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We discover new information about the spherical curvature of stereographically
projected analytic curves. To do so, we first state formulas for the spherical curva-
ture and spherical torsion of the curves on S2 which result after stereographically
projecting the image curves of analytic, univalent functions belonging to the class
�. We then derive results concerning the location of the critical points of the spher-
ical curvature, considered both as a function of one and two variables. Further
analysis leads to a maximum principle for the spherical curvature functions.
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1. Introduction. We begin by defining the spherical curvature and spherical

torsion of the stereographically projected images of circles and radii in U .

Let � denote the class of analytic, univalent functions f(z) defined in the

unit disk U = {z : |z|< 1} and normalized so that f(0)= 0 and f ′(0)= 1.

Let f ∈ � and let Π denote the stereographic projection of the image plane

of f onto the unit sphere S2. For each fixed r , 0< r < 1, let

�r =
{
z : |z| = r}, �′r = f

(
�r
)
, �′′r =Π

(
�′r
)
. (1.1)

For each fixed θ, −π < θ ≤+π , let

�θ =
{
z : argz = θ}, �′

θ = f
(
�θ
)
, �′′

θ =Π
(
�′
θ
)
. (1.2)

The local curvature at a specified point on each of the curves �′r and �′
θ has

been the object of intense research [1, pages 126 and 262]. Of course, the local

torsion at any specified point on each of these curves is equal to zero. Our

immediate objective is to determine formulas for the spherical curvature and

spherical torsion at a specified point on the stereographically projected curves

�′′r and �′′
θ on the unit sphere S2.

A parametrization of the curves under consideration is easily prescribed.

Indeed, if we write

f(z)= f(r ,θ)= (u(r ,θ),v(r ,θ)) (
z = reiθ ∈U), (1.3)
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then

�′′r =
{
X(r ,θ) :−π < θ ≤+π}, �′′

θ =
{
X(r ,θ) : 0< r < 1

}
, (1.4)

where

X(r ,θ)=
(

2u(r ,θ)
|f |2+1

,
2v(r ,θ)
|f |2+1

,
|f |2−1
|f |2+1

)
. (1.5)

In terms of the parametrization (1.5), the local spherical curvature κ(θ;r ,f )
and the local spherical torsion τ(θ;r ,f ) at the point X(r ,θ) on the curve �′′r
are classically defined by the formulas

κ(θ;r ,f )=
∣∣Xθ×Xθθ∣∣∣∣Xθ∣∣3 , τ(θ;r ,f )=

[
XθXθθXθθθ

]
∣∣Xθ×Xθθ∣∣2 , (1.6)

where the subscripts on X denote the variable with respect to which the par-

tial derivative is taken. The local spherical curvature κ(r ;θ,f ) and spherical

torsion τ(r ;θ,f ) at the point X(r ,θ) on the curve �′′
θ are given by similar

formulas.

In our first result below, we provide explicit formulas for the spherical cur-

vatures and spherical torsions under study. In all results to follow, the quantity

f�(z)=
∣∣f ′(z)∣∣

1+∣∣f(z)∣∣2 (1.7)

will denote the spherical derivative of f(z) and the quantity

{f ,z} =
(
f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

(1.8)

will denote the Schwarzian derivative of f(z). Note that (1.11) provides an

explicit connection between these two quantities.

In all formulas to follow, the subscripts on � denote the variable(s) with

respect to which the partial derivative is taken.

Theorem 1.1. Let f ∈� and let �(r ,θ;f)= 1/rf�(r ,θ).
(a) At the point X(r ,θ) on the sphere curve �′′r , the local spherical curvature

κ(θ;r ,f ) is given by the formula

κ(θ;r ,f )=
(

1+ 1
4
r 2�2

r (r ,θ;f)
)1/2

, (1.9)

and the local spherical torsion τ(θ;r ,f ) is given by the formula

τ(θ;r ,f )= r�(r ,θ;f)�rθ(r ,θ;f)
4κ2(θ;r ,f )

. (1.10)
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Furthermore, since

r�rθ(r ,θ;f)=�(r ,θ;f) Im
[
z2{f ,z}] (

z = reiθ ∈U), (1.11)

these quantities are related by

4κ2(θ;r ,f )τ(θ;r ,f )=�2(r ,θ;f) Im
[
z2{f ,z}]. (1.12)

