
Internat. J. Math. & Math. Sci.
VOL. 19 NO. (1996) 177-184

177

LINEAR PROGRAMMING WITH INEQUALITY CONSTRAINTS VIA
ENTROPIC PERTURBATION

H.-S. JACOB TSAO

Institute of Transportation Studies
University of California, Berkeley
Berkeley, California 94720, U.S.A.

SHU-CHERNG FANG

Graduate Program in Operations Research
North Carolina State University

Raleigh, North Carolina 27695-7913, U.S.A.

(Received January II, 1994 and in revised form May 22, 1995)

ABSTRACT. A dual convex programming approach to solving linear programs with inequality con-

straints through entropic perturbation is derived. The amount of perturbation required depends on the

desired accuracy of the optimum. The dual program contains only non-positivity constraints. An e-

optimal solution to the linear program can be obtained effortlessly from the optimal solution of the

dual program. Since cross-entropy minimization subject to linear inequality constraints is a special

case of the perturbed linear program, the duality result becomes readily applicable. Many standard

constrained optimization techniques can be specialized to solve the dual program. Such specializa-

tions, made possible by the simplicity of the constraints, significantly reduce the computational effort

usually incurred by these methods. Immediate applications of the theory developed include an entro-

pic path-following approach to solving linear semi-infinite programs with an infinite number of ine-

quality constraints and the widely used entropy optimization models with linear inequality and/or

equality constraints.
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1. INTRODUCTION.

Since Karmarkar’s projective scaling algorithm was introduced in 1984 [1], various interior-
point methods [2,3] have been proposed to compete with the classical simplex method [4] for linear
programs. Among many new research directions, an unconstrained convex programming approach
was proposed [5], in a framework of geometric programming [6], for solving linear programming
problems in Karmarkar’s form. The approach involves solving an unconstrained convex program-
ming dual problem and converting the dual optimal solution to an e-optimal solution for the linear
program. The work was extended for linear programming problems in standard form [7] with a qua-
dratically convergent global algorithm, based on the curved search methods [8]. This paper further
extends the approach to solve linear programming problems with inequality constraints directly
without a conversion to the standard form. In this way, no artificial variables are added and the
dimensionality of the original problem is kept. In accordance with the earlier work, we derive the
geometric dual, although the same dual program can be derived using the Lagrangian approach.
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The motivation of this study is twofold. First, Fang and Wu [9] recently proposed an entropic

path-following approach to solving linear semi-infinite programs with finitely many variables and

infinitely many inequality constraints. Their algorithms require solving an entropically perturbed

linear program with finitely many inequality constraints. After introducing artificial variables, the

resulting equality-constrained convex program is no longer an entropically perturbed linear program

due to the absence of the entropic terms for the artificial variables. Theretbre, the algorithms pro-

posed in [7] is no longer applicable and an algorithm for solving directly the entropically perturbed

linear programs with inequality constraints is needed. Second, the widely applicable entropy optimi-

zation problem with linear inequality constraints turns out to be a special case of the perturbed linear

program being treated. Although such minimization problems subject to equality constrmnts have

been used widely and treated extensively in recent literature [e.g. 10-16], the inequality case has

received little attention. Nevertheless, the inequality formulation is particularly appealing when point

estimates for the linear moments of the underlying distribution, i.e. the right-hand sides of the equal-

ty formulation, cannot be accurately obtained but the interval (range) estimates for the moments are

available.

In this paper, we extend the geometric programming approach to derive the dual program in

Section 2, discuss other applications of the duality results in Section 3, and conclude the paper in

S.ection 4.

2. A DUAL APPROACH WITH ENTROPIC PERTURBATION.

Consider the following (primal) linear program:

Program P: Minimize

subject to

cTx

Ax _< b (2.1)

x > 0. (2.2)

where c and x are n-dimensional column vectors, A is an m x n (m < n) matrix, b is an m-

dimensional column vector, and 0 is the n-dimensional zero column vector.

