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ABSTRACT. An almost cosymplectic manifold M is a (2m + 1)-dimensional oriented Riemannian
manifold endowed with a 2-form Q of rank 2m, a 1-form 7 such that Q" A 1 = 0 and a vector field &
satistying i€ = 0 and n(g) = 1. Particular cases were considered in [3] and [6].

Let (M, g) be an odd dimensional oriented Riemannian manitold carrying a globally defined vector
field T such that the Riemannian connection is parallel with respect to T. It is shown that in this case
M is ahyperbolic space form endowed with an exact locally conformal cosymplectic structure. Moreover
T defines an infinitesimal homothety of the connection forms and a relative infinitesimal conformal
transformation ot the curvature forms.

The existence of a structure conformal vector field C on M is proved and their properties are
investigated. Inthe lastsection, we study the geometry of the tangent bundle of an exact locally conformal

cosymplectic manifold.
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1. INTRODUCTION

In the last decade a series of papers have been devoted to almost cosymplectic manifolds
M(£2,m,E, g). Asis well known, an almost cosymplectic manifold M is an odd dimensional (say 2m + 1)
oriented manifold, where the triple (2,7, &) of tensor fields is

i) a2-form Q of rank 2m
ii)  al-formm such that Q" Am =0
iif)  avector field (called the Reeb vector field) such that Q2 = 0 and n(g) = 1.

One has the following more studied cases:

1° Q and 7 are both closed forms. Then M is called a cosymplectic manifold.

2°dn=0,dQ=2n A Q. Then M is called a Kenmotsu manifold.

3% dn=waAm,dQ=2wa Q. Then M is called a locally conformal cosymplectic manifold (see
[3],[16]). In this case w and its dual vector T = b™'(w) with respect to g is called the Lee form (or
characteristic form) and Lee vector field respectively.

In the present paper we consider an almost cosymplectic manifold M (2,1, E, g) carrying a globally

defined vector field T whose dual form b(T) is denoted by w.

A
Next denote by 0 = vect{e,;A =0, 1,...,2m} an orthonormal vector basis on M and by {GB} the

associated connection forms. If the connection forms satisfy

8, =(T,e; ne,); A isthe wedge product,
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then one has
Ve =0

Theretore we agree to say that M is structured by a T-parallel connection. In this condition the
following significative tact emerges: the almost cosymplectic structure 1 x Sp(2m,R) of M moves to
an exact locally contormal cosymplectic structure 1 x Sp(2m, R) (abbreviated exact L.C.C.), having T
(resp. w = —df/f) as Lee vector tield (resp. Lee form).

Moreover any such a manitold M is a space form of curvature —2¢ and fis the energy function
corresponding to a Hamiltonian vector field associated with T (in the sense of [3]). If 8 (resp. ©)
represents the indexless (or generic) connection torms (resp. curvature forms) of M, then T defines an
infinitesimal homothety ot 8, 1.e. L,8 = 2¢ 6, and a relative infinitesimal T conformal transformation of
© and Q, re.

d(L®)=2cwon®©, d(LQ=2cwnAQ.
In Section 3 the existence of a structure conformal vector field C on M is proved, i.e.
V,C=A +gZ,TC-g(Z,C)T; NEC°M, ZE(TM).

Moreover C 1s a divergence conformal vector field, i.e. grad (div C) is a concurrent vector field

and 1t detines an infinitesimal conformal transtormation of:

1) the conformal cosymplectic form Q, i.e. L.Q = pQ, p =2A;

ii)  the dual forms o, i.e. Lo =Sw*;

iii)  the curvature forms ©j, i.e. L©) = p©j;
iv) all the (2g + 1)-forms a, = b(C) A Q% i.e. Lea, = (1 +q)pa,;
v)  all the functions g(C,Z), i.e. Lcg(C,Z) = pg(C,Z), Z €T(TM).

In the last section, we discuss some properties of the tangent bundle manifold TM having as basis
the exact (L.C.C.)-manifold M. Denote by V,y and v the Liouville vector field ([13]), the Liouville
1-form and the Liouville function respectively, on TM.

