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For a compact Lie group G, we characterize free G-spaces that admit free G-
compactifications. For such G-spaces, a universal compact free G-space of given
weight and given dimension is constructed. It is shown that if G is finite, the n-
dimensional Menger free G-compactum µn is universal for all separable, metriz-
able free G-spaces of dimension less than or equal to n. Some of these results are
extended to the case of G-spaces with a single orbit type.
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1. Introduction. By a G-space, we mean a triple (G,X,α), where G is a topo-

logical group, X is a topological space, and α : G×X → X is a continuous

action.

In 1960, Palais proved that every TychonoffG-space can equivariantly be em-

bedded into a compact Hausdorff G-space provided G is a compact Lie group

(see [17, Section 1.5]). This result was extended by de Vries [5] to the case of

arbitrary locally compact Hausdorff groups. The local compactness is essential

here; it was Megrelishvili who constructed in [14] a continuous action α of a

separable, complete metrizable group G on a separable, metrizable space X
such that (G,X,α) does not admit an equivariant embedding into a compact

G-space. The reader can find other examples of this type in [15].

In this paper, we are mostly interested in freeG-spaces. Recall that aG-space

X is free if, for every x ∈X, the equality gx = x implies g = e, the unity of G.

In [2], it is proved that if G is a compact Lie group, then any Tychonoff free

G-space can equivariantly be embedded in a locally compact free G-space. In

this connection, it is natural to ask the following question.

Question 1.1. Does every free G-space have a G-embedding in a free com-

pact G-space?

One of the purposes of the present paper is to answer this question for G
a compact Lie group. Namely, we prove that each finitistic free G-space X has

a free G-compactification (Theorem 3.4). In the realm of G-spaces that admit

a free G-compactification, we construct a universal, compact, free G-space of

given weight and given dimension (Theorem 4.1). This result is extended to the

case of the G-spaces with a single orbit type (Theorem 5.2).
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2. Preliminaries. Throughout the paper, all topological spaces are assumed

to be Tychonoff (i.e., completely regular and Hausdorff). All equivariant or G-

maps are assumed to be continuous.

The letter “G” will always denote a compact Lie group.

The basic ideas and facts of the theory of G-spaces or topological transfor-

mation groups can be found in Bredon [4] and Palais [17].

For the convenience of the reader, however, we recall some more special

definitions and facts below.

By e, we will always denote the unity of the group G.

If X is a G-space, for any x ∈ X, we denote the stabilizer (or stationary

subgroup) of x by Gx = {g ∈G | gx = x}.
If, for all x ∈X, Gx = {e}, then we say that the action of G is free and X is a

free G-space.

For a subset S ⊂X and a subgroup H ⊂G, H(S) denotes the H-saturation of

S, that is, H(S) = {hs | h ∈H, s ∈ S}. In particular, G(x) denotes the G-orbit

{gx ∈X | g ∈G} of x. If H(S)= S, then S is said to be an H-invariant set. The

G-orbit space is denoted by X/G.

By G/H, we will denote the G-space of cosets {gH | g ∈G} under the action

induced by left translations.

For each subgroup H ⊆ G, the H-fixed point set XH is defined to be the set

{x ∈X |H ⊆Gx}.
The family of all subgroups ofG which are conjugate toH is denoted by (H),

that is, (H)= {gHg−1 | g ∈G}. The set (H) is called a G-orbit type (or simply

an orbit type). For two orbit types (H1) and (H2), we say that (H1)� (H2) if and

only if H1 ⊆ gH2g−1 for some g ∈G. If (H1)� (H2) and (H1)≠ (H2), then we

write (H1)≺ (H2). The relation � is a partial ordering on the set of all G-orbit

types. SinceGgx = gGxg−1, for anyx ∈X,g ∈G, we have (Gx)= {Ggx | g ∈G}.
We say that a G-space X is of the orbit type (H), or simply of type (H), if

(Gx)=(H) for every x ∈X.

In this paper, we will consider only G-spaces that have a single orbit type

(H).
An equivariant map f : X → Y of G-spaces is said to be isovariant or (G-

isovariant ) if Gx =Gf(x) for all x ∈X.

If X and Y are G-spaces, then X×Y will always be regarded as a G-space

equipped by the diagonal action of G.

A G-compactification of a G-space X is a pair (bG,bGX), where bG :X → bGX
is a G-homeomorphic embedding into a compact G-space bGX such that the

image bG(X) is dense in bGX. Usually, bGX alone is a sufficient denotation. By

βGX, we will denote the maximal G-compactification of X.