(b) At the point X(r ,θ) on the sphere curve �′′
θ , the local spherical curvature

κ(r ;θ,f ) is given by the formula

κ(r ;θ,f )=
(

1+ 1
4

�2
θ(r ,θ;f)

)1/2
, (1.13)

and the local spherical torsion τ(r ;θ,f ) is given by the formula

τ(r ;θ,f )=−r�(r ,θ;f)�rθ(r ,θ;f)
4κ2(r ;θ,f )

. (1.14)

Furthermore, these quantities are related by

4κ2(r ;θ,f )τ(r ;θ,f )=−�2(r ,θ;f) Im
[
z2{f ,z}]. (1.15)

The proof of this result is lengthy, but straightforward, and is omitted.

Remark 1.2. In deriving formulas (1.9) and (1.13), it becomes clear that

the partial derivatives −r�r (r ,θ;f) and �θ(r ,θ;f) are actually the real and

imaginary parts of the same quantity. Indeed, if we set

Φ(z;f)=
(
1+zf ′′(z)/f ′(z))−(2∣∣f(z)∣∣2/

(
1+∣∣f(z)∣∣2

))(
zf ′(z)/f(z)

)
2rf�(z)

,

(1.16)

then, with z = reiθ , we have

−1
2
r�r (r ,θ;f)= Re

{
Φ(z;f)

}
, (1.17)

+1
2

�θ(r ,θ;f)= Im
{
Φ(z;f)

}
. (1.18)

Hence, the spherical curvatures are related to each other via Φ(z;f).

Remark 1.3. Since f ′(z)≠ 0 in U , the representation

�(r ,θ;f)=
∣∣∣∣ 1
zf ′(z)

∣∣∣∣+
∣∣∣∣ f

2(z)
zf ′(z)

∣∣∣∣ (1.19)
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shows that �(r ,θ;f) is subharmonic in the punctured disk U −{0}. Indeed,

with the additional formulas (to be used in the proof of Theorem 3.1)

�rr (r ,θ;f)=−1
r

�r (r ,θ;f)+ 2
r 2�(r ,θ;f)

(
1+∣∣Φ(z;f)

∣∣2
)

+ �(r ,θ;f)
r 2

[
1
2
−Re

[
z2{f ,z}]

]
,

(1.20)

�θθ(r ,θ;f)= 2
�(r ,θ;f)

(
1+∣∣Φ(z;f)

∣∣2
)

+�(r ,θ;f)
[

Re
[
z2{f ,z}]− 1

2

]
,

(1.21)

we can explicitly compute the Laplacian of �(r ,θ;f) to be

∆�(r ,θ;f)= 4
r 2�(r ,θ;f)

(
1+∣∣Φ(z;f)

∣∣2
)
> 0. (1.22)

More generally, we see that �α(r ,θ;f) is also subharmonic for every α > 0

since

∆�α(r ,θ;f)= 4α
r 2�2−α(r ,θ;f)

(
1+α∣∣Φ(z;f)

∣∣2
)
> 0. (1.23)

Also, we note that

�rr (r ,θ;f)+ 1
r

�r (r ,θ;f)− 1
r 2

�θθ(r ,θ;f)

= 2�(r ,θ;f)
r 2

[
1
2
−Re

[
z2{f ,z}]

]
.

(1.24)

In Section 2, for an arbitrary f ∈ �, we are able to determine all critical

points of κ(θ;r ,f ) and κ(r ;θ,f ) when they are considered as functions of

one variable, necessarily introducing the level sets λr0(f ), λ
θ
0(f ), and Λ0(f ).

Using these data, a strategy for locating the extreme values of the spherical

curvature κ(θ;r ,f ) on the curve �′′r and the spherical curvature κ(r ;θ,f ) on

the curve �′′
θ is discussed.

In Section 3, for an arbitrary f ∈�, we are also able to determine the station-

ary points of κ(θ;r ,f ) and κ(r ;θ,f ) when they are considered as functions

of two variables.

To complement this result, in Section 4, we show that on certain subdomains

D, there exist real α and β for which κα(θ;r ,f ) and κβ(r ;θ,f ) are subhar-

monic on D. Although it is not necessarily true that κ(θ;r ,f ) and κ(r ;θ,f )
are subharmonic, we will show nevertheless that maximum principles for these

spherical curvature functions are still valid on certain subdomains of U .