The following properties are proved:

i)  the complete lift ° of Q is a d™*-exact 2-form (d* is the cohomological operator [11]) and is
homogeneous of class 1, i.e.
L, =Q°;
il)  ysatisfies d ™y =y and y is a Finslerian form, i.e.
Lyw=v, ip=0
(l:v denotes the vertical differentiation operator [11]);

iti)  the vertical lift T* of T defines an infinitesimal automorphism of y, i.e. LT" = 0;
iv)  the function r = fv and the 2-form fi define a regular mechanical system 2/ ({13]) having r as

kinetic energy and fiy as canonical symplectic (exact) form.

1. PRELIMINARIES
Let (M,g) be a Riemannian C*-manifold and let V be the covariant differential operator with

respect to the metric tensor g. Assume that M is oriented and V is a Levi-Civita connection. Let
[(TM)=x(M) and b: TM — T'M be the set of sections of the tangent bundle TM and the musical
isomorphism ([18]) defined by g, respectively. Following [18] we set

AYM,TM) =T Hom(ATM,TM)
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and notice that elements of AY(M, TM ) are vector valued g-forms (g < dimM).

Denote by d¥: A“(M,TM) — A“" (M, TM ) the exterior covariant derivative operator with respect
to V. It should be noticed that generally d¥ =d"od" =0 unlike d>=d od =0. If p €M, then the
vector valued 1-torm dp € A'(M,TM ) is the canonical vector valued 1-form of M ([5]) and since V is
symmetric one has d¥(dp) = 0. The operator

d*=d +e(w) (1.1)
actingon AM, where ¢(w) means the exterior product by the closed 1-form w, is called the cohomological
operator (| 11]). One has

d“o0d” =0. (1.2)
Any form u € AM such that d"u =0 is said to be d“-closed and if w is an exact form, then u is
said to be a d“-exact form. Any vector field Z € I'(TM) such that
d*(VZ)=VZ =nadp EA’M,TM) (1.3)
for some 1-form m, is said to be an exterior concurrent vector field ([17]). The form & which is called
the concurrence form is given by
n=Ab(Z); AEC°M. (1.4)

A non flat manifold of dimension m > 2 is an elliptic or hyperbolic space-form if and only if every
vector tield on M is an exterior concurrent one ({17]). On the tangent bundle manifold TM, 4, and §,
define the vertical differentiation and the vertical derivation operators respectively ([7]). d, is an anti-
derivation of degree 1 on A(TM) and i, is a derivation of degree 0 on V(TM).

In an n-dimensional Riemannian manifold M, denote by

O=vect{e;A =1,...,n}
a local field of orthonormal frames and let
O* = covect{w*;A =1,...,n}
be its associated coframe. ’

The soldering form dp is expressed by

dp =o' ®e, (1.5)
and E. Cartan’s structure equations written indexless manner are
Ve =0®e (1.6)
do=-8Aw® (1.7)
d6=-0A0+0 (1.8)
Any vector field T such that
VIi=sdp +u®T, u€EAM 1.9

is called a torse forming (K. Yano |20]). If du =0, then T is a closed torse forming, which implies that
T is an exterior concurrent vector field, and if u = 0, then T is a concurrent vector field ([22]).
Let now W be any conformal vector field on M (i.e. the conformal version of Killing’s equations).

As is well known, W satisfies
ng =pg or g(VzW,Z')‘*g(VZ,W’Z)’pg(Z;Z’) (1‘10)

where the conformal scalar p is defined by
p=%(divW). (1.11)

We recall some basic formulas which we shall use in the following sections.
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Ly b(Z)=pb(Z)+b[W,Z] (Orsted lemma) (1.12)
LyK=(n-1)Ap-Kp (1.13)
20,S(Z,2') = (Apg(Z.Z')~(n -2) (HessV*)(Z.Z"). (1.14)

In the above equations Ly, K, A and S denote the Lie derivative with respect to W, the scalar
curvature of M, the Laplacian and the Ricci tensor field of V, respectively. One has
(Hessyp)(Z,2')=g(Z,H,Z"), H,Z'=V,(grad p)
(see also |2]).