In the sequel, we will need the following lemma.

Lemma 2.1 (see [1]). Let f : X → S be an isovariant map of G-spaces. Then,

the map h :X → S×(X/G), defined by h(x)= (f (x),p(x)) where p :X →X/G
is the orbit map, is a G-homeomorphic embedding.
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We also recall the well-known and important definition of a slice [17, page

27].

Definition 2.2. A subset S of a G-space X is called an H-slice in X if

(1) S is H-invariant, that is, H(S)= S,

(2) the saturation G(S) is open in X,

(3) if g ∈G\H, then gS∩S =∅,

(4) S is closed in G(S).
The saturation G(S) will be said to be anH-tube. If, in addition, G(S)=X, then

we say that S is a global H-slice in X.

If S is a global H-slice in X, then X is G-homeomorphic to the so-called

twisted product G×H S. Recall that G×H S is just the H-orbit space of the

product G×S on which H acts by the rule h(g,s) = (gh−1,hs), where h ∈ H
and (g,s)∈G×S. In turn, G acts on G×H S by the formula g′[g,s]= [g′g,s],
where g′ ∈G, [g,s]∈G×H S (see [4, Section 4]).

One of the basic results of the theory of topological transformation groups

is the Slice theorem, which asserts the following: if X is a G-space and x ∈ X,

then there exists aGx-slice S ⊂X containing the point x (see, e.g., [17, Theorem

1.7.18] or [4, Chapter II, Theorem 5.4]).

An important consequence of the Slice theorem is that if X is a G-space with

the orbits all of the same type, then the orbit map X →X/G is a locally trivial

fibration [4, Chapter II, Theorem 5.8].

In what follows, 
G will mean “is G-homeomorphic.”

We write X̃ =X/G for the orbit space of X.

The following definition is due to Jaworowski [12] even for G-spaces of

finitely many orbit types.

Definition 2.3. We say that a G-space X with a single orbit type (H) is

of finite structure if the orbit map p : X → X̃ has a finite trivializing cover,

that is to say, there exists a finite open cover {U1, . . . ,Un} of X̃ such that each

p−1(Ui) isG-equivalent to (G/H)×Ui, that is, there exists aG-homeomorphism

fi : p−1(Ui)→ (G/H)×Ui such that π(fi(x))= p(x) for every x ∈ p−1(Ui).

Here, we remark that the claim “p : X → X̃ has a finite trivializing cover”

is equivalent to “X can be covered by finitely many H-tubes.” Namely, in this

form, we will use the definition in what follows.

It is evident from Definition 2.3 that any invariant subspace of a G-space of

finite structure is again a G-space of finite structure.

3. G-compactifications of a single orbit type. Recall that the cone con(X)
over a compact metric space X is the quotient set [0,1]×X/{0}×X equipped

with the quotient topology. This topology is metrizable too (see [10, Chapter

VI, Lemma 1.1]). The image of the point (t,x)∈ [0,1]×X under the canonical

projection p : [0,1]×X → con(X) will be denoted by tx, and we will simply
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write θ (think of zero) instead of 0x; this is the vertex of the cone. It is conve-

nient to call the number t in tx the norm of tx and denote it by ‖tx‖.
If X1, . . . ,Xk are compact metric spaces, the join X1∗···∗Xk is defined to

be the subset of the product con(X1)×···× con(Xk) consisting of all those

points (t1x1, . . . , tkxk) for which
∑n
i=1 ti = 1. Below, we will consider the case

when X1 = ··· = Xk = G/H, where H is a closed subgroup of G. In this case,

G acts coordinatewise on the k-fold join G/H∗···∗G/H by left translations;

so, G/H∗···∗G/H is a G-space, which we will denote shortly by (G/H)∗k.
In what follows, by a Euclidean G-space, we mean a real Euclidean space E

on which G acts by means of orthogonal transformations.

It is convenient to introduce the following notion that is closely related to

the notion of the finite structure introduced by Jaworowski (see Section 2).

Definition 3.1. We say that a G-space X is of Euclidean type if there exists

an isovariant map f :X → E into a Euclidean G-space E.

In [12], Jaworowski proved that each normal G-space of finite structure

is of Euclidean type. Here, we need the following more precise version of

Jaworowski’s result.

Lemma 3.2. Any normal G-space X of a single orbit type (H) and of finite

structure admits an isovariant map into a finite-dimensional, compact, metriz-

able G-space D of type (H).

Proof. It is known that, under the conditions of the lemma, the orbit map

p :X → X̃ is a locally trivial fibration (see [4, Chapter II, Theorem 5.8]).

