)/t)dt is a linear homeomorphism L:P(a)--,R(o)and thus preserves

extreme points.

PROOF of (ii). The family R(o)is convex and is therefore equal to its convex hull. This

enables us to characterize f R(o) by F(z) | fz(z)d#(z).x
COROLLARY . ff(z)=z+ , a,z"R(a),then la.I _<2(1-)/"=,

The result is sharp.
PROOF. The coefficient bounds are maximized at an extreme point. Now fz(z) may be

expressed as
O Xn Znfx(z)=z+2(1-a)

n zl =1, (2.2)
n=2

and the result follows.

COROLLARY 2. If I e R(), then

PROOF. From (2.2) we see that I/(z) < + 2(1 -a r" z r. Letting rl we
/nZ,=2n2get

If(z)l < +2(1-o ---1 =(1-a --1 +a.

Corollary 2 shows that the family R(a) is bounded in A for all real a, a < 1, even though its

functions may not be univalent. Note from (2.1) that the extreme points of P(o) are unbounded

in A for all a < 1.

In the next two theorems, we will be looking at continuous linear operators L(f)= Reff and

L(I) R(f(z)/z) acting on R(a). It therefore suffices to investigate the extreme points in

determining minima. Since R(a) is rotationally invariant, we may restrict our attention to the

extreme point

cx z._?."g(z) (2a- 1)z- 2(1 -a)
o

dt z + 2(1 -a) n. (2.3)
n=2

THEOREM 2. If jr R(a), then

Re f’(z)> (1 a)(2 log 2- 1)+a (z E A).

The result is sharp.
PROOF. We need only consider g(z) defined by (2.3). We have

g’(z) (2a-- 1)-- 2(1 --a) log(1 z)

In [2] it is shown that

Re log(l-z) log(l + r)

(2.4)

(2.5)

so that Re g’(z) > (2- 1)+ 2(1-a) log(1 + r)
r Letting r--,1, the result follows.

The case a 0 is found in [5].
(21og2_

rg,.2COROLLARY 1. R(a) C S for a _> -\, =ao, -0.63 and R(a) S for a < ao.

PROOF. We know that P(0) C S. Since (1 a)(21og2 1) + a 0 for a ao, the first part
is a consequence of Theorem 2. The result cannot be extended to a < ao because gt(- 1) 0 at

a=cro. Thusg’(-r)=0forsomer=r(a)<l whena<ao.-- (--1)k
iog 2_COROLLARY 2. cos kO >_ -k +k=l k+l k=l
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PROOF. From (2.3) we have

Re g’(z) + 2(1-o) rkcs kO zl r,k+lk=l

which according to (2.4) and (2.5) is minimized when 0 r. We then let rl.

In [5] it is shown that Re(f(z)/z)> 1/2 for all f in R. The next theorem improves this
2lower bound to --- . 0.645. But first we state

cx (_1)-/1_ rLEMMA I.
t i’

n=l
oc , (_1)-+1PROOF. 2 , so that

zn)-n=l n=l n=l

(- i)"+
n=l

_I -- _r

n=l

THEOIM 3. If f e R(c), then

RefZ---))>(1-or---l)+o (z e A).

The result is sharp, with the extremal function g defined by (2.2).
PROOF. Again, we need only consider

g(z) (2_1)_2(1_)I zlog(1-t)
z o tz dr.

Setting vz, we may write

(2c- I)- 2{1 Iog(1- vz)

Since Rc ( Io(1 w)) > Io(1 + w ) w < I we get om (2.6) that

R "---’ >_ (2- )+ 2(-)I’ Io9(1 + 9( r)
o vr dv r

But from (2.3) we see that

o (_)-+2(1-c) n2n=2

o i),.>i+2(1--c) Z (n+l

An application of Lemma 1 yields

Re f(-2z---) >_ g(-r) > + 2(1- c-1): (1- c--1)+ c.

In [5], R. Singh d S. Singh showed that R() C S* for

This enabled them to conclude that R(a)C S" for a >_ -1/4. Our sharp bound in Theorem 3

gives the following improvement.
6 71-2COROLLARY. R(a) C S" for a >_
24- r

-0.2738.

PROOF. The result follows from Theorem 3 upon solving the inequality
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The next lemma, due to Rogosinski and Szeg6, will be needed for our results on partial

sums.

LEMMA 2 [3]. coskO >
k=lk+l 2"

THEOREM 4. Denote by S,(z,f) the nth partial sum of a function f in R(o). If f E R(o),
then

(i) S,(z,f) P(a),
S,(z,f) 1-t-o(ii) Re z > 2 z A.

The results are sharp, with extremal function 9(z) defined by (2.3) and n 2.

PROOF of (i). As before, it suffices to prove our results when f(z)= 9(z). We have

n z,_l n--
Stn(z,g)=l+2(1-a) -----1+2(1-a) rkcskO

k+lk=2 k=l

By Lemma 2 and the minimum principle for harmonic functions,

Re z,g) > + 2(1 c)( ) a

PROOF of (ii). We have

n-1 rkcos kOn S.(z,) + 2(-) ;-),.k=l

Since 1/(k + 1) is decreasing, we use Lemma 2 and summation by parts to obtain

(2.7)

(2.8)

Substituting inequality (2.8) into (2.7) and applying the minimum principle, we get

z >1+2(1-a 2

In the special case c 0, (i) gives the result found in [5] and (ii) improves the estimate of

1/3 to the sharp bound of 1/2.

REMARK. This work was completed while the author was a Visiting Scholar at the

University of Michigan.
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