The linear dual of Program P is given as follows:

Program D: Maximize

subject to

where w is an m-dimensional column vector.

bTw

ATw _<c

w<O

Following the approach developed in [5], for any given scalar tx > 0, instead of solving Program
P directly, we tackle the following nonlinear program with an entropic perturbation:

Program Pt: Minimize fla(x) cTx + Ixxjlnxj
j=l

subject to Ax < b (2.3)

x > 0. (2.4)

Note that the entropic function xlnx is a strictly convex function well-defined on [0, ,,,,), with the con-

vention that 0In0 0. It has a unique minimum value of-1/e at x l/e, where e 2.718

Like all interior-point methods, we make an Interior-Point Assumption, namely, Program P has

an interior feasible solution x > 0. Under this assumption, Program Pt is feasible for any Ix > 0.

Moreover, since 0In0 0, cjxj + xjlnxj --> +,,,, as xj --> ,,,,, and xjlnxj is strictly convex over its domain



LINEAR PROGRAMMING WITH INEQUALITY CONSTRAINTS 179

for each j. Program Pu achieves a linitc minimum at a unique point x" e R’:. for each kt > O. More

ntcre,,ungly. as discus,,cd n [7], if Program P has a bounded feasible dommn ( c., the Bounded

Fca,,bic Dommn Assumption). then as lt.t --)0 the optimal solution of Program Pa approaches an

optimal solution of Program P. To derive the geometric dual of Pt. constder the following smplc

inequality:

lnz<z-I for z>0 (2.5)

Note that this inequality becomes an equality if and only tf z=l.

For any l.t > O, w, R (i m), and x > 0 (j n), we define

Ia,,w,- c,),’la] -I
ez for n.

xj

In this way, xj > 0 implies z > 0 and, by inequality (2.5), we have

[(L,w,-c)/u] -!

[(/_aLw,-c)/kt -1 lnxj < e

xj

Multiplying both sides by x>O and rearranging terms lead to

[(auw,-c)/la] -Im

xj[(aUw,-cj)/ll]_ e
I=1

_< xjlnxj

(2.6)

Note that this inequality holds even if x
we obtain

0. Now, multiplying both sides by la and summing over j,

If (i) xj

Zxj auw,
j=!

(..ra,jw,-cj)/lt.l -1

te < ZCjX q.. g’xllnx.
j=l j=! j=l

_> 0 (j n) satisfies _,ajxj<_b, and (ii) w,<0, for 1,2 m, then
J=l

[,i i] ][jl rn

Zxj aijw ajxj w, > b,w
j=l i=l = =1

Therefore, for any x_>0 such that Ax < b and w<0,

[(Luw,-cj)/la] -1

biw l.te
l=l J=l

(2.7)

n
< qxj + I.txjlnxj (2.8)

J=l j=l

Recall that the right-hand side of (2.8) is exactly the objective function of Program P. We now

define the following geometric dual program Dt of Pt:
rn [(Luw,-cj)/la] -1

Program Dg: Maximize d(w) bw,- t.te subject to w _< 0.
=1 j=l

Program Dt is a convex program with only non-positivity constraints and the sum in each of the

n exponents in the second term of its objective function is simply the amount of violation of the

corresponding constraint in Program D. More importantly, if Program Dt attmns a finite optimum at

w*(l.t) for every p.>O, then w*(/u) approaches a feasible solution of Program D as la approaches O.

Program Da can also be derived via the Lagrangian approach. Note that this dual program differs

from the one obtained for standard-form linear programs in [7] only in the extra non-posiuvity

requirements. While it is usually the case and easy to see that, in the Lagrangian max-min denva-
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tion, a change of sgn in a primal constraint results in a change of range of the corresponding dual

variable, ths causal relationship is not apparent in the geometric programming derivation. Our
derivation, in contrast with its counterpart for the equality-constrained program, illustrates the

difference in deriving the geometric dual program between the equality-constrained and the

inequality-constrained cases.

We now turn to establishing the duality theory.

