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ABSTRACT. In order to study inclusions of the type LP(At,X)c Lq(o,Y), we introduce the notion of an

L-correspondence. After proving some basic theorems, we give characterizations of some types of L-

correspondences and offer a conjecture that is similar to an equimeasurability theorem.
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1. INTRODUCTION.

Inclusions of one L’ space in another have been the subject of several previous articles. Most

recently, Miamee [2] studied when LP(At)c:. IY(v), where At and o are (possibly different) measures on

(,E). As mentioned in Miamee’s article, those results extend even to the setting U’(At,X)c I.Y(v,X),

where X is a Banach space. The purpose of this article is to extend this notion even further, to the setting

LP(At,X) U(’o,Y), where X and Y are (possibly different) Banach spaces. Of course, the usual

meaning of inclusion would prohibit L (At, X) from being a subset of L (v, Y) if X is not a subset of Y.

In order to circumvent this difficulty, we introduce the notion of an L-correspondence. After proving

some basic theorems, we characterize some types of L-correspondences and offer a conjecture.

Throughout, (fLE) will be a measurable space, At and v will be non-zero, finite, complete

measures on (,E), and X and Y will be Banach spaces. The Lebesgue-Bochner spaces are denoted as

usual" we define L(At,X, p) as the linear space consisting of individual functions (not identified by At-a.e.
equality) whose equivalence classes are in L (At,X). We also restrict ourselves to the case < p,q < ,:,,,.

In [2], Miamee also distinguished between L (#) L (v) in the sense of equivalence classes and in

the sense of individual functions. Miamee’s Lemma stated that U’(At) Lq(t) in the sense of equivalence

classes if and only if At << v, t<<At, and U’(At)cU(o) in the sense of individual functions.

"Inclusion" was then defined as meeting those equivalent conditions. We use this as our starting point in

the next section.

2. L-CORRESPONDENCES" A NATURAL EXTENSION OF INCLUSION.

In order to motivate our definition of an inclusion U’ (At, X) L (v, Y), consider again the situation

Y= X, where Miamee’s definition applies. If LP(#,X)IJ(v,X), then the identity mapping

I: L(At,X, p) .- L(v,X,q) is defined; also, we have that for all f,g L(At, X,p), f g At-a.e. if and only

if l(f)= l(g) o-a.e. Considering the fact that the identity is a linear injection, we offer the following

definition (we use f to represent the equivalence class of f in the associated Lebesgue-Bochner space).
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To simplify matters, during the sequel whenever we write T:L(It,X,p)..-> L(u,Y,q) we mean that T is

injective and linear.

DEFINITION. A map T:L(It,X,p)--- L(’o,Y,q) is called an L-correspondence if : U’ (It, X) -->
Lq(t,Y) defined by T(f)= T(f) is well defined and injective. If, in addition, T maps onto every

equivalence class that it maps into, it is called exact.

It is simple to show, given the above definition, that any T:L(It,X,p)---> L(’o,Y,q) is an L-
correspondence if and only if it has the property that f g It-a.e. if and only if T(f)= T(g) o-a.e, for

all f,g
_
L(it,X,p). That, in a sense, corresponds to Miamee’s Lemma. However, the analogy does not

hold completely; it is possible to have an L-correspondence with # not absolutely continuous with

respect to o (see the example at the end of this article).

A look at Miamee’s "Main Theorem" suggests that may have to be bounded. To see that this is not

the case, let f={to} and let It:E={,f}-->R be given by It()=0 and It(f2)=l. Then

L(it,X,p) X and L(it, Y,q)= Y, and any injective unbounded linear operator from X to Y gives an

unbounded L-correspondence. However, a theorem analagous to the other direction of Miamee’s theorem

does hold, as presented next.

PROPOSITION 1. Suppose T: L(It,X, p) ---> L(v,Y,q) satisfies f g #-a.e. if T(f) T(g) v-a.e.

and, there is a positive constant C such that IIT(f)llq.t,< CIIfllp. for all f
_
L(it,X,p). Then T is an L-

correspondence.

PROOF. Suppose f g It-a.e.; then IIf-gllp.u=O. Thus, IIT(f-g)ll,.,,=O and T(f)= T(g) "o-

a.e.

If T is an L-correspondence such that is bounded, we will call T bounded. Note also that if T

happens to be continuous in the topology of pointwise convergence, Miamee’s closed graph argument

shows that " is bounded.

We now wish to show that L-correspondences are, in some sense, the same as inclusion in the

setting Y X. The sense in which this is true will be given after the next theorem.