2. EXACT LOCALLY CONFORMAL COSYMPLECTIC MANIFOLDS

2m
Let (M,g) be a (2m + 1)-dimensional oriented Riemannian C*-manifold and let T = Eot‘eA and
A=

w = h(T) be a globally defined vector field on M and its dual form respectively.
Denote by O = vect{e,;A =0,1,...,2m} (resp. 83) a local field of orthonormal frames on M (resp.
the associated connection forms). Recall that the vectorial wedge product A is defined by
XAY)Z=g(Y,2)X-gX,2)Y; Z€ET(IM)
i.e. XAY=bY)®RX-bX)®Y .
Assume now that all the connection forms 0 satisfy
8 =(T.eyne,). (2.1)
Then by the structure equations (1.6), it follows at once
8 =fo’ - M0l . (22)
It should be noticed that if 8 satisfy (2.2) one has 6(T) = 0 and the above equation shows that all
the connection forms 6 are relations of integral invariance for the vector field T (in the sense of A.
Lichnerowicz [14]).
Next by the structure equations (1.6) and by (2.2) one obtains
Ve, =t"dp -o* ®T (2.3)
and the above equation implies
V;e,=0. (2.4)
From (2.4) the following significative fact emerges: all the vectors of the O-basis are T-parallel.
Therefore we agree to say that the Riemannian manifold under consideration is structured by a T-parallel

connection (abr. T.P.).
Further again by (2.2) one derives by the structure equations (1.7)

do'=wAw'; w=bT)='u (2.5)
which by a simple argument implies that the dual form w of T is closed, i.e.
dw=0. (2.6)
Thus in terms of d“-cohomology, (2.5) may be written as
d*w' =0 27
and O* = {«'} is defined as a d™“-closed covector basis.

Now for reasons which will soon appear, we set
o'=1, €=§ (28
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and consider on M the globally defined 2-torm € of rank 2m given by
Q=Sw'Aaw”; a=1,...m; d*=a+m. 2.9)
Then since Q" A 1) = 0, Q2 = 0, one may say that the triple (S, ), E) defines an almost cosymplectic
structure | x Sp(2m,R) having € as Reeb’s vector tield.
Next taking the exterior ditferential of € a short calculation gives with the help of (2.5)
dQ=20A Qe d™Q=0 (2.10)
and by (2.5) we may write
dn=waAan<dm=0. (2.11)
We conclude that any odd dimensional Riemannien manifold M structured by a T-parallel con-
nection is endowed with a locally conformal cosymplectic structure 1 x CSp(2n,R) (abr. L.C.C.). We

notice that the vector field T (resp. the 1-form w = b(T)) is the Lee vector field (resp. the Lee form) of

this structure.

Moreover since w = (*w", then by a simple argument it follows on behalf of (2.5) that one may set

di* = fu*; fec™m (2.12)
which by exterior differentiation gives instantly
w=-df/f. (2.13)

Theretore since w is an exact form, it follows on behalf of a known terminology, that the manifold
M under consideration is an exact (L.C.C.)-manifold. We agree to call f the distinguished scalar field
associated with the exact (L.C.C.)-structure.

Now taking the covariant differential of T one finds by (2.3) and (2.12)

VT =(f+2)dp -o®T (2.14)
where we have set
g(T,T)=2I. (2.15)
Using (2.12) and (2.15), we have
dl=fo=l+f=c=const =0 (2.16)
and (2.14) becomes
VI=(+c)dp-0w®T. (2.17)

Hence, by (1.9) and (2.6) T is a closed torse forming and consequently an exterior concurrent (abr.
E.C.)-vector field.