THEOREM 1. (Weak Duality Theorem) If Prt is feasible, then Min(Pla > Sup(D0).
PROOF. Inequality (2.8) implies that frt(x) < d0(w as long as x is primal feasible and w is dual

feasible. The weak duality follows consequently. 113

THEOREM 2. Assume that (i) x* is primal feasible and (ii) w* is dual feasible. If

[(a,jw,’-cj)/lal
xj =e for n, and (2.9)

w aux -b =0, for i=1,2 m, (2.10)

then x* is an optimal solution to Program Pg and w* is an optimal solution to Program Dg. More-
ov.er, Min(Pg) Max(D).

PROOF. Inequality (2.8) becomes an equality if and only if both inequalities (2.6) and (2.7)
become equalities, for each j=l,2 n. But, inequality (2.7) becomes an equality if and only if

w ajxj-b =0,i=1,2 m.

Recall that inequality (2.5) becomes an equality if and only if z 1. Hence inequality (2.6) becomes
an equality if and only if

[(,a,jw,-cj/la] -1

e
zj= =1

xj

or, equivalently,

[(e%w,-q)/t} -I

xj=e

By equations (2.9) and (2.10), inequality (2.7) becomes an equality. By Theorem 1, the feasibility of

x* and w* implies their optimality. Vi

THEOREM 3. The objective function drt(w of Program Drt is concave. If the constraint matrix

A in Program P has full row-rank, then drt(w) is strictly concave.

PROOF. The kl-th element of the gradient vector of the dual objective function drt(w) is

c3drt(w [(.,a,jw,’-cj)/la]
OqWk bk,- e ak (2.11)

j=l

Consequently, the (k],k2)-th element of the Hessian matrix of function drt(w is given by

3drt(w) n [(#vw,-cj)/B] -I

.,,e akoakzWk,Wk2 j=l

Therefore, the Hessian matrix can be written as ADr(w)AT, where Dr(W is an n x n diagonal matrix

with rj(w) as its j-th diagonal element and
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._[_I e
I(a’jw,-cj)/n

rj(w) < 0.

By matrix theory, the Hessian matrix is nonsingular and negative definite as long as A has full row-

rank. Therefore, dla(w is strictly concave if A has full row-rank. I-1

THEOREM 4. (Strong Duality Theorem) If Program P has an interior feasible solution, then

Program Dit attains a finite maximum and Min(Pta)= Max(Dit). If, in addition, the constraint matrix

A has full row-rank, then Program Dit has a unique optimal solution W*(l.t < 0. In either case, for-

mula (2.9) provides a dual-to-primal conversion which defines the optimal solution x*(la) of Program
PIt"

PROOF. Under the Interior-Point Assumption, Program P hence Pit has an interior feasible

solution. From convex analysis Fenchel’s Theorem [6,17]), we know that there is no duality gap
between the Programs Pit and Dit. Recall that Program Pit always achieves a finite optimum as long

as x > 0. Therefore, if A has full row-rank, then Dit(w) is strictly concave and Program Dit must

also achieve a finite optimum at a unique maximizer w*(I.t) < 0. Since any w<0 is a regular point for

the non-positivity constraints and dit(w) is continuously differentiable, the Kuhn-Tucker Conditions

hold at w*(ix). In other words, there exists a u>0 such that

-Vd(w*(I.t)) + uT 0, and (2.12)

uTw*(ix) 0. (2.13)

By equation (2.11), equation (2.12) becomes

[(ia,jw,’(it)-cj)/it -!

-bk+e akj+uk=0,k=l,2 m. (2.14)
j=l

If we further define x*(ix) > 0 according to (2.9), then the above equation becomes

Ax*() _< b,

which is simply the primal feasibility. Furthermore, by this definition and equation (2.14), equation

(2.13) becomes

w (IX) aijx (I.t) b 0.

The desired conclusion follows from Theorem 2. !--1

So far, we have concentrated on solving Program P, which contains only inequality constraints.

The theory can be easily extended for linear programs with both inequality and equality constraints

in the following form:

Program P’: Minimize

subject to

cTx

Atx < bt

Ax b
x_>O,

where c and x are n-dimensional column vectors, A is an m x n (m _< n) matrix, A2 is an m n

(m2 < n) matrix, b is an ml-dimensional column vector, b2 is an m2-dimensional column vector, and

0 is the n-dimensional zero column vector.