Finally, in Section 5, we describe some topological properties of the level

sets λr0(f ), λ
θ
0(f ), and Λ0(f ) which arise naturally in Sections 2, 3, and 4.
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2. Critical points of the spherical curvature functions considered as func-

tions of one variable. We now consider the problem of determining the crit-

ical points of the spherical curvature functions on the curves �′′r and �′′
θ for

an arbitrary function f ∈�. This is an important task since extreme values of

the spherical curvature functions will occur at critical points.

Theorem 2.1. Let f ∈�. Define the level sets

λr0(f )=
{
z = reiθ ∈U : �r (r ,θ;f)= 0

}
,

λθ0(f )=
{
z = reiθ ∈U : �θ(r ,θ;f)= 0

}
,

Λ0(f )=
{
z = reiθ ∈U : Im

[
z2{f ,z}]= 0

}
.

(2.1)

(a) For each 0 < r < 1, a point z = reiθ ∈ �r , corresponding to the point

X(r ,θ) on the curve �′′r , is a critical point of the spherical curvature κ(θ;r ,f )
if and only if z = reiθ ∈ λr0(f )∪Λ0(f ).

(b) For each −π < θ ≤ π , a point z = reiθ ∈ �θ , corresponding to the point

X(r ,θ) on the curve �′′
θ , is a critical point of the spherical curvature κ(r ;θ,f )

if and only if z = reiθ ∈ λθ0(f )∪Λ0(f ).

Proof. (a) By differentiating (1.9), we obtain

κθ(θ;r ,f )= r
2�r (r ,θ;f)�rθ(r ,θ;f)

4κ(θ;r ,f )
. (2.2)

Thus, for a critical point of the spherical curvature κ(θ;r ,f ) to occur at a

point z = reiθ ∈ �r corresponding to a point X(r ,θ) ∈ �′′r , it is necessary

and sufficient that either �r (r ,θ;f) = 0 or �rθ(r ,θ;f) = 0. (It is possible for

both of these quantities to equal zero simultaneously.) If �r (r ,θ;f)= 0, then

κ(θ;r ,f )= 1, an absolute minimum value, and the corresponding z value be-

longs to the level set λr0(f ), and conversely. If �rθ(r ,θ;f)= 0, then, by (1.10)

and (1.11), it must be the case that Im[z2{f ,z}] = 0, where z = reiθ ∈ Λ0(f ),
and conversely.

(b) By differentiating (1.13), we obtain

κr (r ;θ,f )= �θ(r ,θ;f)�rθ(r ,θ;f)
4κ(r ;θ,f )

. (2.3)

Thus, for a critical point of the spherical curvature κ(r ;θ,f ) to occur at a

point z = reiθ ∈ �θ corresponding to a point X(r ,θ) ∈ �′′
θ , it is necessary

and sufficient that either �θ(r ,θ;f)= 0 or that �rθ(r ,θ;f)= 0. (It is possible

for both of these quantities to equal zero simultaneously.) If �θ(r ,θ;f) = 0,

then κ(r ;θ,f ) = 1, an absolute minimum value, and the corresponding z
value belongs to the level set λθ0(f ), and conversely. If �rθ(r ,θ;f) = 0, then

Im[z2{f ,z}]= 0, where z = reiθ ∈Λ0(f ), and conversely.
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Remark 2.2. As a consequence of Theorem 2.1, the procedure of determin-

ing the critical values of both spherical curvature functions, and subsequently

the location of local and absolute minimum and maximum values of either of

the spherical curvature functions, is now clear. We first determine the level

sets λr0(f ), λ
θ
0(f ), and Λ0(f ). We then compare the values of κ(θ;r ,f ) on the

set (λr0(f )∪Λ0(f ))∩�r ⊂ U to each other and the values of κ(r ;θ,f ) on the

set (λθ0(f )∪Λ0(f ))∩�θ ⊂U to each other.

Alternately, after all of the critical points have been located, the standard

second derivative test may be employed as follows in an attempt to classify

them.

For the curves �′′r , another differentiation of (2.2) with respect to θ yields

κθθ(θ;r ,f )= r
2�2

rθ(r ,θ;f)+r 2�r (r ,θ;f)�rθθ(r ,θ;f)
4κ(θ;r ,f )

− r
2�r (r ,θ;f)�rθ(r ,θ;f)κθ(θ;r ,f )

4κ2(θ;r ,f )
.