THEOREM 2. Suppose S:X--> Y is a linear map and T:L(It, X,p)--> L(t,Y,q) is defined by

T(f) S f. We have (i) if S is a continuous injection and L (it, X) c L (v, X), then T is a bounded L-

correspondence; (ii) if S is an isomorphism and Tis an L-correspondence then U’ (It,X) c I_Y (v,X).
PROOF. For (i), suppose L (It,X) I(’o,X). By Miamee’s theorem, there is a positive constant C

such that Ilfllq.o< CIIfllp.u for all f
_
L(It,X,p). Let T be as stated. Since t <<it, it can be seen that

is measurable by taking limits of simple functions. Also, [.c, llT(f)(m)llqd’o(m)<S of
IISII j’nllf(m)llq dr(m)< oo, and T is well-defined. It is straightforward to show that T is linear and

injective. Thus, the integral inequality just obtained shows that ’ is bounded. Now, suppose T(f) T(g)

t-a.e. Then S(f(m)) S(g(m)) t-a.e., and f(m) g(m) l-a.e, since S is injective. But, It << o, and

therefore f g It-a.e. By Proposition 1, T is a (bounded) L-correspondence.

Suppose the hypotheses of (ii) hold. Then f g It-a.e. if and only if T(f)= T(g) v-a.e. Also,

since S is an isomorphism, T(f) T(g) "o-a.e. if and only if f g v-a.e. Let 0 : x e X. Then xzr 0

It -a.e. if and only if xZE 0 v-a.e., and we have both It << v and o << It. Thus, given f . L(It,X, p),

j’nllf(m)llq do(w) [_.nllS-(T(f)(m))llq dr(m) < IIS-111 nllT(f)(m)llq dr(m) < oo, and f L(’o,X,q). By

Miamee’s Lemma, L (It, X) U(v, X).

COROLLARY 3. LP(It,X) I_Y(’o,X) if and only if the identity map l:L(It,X,p) ---> L(o,X,q) is an

L-correspondence. When I is an L-correspondence, it is both bounded and exact.

It can be shown that if the isomorphism S in Theorem 2 is surjective and T(f) S f defines an L-

correspondence, then T is exact.
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3. BASIC CHARACTERIZATION THEOREMS AND A CONJECTURE.
Theorem 2 gives a way to construct some bounded L-correspondences. A natural question to ask is

whether or not there are conditions under which a bounded L-correspondence must have been

constructed in that manner. A necessary condition can quickly be obtained: Let x X and E 5".. Then

T(xXr) S(x)ZE. The next theorem shows that this is almost sufficient.

THEOREM 4. Let T: L(la,X, p) -- L(o,Y,q) be a bounded L-correspondence such that given x X
and E Z, there is some y Y such that T(x)(,E) YZe. Then there exists a bounded linear injection

S: X Y such that T(f) S f o-a.e, for all f L(la,X, p).
PROOF. Define S:X Y by S(x)=y where T(xXn)=yZn. Let EE. Then T(xZ)+

T(xxn) S(x)Zn, and therefore T(xZ) S(x)xe. Let f ’=xize, be a simple function in canonical

form. Then we have

T(f) T(x,ZE. ): ’S(x,)),. So (x,z. ): So f. (3.1)
=1 I=1 =i

We now wish to show that S is a bounded linear injection. A simple calculation shows the linearity
of S. For boundedness, let x X and note that IIxxnllt,.v =llxll#()t/t’ and IIS(x)xnllq.t,=llS(x)l119()tq.
However, T is bounded; thus, there is some M > 0 such that IIS(x)znllq. < MIIxxnllt,.v. Therefore,

IIS(x)ll< M/’t()/t’ Ilxll, (3.2)

and S is bounded. Now suppose S(x) 0. Then T(xx,n) S(x)Xn 0. Since T is injective, x 0 and S

is injective.
Finally, let f L(Ia,X,p). Let (fn) be a sequence of simple functions in L(I.t,X,p) such that

f,, --> f in U’ (/.t,X) and f,, --> f /.t-a.e. Then T(fn) -- T(f) in L (o, Y). Choose a subsequence (still

denoted by (fn)) such that T(L) ---> T(f) pointwise o-a.e. Note that v <</.t. Thus, there is a u-null

set H off which both fn---f pointwise and T(f)-->T(f)pointwise. Since S is continuous,

T(f,) S f S f pointwise off H. Thus, T(f) S f 19-a.e.

Next, we show that we cannot guarantee strict equality of T(f) and S f under the conditions of

Theorem 4.