Let {U1,U2, . . . ,Uk} be a finite open cover of the orbit space X̃ such that,

for every 1 ≤ n ≤ k, p−1(Un) is equivariantly homeomorphic to the product

G/H×Un, where the group G acts on the left on G/H and acts trivially on Un.

Further, for each n≥ 1, the first projection of the product p−1(Un)=G/H×
Un gives an isovariant map ϕn : p−1(Un)→G/H.

Since the orbit space X̃ is normal, there exists a closed shrinking {F1, . . . ,Fk}
for {U1,U2, . . . ,Uk} in X̃, that is, Fn ⊂ Un for all 1 ≤ n ≤ k and

⋃k
n=1F = X [9,

Theorem 1.7.8].

Let ψn : X̃ → [0,1] be a continuous function such that Fn ⊂ ψ−1
n (1) and

X̃ \Un ⊂ψ−1
n (0). Now, we define a map fn :X → con(G/H) by the formula

fn(x)=


θ if x ∉ p−1

(
Un
)
,

ψn
(
p(x)

)
ϕn(x) if x ∈ p−1

(
Un
)
.

(3.1)

It is clear that fn is an equivariant map, and that its restriction top−1(Fn) co-

incides withϕn and is, therefore, isovariant. We consider the diagonal product

f =�k
n=1fn :X �→ (con(G/H)

)k. (3.2)
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Then, f is an equivariant map. Since
∑k
n=1‖fn(x)‖ = 1, for all x ∈ X, we

conclude that f(x) belongs, in fact, to the k-fold join (G/H)∗k.
If x ∈X and x ∈ p−1(Fn), then

Gf(x) =
∞⋂
k=1

Gfk(x) ⊂Gfn(x) =Gx. (3.3)

On the other hand, Gx ⊂ Gf(x) since f is equivariant. Consequently, Gx =
Gf(x), that is, f is an isovariant map.

Now, we define D to be the closure of f(X) in (G/H)∗k. Then, D is finite-

dimensional, compact and metrizable. It remains to see that D has the orbit

type (H). Let d ∈ D be an arbitrary point. Since each orbit type in (G/H)∗k

is � (H), we see that (Gd) ≤ (H). On the other hand, since f(X) is dense in

D and f(X) is of type (H), it follows from the Slice theorem [4, Chapter II,

Corollary 5.5] that (H) � (Gd). Thus, (Gd) = (H), and hence f : X → D is the

desired map.

Theorem 3.3. For a G-space X of a single orbit type (H), the following are

equivalent:

(1) X has a G-compactification of type (H),
(2) X has an isovariant map in a finite-dimensional, compact metrizable G-

space D of type (H),
(3) X is of Euclidean type,

(4) X has an isovariant map in a compact G-space of type (H),
(5) X has a G-compactification of type (H) and of the same weight wX.

Proof. (1)⇒(2). LetbGX be aG-compactification ofX of type (H). By Lemma

3.2, there is an isovariant map ϕ : bGX → D in some finite-dimensional, com-

pact metrizable G-spaceD of type (H). The restrictionϕ|X is the desired map.

(2)⇒(3). Letϕ :X →D be an isovariant map in a finite-dimensional, compact

metrizableG-spaceD of type (H). Since there exists an equivariant embedding

i : D → E in a Euclidean G-space E (see [4, Chapter II, Theorem 10.1]), the

composition f =ϕi maps X isovariantly into E.

(3)⇒(4). Let ψ : X → E be an isovariant map in a Euclidean G-space E. Then,

by Lemmas 3.2 and 3.6, there exists an isovariant map j :ψ(X)→D in a finite-

dimensional, compact metrizable G-space D of type (H). Then, the composi-

tion jψ :X →D is the required map.

(4)⇒(1). Let f : X → Y be an isovariant map in a compact G-space Y of type

(H).
Let p : X → X/G be the orbit map. By Lemma 2.1, the diagonal product i =

ϕ∆p :X → Y ×(X/G) is an equivariant embedding.

Let B be any compactification of the orbit space X/G. Then, X can be re-

garded as an invariant subset of the compact G-space Y ×B, where G acts on

B trivially. Now, the closure X of X in Y ×B is a G-compactification of X. Since
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Y is of type (H), we see that Y ×B is also of type (H). Hence, bGX = X is a

G-compactification of X of type (H).
(2)⇒(5) can be proved like the implication (4)⇒(1) using D instead of Y .