(2.4)

If the point X(r ,θ)∈�′′r corresponds to a critical point for which �r (r ,θ;f)=
0, that is, for which κ(θ;r ,f ) = 1, then the form of the second derivative re-

duces to

κθθ(θ;r ,f )= r
2�2

rθ(r ,θ;f)
4

= �2(r ,θ;f)
[
Im
[
z2{f ,z}]]2

4
, (2.5)

which is clearly nonnegative at an absolute minimum as expected. On the other

hand, if �r (r ,θ;f)≠ 0 and �rθ(r ,θ;f)= 0, then the form of the second deriv-

ative reduces to

κθθ(θ;r ,f )= r
2�r (r ,θ;f)�rθθ(r ,θ;f)

4κ(θ;r ,f )
. (2.6)

By differentiating (1.11) with respect to θ, we obtain

r�rθθ(r ,θ;f)=�θ(r ,θ;f) Im
[
z2{f ,z}]+�(r ,θ;f)Re

[
z
d
dz
[
z2{f ,z}]

]
,

(2.7)

and the second derivative further reduces to the form

κθθ(θ;r ,f )=
r�(r ,θ;f)�r (r ,θ;f)Re

[
z(d/dz)

[
z2{f ,z}]]

4κ(θ;r ,f )
, (2.8)

clearly indicating the two quantities upon which the classification of the critical

point depends.
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For the curves �
′′
θ , another differentiation of (2.3) with respect to r yields

κrr (r ;θ,f )= �2
rθ(r ,θ;f)+�θ(r ,θ;f)�rθr (r ,θ;f)

4κ(r ;θ,f )

− �θ(r ,θ;f)�rθ(r ,θ;f)κr (r ;θ,f )
4κ2(r ;θ,f )

.

(2.9)

If X(r ,θ) ∈ �′′
θ corresponds to a critical point for which �θ(r ,θ;f) = 0, that

is, for which κ(r ;θ,f )= 1, then the form of the second derivative reduces to

κrr (r ;θ,f )= �2
rθ(r ,θ;f)

4
=

�2(r ,θ;f)
[

Im
[
z2{f ,z}]]2

4r 2
, (2.10)

which is clearly nonnegative at an absolute minimum as expected. Now,

X(r ,θ) ∈ �′′
θ corresponds to a critical point for which �θ(r ,θ;f) ≠ 0 and

�rθ(r ,θ;f)= 0, then the form of the second derivative reduces to

κrr (r ;θ,f )= �θ(r ,θ;f)�rθr (r ,θ;f)
κ(r ;θ,f )

. (2.11)

By differentiating (1.11) with respect to r , we obtain

r�rθr (r ,θ;f)+�rθ(r ,θ;f)= �(r ,θ;f)
r

Im
[
z
d
dz
[
z2{f ,z}]

]
, (2.12)

and the second derivative further reduces to the form

κrr (r ;θ,f )=
�(r ,θ;f)�θ(r ,θ;f) Im

[
z(d/dz)

[
z2{f ,z}]]

4r 2κ(r ;θ,f )
, (2.13)

clearly indicating the two quantities upon which the classification of the critical

point depends.

Theoretically, the second derivatives κθθ(θ;r ,f ) and κrr (r ;θ,f ) may also

be used to determine the candidates for inflection points of the spherical cur-

vatures κ(θ;r ,f ) and κ(r ;θ,f ) of the curves �′′r and �′′
θ , respectively, although

in practice, this task is computationally formidable.

3. Stationary points of the spherical curvature functions considered as

functions of two variables. Although the prescribed spherical curvature func-

tions κ(θ;r ,f ) and κ(r ;θ,f ) have been defined as a function of one variable

(as a function of θ with r fixed, and vice versa), it is clear that each of them may

be considered as a function of two variables on the punctured disk U −{0}.
Upon adopting this point of view, it is natural to ask whether the spherical

curvature functions have stationary points in U−{0} and how to locate them

if they exist. The answer is provided in the following result.
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Theorem 3.1. Let f ∈�.