The perturbed problem, Program P, is defined by
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Program P" Mnim,ze ’rx + l.txjlnxj
J=l

subject to Ax < b

A2x b

x>0.

T T is an m-dimensonal column vector and w.,With m=m+m and the notation wT=(wl ,w ), where w
is an m2-dimensional column vector, the geometric dual is defined as

[(.,a,jw,-c)/]
Program D: Maximize d(w) Eb,w,-/.tEe subject to w < 0.

=1 J=l

With the notation AT=(AT,A2T), we state the following theorem, whose proof is straightforward in

light of the derivation provided above and treatment of the standard-form linear programs in [7].

THEOREM 5. If Program P’ has an interior feasible solution, then Program D, for every g>0,
attains a finite maximum and Min(P)= Max(D). If, in addition, the constraint matrix A has full

row-rank, then Program D, for every g>0, has a umque optimal solution w*(/.t). In either case,

equation (2.9) provides a dual-to-primal conversion which defines the optimal solution x*(/.t) of Pro-
gram P.

As we stated before, if the feasible domain of Program P is bounded, then the optimal solution
of Program Pt converges to an optimal solution of Program P, as g reduces to zero. Actually, by
simply modifying a parallel result in [7], we can easily construct an e-optimal solution according to

the following theorem without any difficulty:

THEOREM 6. If Program P’ has an interior feasible solution x > 0 and its feasible domain is

contained in a spheroid centered at the origin with a radius of M > 0, then, for any g > 0 such that

l.t < e 2nx, (2.15)

where

x max{ l/e, IMInMI },

the optimal solution of Program P is an e-optimal solution of Program P’.

3. CROSS-ENTROPY MINIMIZATION SUBJECT TO INEQUALITY CONSTRAINTS

(2.16)

The cross-entropy minimization problem has received much attention in the recent literature

[10-16]. However, most of the attention has focused on the case with equality constraints (in addi-

tion to the non-negativity constraints). In fact, a more general setting of linearly-constrained

minimum cross-entropy problem can be described in the following form (assuming pj > 0,

j=l,2 n)"

Program Q Minimize xj In ()
J=l PJ

subject to ]ai] xj<b, i= 1,2 ml,
j=l

ai xj=b,2 i= 1,2 m2,
j=l

xj>0 j= 1,2 n.
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Although the inequality constraints can be converted into equality ones by adding slack variables, the

resulting program is no longer a regular entropy optimization problem due to the absence of the

entropic terms xjlnxj for the slack variables in the objective function. Therefore, the duality theory

developed in [16] and the algorithms developed in [10] are not applicable. Also note that Program Q
, a special case of Program P with lu and cj =-In p. Therefore, the theory developed n the

previous section applies readily to Program Q. In particular, the geometric dual program of Program
Q can be derived as follows:

a,j w,

Program F" max f(w) b, w,- pje’--’ subject to w < 0.
I=1 J=l

In light of Theorem 5, we have the following corollary for the strong duality:

COROLLARY 1. If Program Q has an interior feasible solution and a constraint matrix A of

full rank, then Program F has a unique optimal solution w* and equation (2.9), with cj-=-lnpj, pro-

vides a dual-to-primal conversion which defines the optimal solution x* of Program Q. Moreover,

Min(Q) Max(F).

4. CONCLUSION

We have extended the unconstrained convex programming approach to solving linear programs

with nequality constraints without adding artificial variables. By the duality theory, one can solve a

given linear program by solving the geometric dual of a perturbed linear program. Many standard

constrained optimization techniques [e.g. 18] can be specialized to solve the dual program D. Such

specializations, made possible by the simplicity of the constraints, significantly reduce the computa-
tional effort usually incurred by these methods. For example, the projection operation required by
the projective gradient method is trivial, which makes the method a good candidate solution algo-
rithm.

Immediate applications of the theory developed include an entropic path-following approach to

solving linear semi-infinite programs with an infinite number of inequality constraints and the widely
used entropy optimization models with linear equality and/or inequality constraints.
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