In that case, if we choose the compactification B of X/G such that w(B) =
w(X/G) [8, Theorem 3.5.2], then the G-compactification bGX will have the

weightw(bGX)=w(X/G) becausew(D)= ℵ0. It remains only to observe that

w(X)=w(X/G).
(5)⇒(1) is evident.

Recall that a paracompact space X is said to be finitistic if every open cover

of X has a refinement ω of a finite order, that is, there is a natural number n
such that any point x ∈X can belong at most to n elements of ω (see [19]).

Evidently, each compact space, as well as each paracompact finite-dimen-

sional space, is finitistic.

A wide class of G-spaces that admit G-compactifications of a single orbit

type is provided by the following theorem.

Theorem 3.4. Every finitisticG-spaceX of type (H) has aG-compactification

bGX of the same type (H) and of the same weight wX.

For the proof, we need the following result, which was established first by

Milnor for finite-dimensional spaces (cited in [17, Theorem 1.8.2]).

Lemma 3.5. Let X be a finitistic space and let {Uα} be an open covering

of X. Then, there exist a natural number n and an open covering {Viβ}β∈Bi ,
i = 0, . . . ,n, of X refining {Uα} such that Viβ∩Viβ′ = ∅ whenever β ≠ β′ and

0≤ i≤n.

Proof. As X is finitistic, there are a natural number n and a refinement

{Wµ} of {Uα} such that the order of the cover {Wµ} is at most n. Let {ϕµ} be

a locally finite partition of unity with ϕ−1
µ ((0,1]) ⊂ Wµ . For every 0 ≤ i ≤ n,

let Bi be the set of all subsets β of the indexing set of the cover {Wµ} with

cardinality |β| = i+1. Given β= (µ0, . . . ,µi)∈ Bi, we set

Viβ =
{
x ∈X |ϕµj (x) > 0 and ϕµ(x) <ϕµj (x) ∀0≤ j ≤ i, µ ∉ β}. (3.4)

As in a neighborhood of any point x, only a finite number of ϕµ is not identi-

cally zero, and it follows that each Viβ is open.

Let us check that Viβ∩Viβ′ =∅ if β≠ β′. Indeed, since |β| = i+1= |β′| and

β ≠ β′, we infer that there are µ ∈ β\β′ and µ′ ∈ β′ \β. Now, if x ∈ Viβ∩Viβ′ ,
it then follows that ϕµ(x) <ϕµ′(x) <ϕµ(x), a contradiction.

Check that {Viβ} is a covering forX. If x ∈X and µ0, . . . ,µm are all the indices

with ϕµk(x) > 0 so arranged that

ϕµ0(x)=ϕµ1(x)= ··· =ϕµi(x) >ϕµi+1(x)≥ ··· ≥ϕµm(x), (3.5)
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then, evidently, x ∈ Vmβ, where β= {µ0, . . . ,µm}. Since

x ∈
m⋂
j=0

suppϕµj ⊂
m⋂
j=0

Wµj (3.6)

and {Wµ} has order ≤ n, it follows that m ≤ n. Consequently, i ≤ n, and,

clearly, x ∈ Vi{µ0,...,µi}. Thus, {Viβ}β∈Bi , i = 0, . . . ,n, is an open cover of X, and

since Viβ ⊂ Wµ for every µ ∈ i, we see that {Viβ} refines the cover {Wµ}, and

hence, the original cover {Uα}. Thus, {Viβ} is the desired cover.

Lemma 3.6. Every finitistic G-space X having only one orbit type is of finite

structure.

Proof. Let (H) be the only orbit type of X. Let {Sα} be a family of H-

slices in X such that X =⋃G(Sα). Then, G(Sα)
G (G/H)×p(Sα) and the sets

p(G(Sα))= p(Sα) constitute an open cover of the orbit spaceX/G. Now, by [6],

X/G is also finitistic, so, by the preceding lemma, we can find a natural number

n and an open cover {Ũiβ}β∈Bi , i = 0, . . . ,n of X/G which refines {p(Sα)} and

is such that Ũiβ∩ Ũiβ′ = ∅ if β≠ β′. Then, the set Uiβ = p−1(Ũiβ) is an H-slice

in Ũiβ, that is, G(Uiβ)
G (G/H)×Ũiβ [17, Proposition 1.7.2], and Ũiβ = p(Uiβ).
It then follows that the union Ui =

⋃
β∈Bi Uiβ is an H-slice over Ũi =

⋃
β∈Bi Ũiβ

(see [17, Proposition 1.7.3]). Thus, G(Ui) 
G (G/H)× Ũi, and hence {Ũi}ni=1 is

a finite trivializing cover for X/G.