(a) Any stationary points of the spherical curvature κ(θ;r ,f ), when consid-

ered as a function of two variables, belong to the set λr0(f )∪(Λ0(f )∩Ξ+0 (f )),
where Ξ+0 (f ) is defined within the proof. Furthermore, if the stationary point

z ∈ Λ0(f )∩Ξ+0 (f ), then it is necessary that z2{f ,z} be real and greater than

1/2 at that point.

(b) Any stationary points of the spherical curvature κ(r ;θ,f ), when consid-

ered as a function of two variables, belong to the set λθ0(f )∪(Λ0(f )∩Ξ−0 (f )),
where Ξ−0 (f ) is defined within the proof. Furthermore, if the stationary point

z ∈ Λ0(f )∩Ξ−0 (f ), then it is necessary that z2{f ,z} be real and less than 1/2
at that point.

Proof. (a) Since

κr (θ;r ,f )= r
2�r (r ,θ;f)

[
�rr (r ,θ;f)+(1/r)�r (r ,θ;f)

]
4κ(θ;r ,f )

,

κθ(θ;r ,f )= r
2�r (r ,θ;f)�rθ(r ,θ;f)

4κ(θ;r ,f )
,

(3.1)

it is clear that both derivatives will vanish if �r (r ,θ;f) = 0, that is, if z =
reiθ ∈ λr0(f ). In this case, κ(θ;r ,f ) = 1 which corresponds to an absolute

minimum value. On the other hand, a stationary point also occurs at a point

z = reiθ ∈ U whenever �rθ(r ,θ;f)= 0 and �rr (r ,θ;f)+(1/r)�r (r ,θ;f)= 0.

But �rθ(r ,θ;f) = 0 if and only if Im[z2{f ,z}] = 0 by (1.11). In this case, z ∈
Λ0(f ). Also, �rr (r ,θ;f)+(1/r)�r (r ,θ;f)= 0 if and only if

2
�2(r ,θ;f)

(
1+∣∣Φ(z;f)

∣∣2
)
= Re

[
z2{f ,z}]− 1

2
(3.2)

by (1.20). Letting Ξ+0 (f ) denote the set of z ∈U for which this equation holds,

the first assertion of part (a) is established. If a stationary point z ∈ Λ0(f )∩
Ξ+0 (f ), then it is necessary that z2{f ,z} be real and greater than 1/2 at that

point.

(b) Since

κr (r ;θ,f )= �θ(r ,θ;f)�rθ(r ,θ;f)
4κ(r ;θ,f )

,

κθ(r ;θ,f )= �θ(r ,θ;f)�θθ(r ,θ;f)
4κ(r ;θ,f )

,

(3.3)

it is clear that both derivatives will vanish if �θ(r ,θ;f)= 0, that is, if z ∈ λθ0(f ).
In this case, κ(r ;θ,f ) = 1 which corresponds to an absolute minimum value.

On the other hand, a stationary point also occurs at a point z = reiθ ∈ U
whenever �rθ(r ,θ;f) = 0 and �θθ(r ,θ;f) = 0. Again, �rθ(r ,θ;f) = 0 if and

only if Im[z2{f ,z}]= 0 by (1.11). In this case, z ∈Λ0(f ). Also, �θθ(r ,θ;f)= 0
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if and only if

2
�2(r ,θ;f)

(
1+∣∣Φ(z;f)

∣∣2
)
= 1

2
−Re

[
z2{f ,z}] (3.4)

by (1.21). Letting Ξ−0 (f ) denote the set of z ∈U for which this equation holds,

the first assertion of part (b) is established. If a stationary point z ∈ Λ0(f )∩
Ξ−0 (f ), then it is necessary that z2{f ,z} be real and less than 1/2 at that point.

We conclude from Theorem 3.1 that no point z ∈ Λ0(f ) can simultane-

ously be a stationary point for both spherical curvature functions κ(θ;r ,f )
and κ(r ;θ,f ).

Having located the stationary points of both spherical curvature functions,

the standard Hessian test may be used to classify them when the test is not

inconclusive.

4. Subharmonicity and maximum principles for spherical curvature. It is

natural to ask whether there exist maximum principles for the spherical cur-

vature functions on subdomains of U−{0}. It is well known that subharmonic

functions satisfy principles of this type. Hence, we attempt to discover con-

ditions under which we may conclude that powers of the spherical curvature

functions are subharmonic.

Let D be a simply connected domain with piecewise smooth boundary ∂D
contained in U −{0}. (Of course, more general domains may be considered.)