PROPOSITION 5. Let T, S be as in Theorem 4 and suppose there is a non-empty /-null set. Then

there is a bounded L-correspondence T’:L(I.t,X,p)--- L(o,Y,q) such that T’(xZe)=S(x)xe for all

xX and EZ, T’(f)=Sof o-a.e, for all fL(I.t,X,p), and for some fL(#,X,p),

T’(f) S f
PROOF. Let E be a non-empty #-null set. Let A be a Hamel basis for the subspace of L(#,X, p)

consisting of all simple functions and let f L(#,X, p) be a non-simple function. Let B be a Hamel basis

of L(g,X, p) including A and f. Let 0 ,: x X. Then given g L(I.t,X, p), g is expressible as a finite

linear combination of+.-, of elements of B in a unique way. Note that if g is simple, o:s 0. Now

define T’:L(Ia,X,p)---> L(o,Y,q) by T’(g)= T(g)+ otsS(x)Ze. Then T" is linear and T’(xXr)= S(x)Ze

for all x X and E E.
To see that T’ is injective, suppose T’(g)=0. Then T(g)= S(-otx)Z. As T is injective,

g -oxXr. Since g is a simple function, -czg 0, and g 0.

Finally, recall that v <<#, and thus T’(g)= T(g) v-a.e. Consequently, T’ is a bounded L-

correspondence and T’(g) So g v-a.e, for all g L(#,X,p). However, T’(f) ,: T(f)= So f.
The previous theorems dealt with representing L-correspondences by using a continuous linear

injection S:X-- Y. However, as we are not restricted to using a "natural" embedding for our L-

correspondences, we may also choose to rearrange our measure space. As an example, let (fLZ,/.t) be

the standard Lebesgue measure space (on [0,1]), and let Y X be an arbitrary Banach space. For

f L(It,X, p), define
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If(2t) if <- (3.3)T(f)(t)
[ 0 otherwise

for t[0,1]. Then T:L(la,X,p)--)L(t,X,p) is a bounded L-correspondence not satisfying the

hypotheses or conclusions of Theorem 4. One characteristic that T does still possess is that it sends

single-step functions to single-step functions, i.e., given x e X and E e E, there exists y Y and H E
such that T(xxe yX,. We shall now explore that general setting. The proof of the following Lemma is

left to the reader.

LEMMA 6. Let T:L(Iz,X,p).--> L(v,Y,q) be an L-correspondence that sends single-step functions

to single-step functions. Then there is a set function :E ---> E such that for any x e X and E e E, there
is some y e Y such that T(xZ.) y,,,,.). Additionally, if is not a constant function, it is injective and

there exists a linear injection S:X ---> Y such that T(xZ.) S(x)z,.) for all x X and E Z.

It will be shown in the example at the end of this article that the case is constant may occur. Now,
suppose is injective. Is it possible that ’ is a (lattice) homomorphism generated by a measurable

point mapping p, in such a way that T(f) S f q v-a.e, for all f ? Since q(f2) may not be f, as in

the example before Lemma 6, we cannot hope for quite so much. However, we may be able to come

close. Suppose singletons are measurable. Let 0 be an object not in , let g’=

Z , {A u {0}IA e Z}, and define/z’ on E’ by/z’(A) =/.t(A c ). Define qg: --> ’ by

o if te({o})
p(t)

0 if I.J,t ({o9})" (3.4)

Finally, for f e L(Iz,X, p), define f(0)= 0. We then have the following theorem, the proof of which is

similar to that of Theorem 4.

THEOREM 7. Suppose singletons are measurable, T: L(Iz, X, p) ---> L(’o,Y,q) is a bounded L-
correspondence taking single-step functions to single-step functions, and is injective. If maps onto

p-’ (E), then T(f) S f p v-a.e, for all f e L(,u,X, p).
It is obvious that p is a measurable point mapping under the hypotheses of Theorem 7; in fact,

must be measurable in order to obtain the conclusion T(f) S f p v-a.e. To see this, let E :E such

that q-’(E) is not measurable. Then T(xz.)=Soxzocp=S(x)z,_,te.), which is not measurable,

yielding a contradiction. Nevertheless, we offer the conjecture that either it is always the case that

maps onto p-’ (E) or that that hypothesis may be removed from the statement of Theorem 7 anyway.

This amounts to proving something similar to an equimeasurability theorem in Lebesgue-Bochner spaces

(Koldobskii has obtained some equimeasurability results in that setting).
We close with an example of a bounded L-correspondence in which " is constant and /.t is not

absolutely continuous with respect to v Let g =N, E =P(N), ,u(E)= ,,E, and v be a measure on

(,E) with a non-empty null set. Define T:L(la,R,p)---> L(v,e’,q) by T(f)=(f(n))=Zta. Then

IIfll’ d/z =,lf(n)l -> ’=l2a-f(n)l’, and T is well-defined. It is quick to see that T is a linear

injection. Since f g /z-a.e. if and only if f g if and only if T(f)= T(g) t-a.e., T is an L-
correspondence. Since II T(f)ilq. <ll fll, , 19()tq T is bounded.
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