Proof of Theorem 3.4. It follows from Lemmas 3.6 and 3.2 that X is of

Euclidean type. Now, the claim follows from Theorem 3.3.

Proposition 3.7. If a G-space X of type (H) admits a G-compactification

bGX of the same type (H), then its maximal G-compactification βGX is also of

the same type (H).

Proof. Indeed, there exists aG-map f : βGX→bGX. Hence, (Gt)� (Gf(t))=
(H) for every t ∈ βGX. On the other hand, since X is dense in βGX and X is of

type (H), it follows from the Slice theorem that (H) � (Gt) for every t ∈ βGX
(see [4, Chapter II, Corollary 5.5]). Thus, (Gt)= (H) for every t ∈ βGX.

The following is an example of a free Z2-action on the Hilbert cube with a

removed point, which does not have a free Z2-compactification.

Example 3.8 (see [12]). LetX=[−1,1]∞\{0}, where 0= (0,0, . . .)∈ [−1,1]∞,

and G = Z2, the cyclic group of order two. So, X is the Hilbert cube with a re-

moved point. Consider the free action of Z2 on X defined by the standard

involution {xi} → {−xi}. It turns out that the free Z2-space X does not have a

free Z2-compactification.

Assume the contrary. Then, by Theorem 3.3, there exists an isovariant map

f :X → E in a Euclidean Z2-space. Since X is a free Z2-space, f−1(0)=∅, where

0 denotes the origin of E. Clearly, the radial retraction r : E \{0} → S onto the
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unit sphere of E is an isovariant map. Hence, the composition ϕ = rf : X → S
is isovariant too.

Let Sk be a sphere of arbitrary dimension k > 0, considered as a G-space

with the antipodal action of Z2.

Claim 1. Each sphere Sk can Z2-equivariantly be embedded into the Z2-

space X.

Indeed, it suffices to show that the Z2-maps from Sk to [−1,1] separate

points of Sk. Let a,b ∈ Sk, a≠ b. If b =−a, then we first choose a continuous

map f : Sk → [−1,1] with f(a) = 1 and f(b) = −1 and then define f ′(x) =
(f (x)−f(−x))/2, x ∈ Sk. Clearly, f ′ is a Z2-map with f ′(a) = 1 and f ′(b) =
−1. If b ≠ −a, then we first choose a continuous map f : Sk → [−1,1] with

f(a) = f(−b) = 1 and f(b) = f(−a) = −1 and then define f ′(x) = (f (x)−
f(−x))/2, x ∈ Sk. Clearly, f ′ is a Z2-map with f ′(a)= 1 and f ′(b)=−1.

Now, by Claim 1 there exists a G-embedding i : Sk ↩ X. The composition

q =ϕi : Sk→ S is then an equivariant (i.e., an antipodal) map. But, according to

the classical Borsuk-Ulam theorem (see, e.g., [18, Chapter 5, Section 8, Corollary

8]), there is no such a map for k > dimS.

This example also has the following interesting property in spirit of Douwen’s

paper [20].

Corollary 3.9. Let f : X → X be the standard involution on the Hilbert

cube with a removed point (Example 3.8). Then, the Stone-Čech compactification

βf : βX → βX has a fixed point.

Proof. Indeed, otherwise βX is a free Z2-compactification of X, which con-

tradicts the claim of Example 3.8.

4. Universal finite-dimensional compact free G-spaces. In this section, we

prove the following theorem.

Theorem 4.1. For every infinite cardinal number τ and for every nonneg-

ative integer n ≥ dimG, there exists a compact free G-space �nτ with w(�nτ ) =
τ , dim(�nτ ) = n which is universal in the following sense: �nτ contains a G-

homeomorphic copy of any free G-space X of Euclidean type with wX ≤ τ and

dimβGX ≤n. In particular, �nτ contains a G-homeomorphic copy of each para-

compact free G-space X with wX ≤ τ and dimX ≤n.

We notice that a similar result for the nonfree case was established earlier

in [13].

Before proceeding with the proof, we will establish the following lemma.