Note that both spherical curvature functions given by (1.9) and (1.13) have

the algebraic form w = (1+u2)1/2, where either u = −(1/2)r�r (r ,θ;f) or

u=+(1/2)�θ(r ,θ;f). A short computation shows that

∆wα =α(1+u2)α/2[(1+u2)u∆u+((α−1)u2+1
)(
u2
r +

1
r 2
u2
θ

)]
. (4.1)

Since the functionu∆u is continuous on D̄, it must have an absolute minimum

there, which may be negative. For wα to be subharmonic, the other quantity

within the square brackets must compensate for the possible negativity. This

will occur provided that

min
D̄
u2 > 0, (4.2)

that

min
D̄

(
u2
r +

1
r 2
u2
θ

)
> 0, (4.3)
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and that α is sufficiently large. On the other hand, if u∆u is positive, then the

choice α= 1 implies that w is subharmonic.

Theorem 4.1. Let f ∈� and letD be a simply connected domain with piece-

wise smooth boundary ∂D contained in U−{0}.
(a) If D̄ does not meet either λr0(f ) or Λ0(f ), then there exists α̂≥ 1 such that

κα(θ;r ,f ) is subharmonic on D for all α≥ α̂.

(b) If D̄ does not meet either λθ0(f ) or Λ0(f ), then there exists β̂≥ 1 such that

κβ(r ;θ,f ) is subharmonic on D for all β≥ β̂.

Consequently, under the given conditions, the maximum values of κα(θ;r ,f )
and κβ(r ;θ,f ), when considered as functions of two variables, must occur on

the boundary of the domain D.

Proof. (a) Let u = −(1/2)r�r (r ,θ;f). Then (4.2) holds provided that D̄
does not meet λr0(f ) and (4.3) holds provided that D̄ does not meet Λ0(f ),
for (u2

r + (1/r 2)u2
θ) ≥ (1/4)�2

rθ > 0 on D̄ due to relation (1.11). Thus, the

stated conditions imply that the Laplacian ∆κα(θ;r ,f ) will be positive if α is

large enough. An appeal to the maximum principle for subharmonic functions

now allows us to conclude that κα(θ;r ,f ) attains its maximum value on the

boundary of D.

(b) The proof of part (b) is similar to the proof of part (a) if we substitute

u=+(1/2)�θ(r ,θ;f).

Corollary 4.2 (maximum principles for the spherical curvature functions).

Let f ∈ � and let D be a simply connected domain with smooth boundary ∂D
contained in U − {0}. Then, under the conditions stated in Theorem 4.1, the

maximum values of κ(θ;r ,f ) and κ(r ;θ,f ), considered as functions of two

variables, must occur on the boundary of D.

Proof. Choose α > 1 (resp., β > 1) large enough so that κα(θ;r ,f ) ≥ 1

(resp., κβ(r ;θ,f ) ≥ 1) is subharmonic on D. Since its maximum value occurs

on the boundary ofD, we need only to extract theαth (resp., βth) root to obtain

the result. Note that κ(θ;r ,f ) (resp., κ(r ;θ,f )) is itself subharmonic if α̂ < 1

(resp., β̂ < 1).

5. Topological properties of the level sets λr0(f ), λ
θ
0(f ), and Λ0(f ). The

importance of the level sets λr0(f ), λ
θ
0(f ), and Λ0(f ) has been firmly estab-

lished in Theorems 2.1, 3.1, and 4.1. Therefore, in view of our central purpose,

it is important to discuss these sets in further detail.

In view of the representations (1.17) and (1.18), it is clear that the sets λr0(f )
and λθ0(f ) are the level sets of infinitely smooth surfaces for every f ∈�. Some

additional topological properties of these level sets are established here.

Proposition 5.1. Let f ∈�.

(a) The level set λr0(f ) does not contain an open subset of U .

(b) The level set λθ0(f ) contains an open subset of U if and only if f(z) = z,

in which case λθ0(f )=U .
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(c) The level sets λr0(f ) and λθ0(f ) do not contain Jordan curves (i.e., simple

closed curves) which bound simply connected subdomains of U−{0}.
Proof. (a) Recall (1.17). The numerator of ReΦ(z;f) is the difference of

two functions: the first N1(z) of which is harmonic and the other N2(z) which

is not. They can be equal on an open set if and only if they are both constant.