Operating now on V e, and VT by the exterior covariant derivative operator ", one gets by (2.12)

and (2.16)
d"(Ve,) =V, =2ca’ ndp (2.18)

d"(VT)=V’T=2condp . (2.19)

From the above equations it is seen that any vector field Z on M is E.C. with constant conformal

scalar 2c. Therefore on behalf of the general properties of E.C.-vector fields ([17]), we may state the

following striking property: the exact L.C.C.-manifold M(€2,7,E) under discussion is a space-form of
curvature —2c.

As a consequence, it follows that the curvature forms © are expressed by
@f, =2cw* A ® (2.20)
Next taking the exterior differential of the forms ©, one quickly finds by

dO} =20 A Of « d™0% =0 (2.21)
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which shows that all the curvature forms © are d ™"-exact.
On the other hand taking the Lie derivatives of the covectors w' of O* one derives by (2.12) and
(2.16)
Lo =(l+c)o' -'w. (2.22)
Theretore since L , satisties Leibniz rule one deduces by (2.20)
L@, =2(l+¢)@) +2cly A0 (2.23)
Similarly, we obtain
dE) = 2/’ Aw" + wAS;, (2.24)
Clearly by (2.12) one has L;* = ft* and with the help of (2.22) we deduce
L6, =28} . (2.25)
Accordingly by the above equations we may say that the Lie vector field T defines on infinitesimal

homothety of all the connection forms 6.
Taking now the exterior differential of the equations (2.23), a standard calculation gives

d(L;0})=8cw A O (2.26)
which proves that T defines a relative infinitesimal conformal transformation ([19]) of the curvature
forms.

letw:TM — T*M, w(Z) = i,Q be the bundle isomorphism defined by € and set w=u(T), ie.
w=iQ= 3 (0" -0 (227
a=1

for the dual form of T with respect to Q. By (2.5) and (2.12) an easy calculation gives

dw=2fQ+0 A ® (2.28)
and by (2.10) and (2.13) one gets
LQ=2(+c)Q+0A® (2.29)
and consequently by (2.28) it follows
d(L;RQ=2cwnaQ. (2.30)

Hence as for the curvature forms ©, T defines a relative conformal transformation of the structure
2-form Q.
Consider now the vector valued 1-form

F=0'Qe,. -0 " ®e, EA'M,TM). (2.31)
If Z is any vector field, a simple calculation gives
(F.Zy<Z%,.-2"¢,=Z (2.32)
which implies
8Z.2)+g(Z,2')=0, Z,Z2'ET(IM) (2.33)

and (F,dp) = 2Q.
On the other hand since &(T') = 0 one gets by 2.27)
Lio=2cw (2.34)
that is T defines an infinitesimal homothety of w = (u° b)T.

Next by (2.12) and (2.13) one easily gets
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. dTI—}E(_f)n . (2.35)

Therefore by reference to [3] one may call T the cosymplectic Hamiitonian vector field of M and

ol

3

the distinguished scalar f turns out 1o be the energy function corresponding to T.
Moreover by (2.35) one derives
L Q=0T A ©=d(L;Q)=0 (2.36)
which shows that T detines a relative infimtesimal automorphism (R. Abraham [1]) of Q.
Summing up, we state the following
THEOREM. Let M be a (2m + 1)-dimensional Riemannian manifold and let T be a globally
defined vector field on M. If M is structured by a T-parallel connection, then M is endowed with an
exact locally contormal cosymplectic structure 1 x CSp(2m, R), having T (resp. w = b(T')) as Lee vector
(resp. Lee torm) and any such an M is a space-torm of curvature -2c.
Moreover one has the following properties:
i) T detines an infinitesimal homothety of the connection forms 0 and of the 1-form u(T), i.e.
LO=2c0, Lp(T)=2cw(T)
ii)  Tdefines arelative infinitesimal conformal transformation of the curvature forms © and of the
structure 2-form €, i.e.
d(L;©)=8cwn®, dlL,Q)=2cuaQ
iii)  the vector field T =(b'op) T (resp. f) is the cosymplectic Hamiltonian associated with the
1 xCSp(2m,R)-structure of M (resp. its corresponding energy function) and T defines a relative
infinitesimal automorphism of Q.
Let now @ : M — M be a conformal diffeomorphism (abr. C.D.) that is
®:g—>e¥g=g; 0OECM.
One also say that g and g are conformally equivalent metrics and setting e = v, we agree to call
the function v the argument of the C.D.