Lemma 4.2. Let X be a paracompact free G-space. Then, the following two

properties are fulfilled:

(1) dimX = dim(X/G)+dimG;

(2) dimβGX = dimX.
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Proof. (1) Let p : X → X/G be the orbit map. It is well known [4, Chap-

ter II, Theorem 5.8] that p is a locally trivial fibration with fibers homeomor-

phic to G. Let {Uα} be an open trivializing cover of the orbit space X/G, that

is, p−1(Uα) 
G G×Uα. By compactness of G, the map p is closed, and by a

theorem of E. Michael [8, Theorem 5.1.13], the orbit space X/G is paracom-

pact, too. Then, there exists a locally finite closed cover {Fα} of X/G such

that Fα ⊂ Uα for each index α. It follows that p−1(Fα) 
G G × Fα and the

family {p−1(Fα)} constitute a locally finite closed cover of X. Then, accord-

ing to the Sum theorem [9, Theorem 3.1.10], dimX =maxα{dimp−1(Fα)}. But

dimp−1(Fα)= dim(G×Fα). Being a closed subset of a paracompact space, Fα is

itself paracompact. On the other hand, G is a polyhedron. Hence, Morita’s the-

orem [16] is applicable here and, accordingly this logarithmic low holds true:

dim(G×Fα) = dimG+dimFα. Thus, we have dimX = dimG+maxα{dimFα}.
Applying once more the sum theorem, we get dim(X/G)=maxα{dimFα}. Con-

sequently, dimX = dim(X/G)+dimG.

(2) We will use the formula β(X/G)= (βGX)/G (see [3]). Consider two cases.

(a) Let dimX <∞. Then, X has finite structure (Lemma 3.6) and then βGX is

a free G-space (Proposition 3.7). Applying twice the equality established in the

previous step, we get

dimβGX = dim
(
βGX

)
/G+dimG

= dimβ(X/G)+dimG

= dim(X/G)+dimG

= dimX.

(4.1)

(b) Let dimX =∞. By Claim 1, we have dimX = dimG+dim(βGX)/G, which

implies that dim(βGX)/G =∞. But the orbit map does not rise dimension [6];

in particular,

dimβGX = dim
(
βGX

)
/G =∞= dimX. (4.2)

The following lemma in the nonfree case was proved by Megrelishvili [13]

even for noncompact acting groups.

Lemma 4.3. Let f : X → Y be a G-map of a compact free G-space X into a

compact G-space Y . Then, there exist a compact free G-space Z and G-maps

ϕ :X → Z , ψ : Z → Y such that f =ψϕ and dimZ ≤ dimX, wZ ≤wY .

Proof. We will first prove the claim in case when Y is a free G-space, too.

Consider the induced map f ′ : X/G → Y/G. By Mardešić’s factorization theo-

rem [9, Theorem 3.3.2], there exist a compact space Z′ and continuous maps

ϕ′ : X/G → Z′, ψ′ : Z′ → Y/G such that f ′ = ψ′ϕ′ and dimZ′ ≤ dim(X/G),
wZ′ ≤w(Y/G).
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Denote by p the orbit map Y → Y/G. It is well known [11, Chapter IV, Propo-

sition 4.1] that we have the following (pullback) commutative diagram:

Z

π

ψ
Y

p

Z′
ψ′

Y/G

(4.3)

where Z is a compact G-space with Z/G=Z′, π : Z → Z′—the orbit map and

ψ—an equivariant map that induces the map ψ′. In fact, Z is the G-invariant

subset of Z′×Y defined as follows: Z = {(z′,y) |ψ′(z′)= p(y)}, where G acts

on Z′ ×Y by g(z′,y) = (gz′,y) for g ∈ G and (z′,y) ∈ Z′ ×Y . Thus, Z is a

compact free G-space and ψ : Z → Y is the restriction of the second projection

Z′ ×Y → Y .

Now, we define ϕ : X → Z by ϕ(x) = (ϕ′q(x),f (x)), where q : X → X/G is

the orbit map. It is easy to check that f =ψϕ.

On the other hand, wZ =wZ′ ≤w(Y/G)=wY .

Let us check that dimZ ≤ dimX. As Z is a paracompact free G-space, we can

apply Lemma 4.2, according to which dimZ = dimZ′ +dimG ≤ dim(X/G)+
dimG = dimX.

Now we pass to the general case. By Lemma 3.2, there is an isovariant map

h : X → D to a compact free G-space D. Consider the product T = h(X)×Y
and the map r : X → T defined by r(x) = (h(x),f (x)), x ∈ X. Since X is

free and h is isovariant, we infer that T is a free G-space. It is clear that r
is equivariant and wT =wY . Now, we apply the preceding case, according to

which there exist a compact G-space Z and G-maps ϕ : X → Z , ψ1 : Z → T
such that dimZ ≤ dimX, wZ ≤ wT and r = ψ1ϕ. Observe that wT = wY
because wh(X) = ℵ0; so, wZ ≤ wY . Put ψ = π2ψ1, where π2 : T → Y is the

second projection. Then, ψ : Z → Y is a G-map such that f = ψϕ. It remains

to observe that Z is a free G-space; this is immediate from the equivariance of

ψ1 and from the freeness of T .