The function N1(z) is constant on an open set if and only if f(z) = z, but in

this eventuality, N2(z) is a nonconstant function of r .

(b) Recall (1.18). The argument for λθ0(f ) proceeds in a similar manner. If we

choose f(z) = z, then f�(ρ,θ) = 1/(1+ρ2) and �θ(ρ,θ;f) ≡ 0. Thus, for all

values of ρ, we have κ(ρ;θ,f )≡ 1 so that λθ0(f )=U .

(c) Suppose, on the contrary, that the level set λr0(f ) contains a Jordan curve

γ which bounds a simply connected subdomain G of U−{0}. Since κ(θ;r ,f )≥
1, considered as a function of two variables, is nonconstant and continuous on

Ḡ and κ(θ;r ,f )= 1 on γ = ∂G, it has a maximum value in the interior of G at

some point z0 = r0eiθ0 , and we have κ(θ0;r0,f )≥ κ(θ;r ,f ) > 1 throughout G.

Now, let α be an analytic, univalent mapping of G onto the unit disk U . Let

γr = α−1(|z| = r) and let Gr denote the interior of γr . For ε > 0 small, there

exists an rε such that |�r (r ,θ;f)| < ε on γrε since �r (r ,θ;f) is continuous

on Ḡ and �r (r ,θ;f) = 0 on γ. It follows from this inequality and (1.9) that

κ(θ;r ,f ) < (1+(1/4)ε2)1/2 on γrε . This is a contradiction to Corollary 4.2, the

maximum principle for the spherical curvature for if ε is small enough, z0 ∈Gr
and (1+(1/4)ε2)1/2 < κ(θ0;r0,f ).

The argument for λθ0(f ) proceeds in a similar manner.

Remark 5.2. In view of Proposition 5.1, it is natural to ask whether the

level set λr0(f ) may be empty. The answer is affirmative. For if f(z)= z, then

�(ρ,θ;f) = (ρ2+1)/ρ and �r (ρ,θ;f) = 1−1/ρ2 < 0 for all 0 < ρ < 1 so that

λr0(f )=∅.

If f(z)= z+a2z2+a3z3+··· , then the asymptotic expansion

κ(θ;ρ,f )= 1
2ρ
+ 1

2

(
1−∣∣a2

∣∣2−3Re
{(
a2

2−a3
)
e2iθ})ρ+··· (5.1)

clearly shows that κ(θ;ρ,f ) > 1 so that �r (ρ,θ;f) ≠ 0, for small values of ρ,

implying that the level set λr0(f ) does not get too close to the origin.

Indeed, for every r ∈ (0, r̃ ) and every θ ∈ (−π,+π], we have

min
f∈�

κ(θ;r ,f ) > 1, (5.2)

where r̃ = 0.19783 . . . is the only root of the equation

1−8r +22r 2−40r 3+22r 4−8r 5+r 6 = 0 (5.3)
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in the interval (0,1). To see this, one needs only to apply the familiar estimates

given in [2, pages 32–35] to each part of the formula for �r (ρ,θ;f) given by

(1.17).

However, for larger values of ρ, �r (ρ,θ;f) may equal 0. Indeed, for every

r ∈ [r̂ ,1) and every θ ∈ (−π,+π], we have

min
f∈�

κ(θ;r ,f )= 1, (5.4)

where r̂ = 0.25971 . . . is the only root of the equation

1−10r 2−16r 3−10r 4+r 6 = 0 (5.5)

in the interval (0,1). There is an infinite number of functions for which this

minimum is attained. This result has been previously established in [3, page

107]. Thus, for these larger values of ρ, there may exist functions f ∈ � for

which λr0(f )≠∅.

Remark 5.3. It is equally important to discuss the level set Λ0(f ). Since

Im[z2{f ,z}] is a harmonic function, some of the properties of the level set

Λ0(f ) follow from well-known properties of harmonic functions. For instance,

Λ0(f ) will contain neither an isolated point nor an arc which terminates at an

interior point of U since either of these occurrences would violate the mean

value property for harmonic functions. Also, if the level set Λ0(f ) is to contain

either an open subset of U or a closed Jordan curve, then Im[z2{f ,z}] would

be identically zero on U , due to an application of the maximum principle for

harmonic functions. This possibility could occur if, for instance, f(z)= z/(1−
cz) for some constant c.
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