As is shown one has for Z, Z' € I'(TM)

VZ =VZ +b(grad 6)®Z - b(Z) ® grad o + g(Z, grad o)dp (2.37)
or equivalently
V,Z =V,Z +Z'(0)Z +Z(0)Z' - g(Z,Z")grado (2.38)
and if K and K denote the scalar curvature of M and M respectively then one has ([8])
K =e™{K+2(n-1)(n-2)|grad o]’} (2.39)
(n =dimM).
If M is an exact (L.C.C.)--manifold, its Ricci tensor field S satisfies
S(Z,2')=-4mc g(Z,2"); Z,7' €ET(IM) (2.40)

and the scalar curvature K is given by
K=-4mQ2m +1)c . (2.41)

Perform now a conformal transformation of M having as argument e° the energy function f. It is

obvious that
242} o=dflf=-w. (2.42)

Then we have grad 0 = -T, which implies
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Ao =divT =2m +1)c +(2m - 1)l . (2.43)

Hence by (2.41) and (2.43) we derive at once from (2.39), K = 0, that is M is a flat manifold. We
notice that this fact 1s in accordance with the known

PROPOSITION. A Riemannian manmifold of constant curvature is conformally flat, provided
nz3.

Using (2.37) one may prove that all vectors &, are parallel (the connection forms 67 vanish, i.e. V
1s a tlat connection). Thus we have

PROPOSITION. It M 15 an exact (L.C.C.)-manifold with metric tensor g and energy function f,
then the metric f*g 15 flat.

3. STRUCTURE CONFORMAL VECTOR FIELDS ON AN EXACT (L.C.C.)-MANIFOLD
In consequence of some conformal properties induced by the T-parallel connection which structures

M(2,n,E, g) we are naturally led to see if the manifold M under consideration carries a structure con-

formal vector field C in the sense of [6], [15]. Therefore the covariant differential of C is expressed by

VC=Ndp+C AT =hdp +0®C-a®T; AEC"M, a=b(C). (3.1)
Put
C=C" =h(C)=a=C"o (3.2)
and s = g(C,T). Then by (2.3) and (3.1) one quickly gets

dC* =(A-s)o’" + C'o (33)
da=20Ara=d™a=0. (3.4)

Next since ds = (VC,T) +(VT, C),a short calculation gives
ds=Aw-(I-c)a (3.5)
ds =d\ (3.6)

By (3.4), (3.5) and (3.6) it is seen that the existence of C is assured by an exterior differential system
2 whose characteristic numbers are

r=3, s5=2, s=1.

Then X is in involution in the sense of E. Cartan (i.e. r =s, +5,). Accordingly one may say that
the existence of C depends on 2 arbitrary functions of one argument (E. Cartan’s test). The conformal
scalar p associated with C(L.g = pg) is given by

p=2A\. 3.7
By a short calculation one has
[C,T}=-AT-(I-¢c)C; [ ] Liebracket (3.8)
and from (3.5) it follows
Lw=ds=Aw-(l-c)a. (3.9)

This equation matches by Orsted’s lemma (1.12) the expression of [C,T].
On the other hand since C is necessarily an E. C. vector field (M is a space-form), then operating
(3-1) by @” and taking account of (3.4) and.(3.5), one derives
d"(VC)=V’C =2candp . (3.10)
The above equation is coherent with the properties obtained in Section 2.
Setting now
a=1Q=3C"0" - C"w") (3.11)
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one gets by (3.4) and (2.5)
doa=2A-5)Q+2w A A (3.12)
and one tollows

L Q=pQ. (3.13)