Proof of Theorem 4.1. Let Bτ be a universal Tychonoff G-cube of weight

τ (see [3]), that is, Bτ is a G-space homeomorphic to the Tychonoff cube [0,1]τ

and contains a G-homeomorphic copy of every G-space of weight ≤ τ . Let

{Yt}t∈T be the family of all invariant free subsets Yt ⊂ Bτ of Euclidean type

such that dimβGYt ≤ n. This family is nonempty because the group G be-

longs to it. For each t ∈ T , we denote by it the identical embedding of Yt into

Bτ . Consider the discrete sum Y =⊕t∈T βGYt , which naturally becomes a G-

space. By Proposition 3.7, each βGYt is a free G-space. Consequently, Y is a

paracompact free G-space. As dimβGYt ≤n for all t ∈ T , then, by the Sum the-

orem [9, Theorem 3.1.10], we have dimY ≤ n. Consequently, by Lemma 4.2,

dimβGY = dimY ≤n.
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Next, each map it : Yt → Bτ can be extended to a G-map i′t : βGYt → Bτ (see

[17, Section 5]); so, a map i : Y → Bτ arises defined by i(y)= i′t(y) fory ∈ βGYt .
Applying once more [17, Section 5], we extend i to a G-map j : βGY → Bτ . As

Y has finite structure according to Proposition 3.7, βGY is a compact free G-

space. By virtue of Lemma 4.3, there exist a compact free G-space �nτ and

G-maps ϕ : βGY →�nτ , ψ : �nτ → Bτ such that i=ψϕ and dim�nτ ≤ n, w�nτ ≤
wBτ = τ . We claim that �nτ is the desired G-space.

Indeed, let X be an arbitrary free G-space such that dimX ≤n and wX ≤ τ .

Since X is equivariantly embeddable in Bτ , there exists a t ∈ T such that Yt is

G-homeomorphic to X. As the restriction of i on Yt is a homeomorphism, the

restriction ϕ|Yt is also a homeomorphism. Besides, ϕ|Yt is equivariant. Thus,

X is equivariantly embeddable in �nτ .

If X is paracompact, then, by Lemma 4.2, dimβGX = dimX ≤ n, and hence

X can be embedded equivariantly in �nτ .

To complete the proof, it remains to see that dim�nτ =n andw�nτ = τ . As �nτ
contains an equivariant homeomorphic copy of the n-dimensional, compact

free G-space G×Ik with k=n−dimG, we infer that dim�nτ =n. On the other

hand, the discrete sum Z of τ many copies of G is a metrizable free G-space

of weight wZ = τ , and hence �nτ contains an equivariant homeomorphic copy

of Z . This yields that w�nτ = τ .

From Theorem 4.1, the following corollary follows immediately.

Corollary 4.4. Any paracompact free G-space X has a free G-compact-

ification bGX of weight w(bGX)≤wX and of dimension dimbGX ≤ dimX.

Corollary 4.5. Let G be a finite group. Then, for any integer n ≥ 0, there

is a free action of G on the Menger compactum µn such that every separable,

metrizable, free G-space X with dimX ≤ n admits an equivariant embedding

into µn.

Proof. By the preceding corollary, X has a compact, metrizable, free G-

compactification bGX of dimbGX ≤ dimX. It remains to apply Dranishnikov’s

result [7, Corollary and Theorem 3] to the effect that there is a unique free

action of G on the Menger compactum µn such that µn contains an equivariant

homeomorphic copy of each compact, metrizable, free G-space of dimension

less than or equal to n.

5. The case ofG-spaces of a single orbit type. In this section, we generalize

Theorem 4.1 to the case of G-spaces of Euclidean type that may not be free,

but have a single orbit type.