Hence (3.13) reveals that C defines an infinitesimal conformal transtormation (abr. .C.T.) of the
contormal cosymplectic torm Q.
By similar methods, one gets by (2.5), (2.24), (2.20) and (2.21)

Lo = gw" , Lo = ‘—z’er;; . L®)=pay. (3.14)

Therefore one may say that C defines an LC.T. of the exact (L.C.C.)-structure of M.
Moreover let L be the operator of type (1.1) on forms defined by S. Goldberg ([8]), that is
Lu=u A Qu € A'M, and consider on M the (2g + 1)-forms

Lia=oa,=0rQf. (3.15)
Since by Orsted’s lemma one has
La=pa (3.16)
then by (3.13) and a standard calculation one derives
Lea,=(g +1)pa, . (3.17)
Hence C defines an (I.C.T.) of all the (2g + 1)-forms a,,.

Next since C is a conformal vector field, then as is known (see (1.11)) one has

div C =(p/2)(2m +1) (3.18)
and since p = 2X it follows by (3.5) and (3.6) that
grad p=pT +2(c -{)C . (3.19)
Further by (2.16) and taking account of (2.14) and (3.1) it is easily deduced
Vgradp =2cpdp . (3.20)

Thus one may state the following relevant property: the gradient of the associated scalar p of C is
a concurrent vector field (K. Yano and B. Y. Chen [22]). We agree to call a conformal vector field such
that the gradient of its conformal scalar p is a concurrent vector field, a divergence conformal vector
field. Such a situation occurs also when studying conformal vector fields on Lorentzian P.S. manifolds
(see 1. Mihai and R. Rosca [15]).

On the other hand from (2.14) one derives

divT =(2m - 1)l +(2m + 1)c (3.21)
and since div C =(2m + 1)\, one gets on behalf of (3.20)
Ap = —div(grad p) = -2(2m + 1)cp (3.22)

which shows that p is an eigenfunction of A.
C being an E.C. vector field satisfying (3.10), one has ([17])
S(C,Z)=-4mc g(C,Z), Z €I'(TM) (3.23)
where S denotes the Ricci tensor field of V.
Now making use of (1.14) and carrying out the calculations, one finds by (3.19) and (3.22)
Lcg(C.Z)=pg(C.Z). (3.24)
Hence the vector field C defines an I.C.T. of all the functions g(C,Z), where Z € I'(TM).
Concuding, we have proved the following

THEOREM. Let M be the exact (L.C.C.) manifold defined in Section 2 and C a structure conformal
vector field on M (which existence is proved), i.e.
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) '
V(,‘=%11p+(, AT; Lg=pg

Then C is a divergence contormal vector tield (i.e. grad(div C) is a concurrent vector field) and it
defines the following intinitesimal conformal transtormations

LQ=pQ, Lw' = ‘2-’m‘ . L) = ga;;

LOy=pO,, Loa,=(+qpa,, Lg(C,Z)=pg(C,Z)Z ET(TM)
where Q, w', 8}, @} and «, =b(C) A ' are the conformal symplectic 2-form, the dual forms, the

connection forms, the curvature torms and the (2¢ + 1)-torms detined by the (1,1)-operator L, respec-
tively on M.
4. GEOMETRY OF THE TANGENT BUNDLE OF AN EXACT (L.C.C.)-MANIFOLD

Let now TM be the tangent bundle manifold having the exact (L.C.C.)-manifold M discussed in
Section 2 as a basis.

Denote by V(v*)(A =0,1,...,2m) the Liouville vector field (or the canonical vector field [7]).
Accordingly we may consider the set B* = {w*,dv*} as an adapted cobasis in TM. Following Godbillon
(17]) we denote by d, and ¢, the vertical ditferentiation and the vertical derivative operators with respect
to B*, respectively (d, 1s an antiderivation of degree 1 on A(TM) and i, is a derivation of degree 0 on

A(TM)). Let T/M be the set of all tensor fields of type (r,s) on M.

In general as is known ([23]) the vertical and complete lifts are linear mappings of T,M into T;(TM)

and one has
(T,®T) -T;®T;+T. ®T; . @.1)

In the case under discussion we may define the complete lift Q° of the structure 2-form S of M by

the 2-form of rank 4m on TM

Q =Zdv' A+ Adv"), a=1,...m; a*=a+m. 4.2)
On the other hand since the Liouville vector field V is expressed by
3
V=3Zvi— 4.3
vt (43)

then as is known the basic 1-form
y=Zvia’ (4.9
is called the Liouville form (see also [13]).

Taking now the exterior differential of Q° one finds by (2.5)
dL =wA QL =d™Q =0 (4.5)
which shows that Q° is similarly as 2 a d -exact form. We recall that in general conformal properties

are not preserved by complete lifts ([23]).
One has

i, =2V - v w?) (4.6)

which implies (V) = 0 and so by (4.5) and (4.6) one gets
L =9 . 4.7
Accordingly on behalf of a known definition ([13]), the above equation shows that ° is of class

1, a homogeneous form on TM. Taking now the exterior differential of the Liouville form y defined by

(4.4), one gets at once by (2.5) 4.8
dy=way+yp<edy=y “.8)
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where we have set
Y=Zdv'aw'. (4.9)
From (4.8) and (1.2) one obtains instantly
d™y=0e=dy=wAry. (4.10)
Since clearly the 2-form y is of maximal rank, we agree to call  the canonical conformal symplectic
form of M. Noticing that one has
Ly=y, o(V)=0 (4.11)
which implies
Loy=vy. (4.12)
Hence p is as Q a homogeneous of class 1, 2-form.
Next making use of the vertical operator i, defined by i, A = 0, i, dv* = w*, i, w* = O(A € C"M) one
quickly finds by (4.9)
ip=0 (4.13)
and the above equation together with (4.12) proves that y is a Finslerian form ([7]).

We recall that the vertical lift Z* ([23]) of a vector field Z € I'(TM) with components Z* in M, has

as components . (0 ]
Z'= (Z") =zt A
Hence in the case under consideration one has
ezl A-01,..2m (4.14)
avt
and by (4.9) one gets
=0 (4.15)

Therefore by (4.10) one derives
L.y=0 (4.16)

and one may say that T" defines an infinitesimal automorphism of .

Finally we set
r=fv 4.17)

where
V- %z(vﬁ)2 (4.18)

denotes the Liouville function on M ([9]).
Operating on r by the vertical differentiation operator d, ([7]) one gets

d,r -f; viat = fu (4.19)

and taking the exterior differential of (4.19) we obtain by (2.13) and (4.9)
d(d,r)=fZdv' r o’ = fy. (4.20)
Next putting I = fy it follows by (2.13)
dll =0. (2.21)
Therefore the exact symplectic form /I can be viewed as the canonical symplectic form of the
(4m + 2)-dimensional manifold TM ([13]).
Finally by reference to [13] one may consider that the pair (r,/I') defines a regular mechanical

system M (in the sense of Klein [13]) having the scalar r as kinetic energy.
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THEOREM. Let TM be the tangent bundle manitold having as basis the exact (L.C.C.)-manifold
M(Q,T,w) discussed in Section 2. Let V, y and v be the Liouville vector tield, the Liouville form and

the Liouville tunction of TM, respectively. One has the tfollowing properties:

i) the complete hft Q on TM ot the contormal cosymplectic form Q of M is a homogeneous of
class 1, 2-form, re. L,Q' = Q°, and it 1s d “-exact, re. d™ = ();
i) ysatsfies d™y =y =d ™'y =0 and Y 15 the canonical conformal symplectic form of TM and
Y enjoys also the property to be a Finslenian form;
i) the verucal lift " of T defines an infinitesimal automorphism of v, i.e. L.ay=0;

V) r=fvand fy define a regular mechanical system on TM having r as kinetic energy and fy as

canonical symplectic form (where fis the energy function of M).
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