LetH be a closed subgroup ofG and X be aG-space of type (H). LetN(H) be

the normalizer of H in G andW(H)=N(H)/H, the Weyl group. Below, for any

n ∈ N(H), we denote by ñ the lateral class nH. The group W(H) acts freely

on XH , the H-fixed point set of X. At the same time, W(H) acts on G/H by the
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formula

ñ∗gH = gn−1H, ñ∈W(H), gH ∈G/H. (5.1)

The twisted product (G/H)×W(H)XH is just theW(H)-orbit space of the prod-

uct G/H ×XH endowed with the diagonal action of W(H). It is well known

(see [4, Chapter II, Corollary 5.11]) that X is G-homeomorphic to the G-space

(G/H)×W(H)XH , equipped with the action of G given by the formula

g′ ∗[gH,x]= [g′gH,x], g′ ∈G, [gH,x]∈ (G/H)×W(H)XH. (5.2)

Lemma 5.1. If H is a closed subgroup of G and Y is a free W(H)-space, then

the twisted product T = (G/H)×W(H) Y has only one orbit type (H). Besides,

wT =wY and dimT = dimY +dim(G/N(H)).

Proof. Indeed, let [gH,x] be a point of (G/H)×W(H) Y fixed under an el-

ement g′ ∈ G. Then, [g′gH,x] = [gH,x] or, equivalently, (g′gH,x) = (ñ∗
gH,ñx), for some n ∈ N(H). Then, g′gH = gn−1H and x = ñx. Since W(H)
acts freely on Y , the equality x = ñx implies that n∈H. The equality g′gH =
gn−1H yields that g′ = gn−1hg−1 for some h ∈ H, and hence, g′ ∈ gHg−1.

Consequently, the stabilizer of [gH,x] is just the group gHg−1, and hence,

the G-space (G/H)×W(H) Y has only one orbit type (H).
Since w(G/H)≤ ℵ0, we see that

w
(
(G/H)×W(H) Y

)≤wY. (5.3)

On the other hand, Y is a subset of T , so wY ≤wT .

For the second equality, by Lemma 4.2 and by the above quoted Morita’s

theorem [16], we have

dimT = dim
(
(G/H)×W(H) Y

)
= dim

(
(G/H)×Y )−dimW(H)

= dim(G/H)+dimY −(dimN(H)−dimH
)

= dimY +dimG−dimH−dimN(H)+dimH

= dimY +dimG−dimN(H)

= dimY +dim
(
G/N(H)

)
.

(5.4)

Theorem 5.2. For every closed subgroupH ⊂G, every infinite cardinal num-

ber τ and for every nonnegative integer n ≥ dimG, there exists a compact

G-space �nτ (H) of type (H) with w(�nτ (H))= τ , dim(�nτ (H))=n which is uni-

versal in the following sense: �nτ (H) contains a G-homeomorphic copy of any

G-space X of Euclidean type and of the single orbit type (H) such that wX ≤ τ
and dimβGX ≤ n. In particular, �nτ (H) contains a G-homeomorphic copy of

each paracompact G-space X of type (H) with wX ≤ τ and dimX ≤n.
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Proof. Let k=n−dim(N(H)/H). Then, we have

k=n−dim
(
G/N(H)

)
=n−dimG+dimN(H)

≥ dimN(H)−dimH

= dim
(
N(H)/H

)
= dimW(H).

(5.5)

Hence, by Theorem 4.1, there exists a universal compact free W(H)-space

�kτ of dimension k and weight τ .

Set �nτ (H)= (G/H)×W(H)�kτ . By Lemma 5.1, �nτ (H) is a compact G-space of

the single orbit type (H). We claim that it is the required one.

Indeed, by Lemma 5.1,

w
(
(G/H)×W(H)�kτ

)=w�kτ = τ,
dim�nτ (H)= dim

(
(G/H)×W(H)�kτ

)
= dim�kτ+dim

(
G/N(H)

)
= k+dim

(
G/N(H)

)=n.
(5.6)

Now, if X is a G-space with the single orbit type (H) such that wX ≤ τ and

dimX ≤ n, then, since X = (G/H)×W(H) XH , it follows from Lemma 5.1 that

w(XH)≤ τ and dimXH ≤ k.

By Theorem 4.1, there is a W(H)-equivariant embedding f :XH ↩�kτ . Then,

the map F : (G/H) ×W(H) XH → (G/H) ×W(H) �kτ , generated by f , is a G-

equivariant embedding. We recall that F is defined as follows: F([gh,x]) =
[gH,f(x)] for every [gh,x]∈ (G/H)×W(H)XH (see [17, Theorem 1.7.10]).

It remains only to recall that

X = (G/H)×W(H)XH, �nτ (H)= (G/H)×W(H)�kτ . (5.7)

This completes the proof.

From Theorem 5.2, the following corollary follows immediately.

Corollary 5.3. Any paracompact G-space X of a single orbit type (H) has

a G-compactification bGX of the same orbit type (H) such that w(bGX) ≤wX
and dimbGX ≤ dimX.
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