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1. Introduction. Quadratic pairs on central simple algebras were defined in

[5]. They play the same role for quadratic forms as involutions for symmetric or

skew-symmetric bilinear forms. In particular, they can be used to define twisted

orthogonal groups in characteristic 2. In this paper, a notion of orthogonal

sum of quadratic pairs is introduced on the model of Dejaiffe’s orthogonal

sum of involutions [2]. Moreover, an example is given to show that there is no

cancellation for this operation.

2. Orthogonal sum of quadratic pairs

Definition 2.1. Let A be a central simple algebra of degree n over a field

F of characteristic 2. A quadratic pair on A is a pair (σ ,f ), where σ is a sym-

plectic involution on A and f : Sym(A,σ) → F is a linear map satisfying the

following condition:

f
(
x+σ(x))= TrdA(x) (2.1)

for all ∈A. In this case, n is always even.

We recall from [2] that a Morita equivalence ((A,σ),(B,τ),M,N,f ,g,ν) be-

tween two algebras with involutions of the first kind (A,σ) and (B,τ) is given

by

(i) an A-B bimodule M ;

(ii) a B-A bimodule N;

(iii) two bimodule homomorphisms f : M ⊗B N → A and g : N ⊗A M → B
which are associative in the sense that f(m⊗n) ·m′ =m ·g(n⊗m′)
and g(n⊗m)·n′ =n·f(m⊗n′), for all m,m′ ∈M and n,n′ ∈N;

(iv) a bijective F -linear map ν :M →N such that ν(amb)= τ(b)ν(m)σ(a)
for all a∈A, m∈M , b ∈ B, and ν−1 is its inverse.
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If ((A,σ),(A′,σ ′),M,N,g,h,ν) is a Morita equivalence of two algebras with

symplectic involutions and (σ ,f ) and (σ ′,f ′) are quadratic pairs, respectively,

on A and A′, then we define the orthogonal sum of (A,σ ,f ) and (A′,σ ′,f ′) as

follows:

(A,σ ,f )⊕(A′,σ ′,f ′)= (S,∗ ,f ′′), (2.2)

where

S =
(
A M
N A′

)
,

∗(
a m
n a′

)
=
(
σ(a) ν−1(n)
ν(m) σ ′(a′)

)
. (2.3)

We have

Sym
(
S,∗

)=


(
a m
n a′

)∣∣∣∣∣
σ(a)= a
σ ′(a′)= a′
n= ν(m)


 (2.4)

and f ′′ : Sym(S,∗ )→ F defined by

f ′′
(
a m

ν(m) a′

)
= f(a)+f ′(a′). (2.5)

Proposition 2.2. The orthogonal sum (S,∗,f ′′) is an algebra with qua-

dratic pair.

Proof. It is clear that the involution ∗ is symplectic, and we have, for all

x =
(
a m
n a′

)
∈ S, (2.6)

that

f ′′
(
x+x∗)= f ′′

(
a+σ(a) m+ν−1(n)
n+ν(m) a′ +σ ′(a′)

)

= f (a+σ(a))+f ′(a′ +σ ′(a′))
= TrdA(a)+TrdA′(a′)= TrdS(x).

(2.7)

A particular case of this definition is the situation where M = N = A = A′.
If A is a central simple algebra over a field of characteristic 2, we consider the

two algebras with quadratic pairs (A,σ ,f ) and (A,σ ′,f ′), where σ and σ ′ are

symplectic involutions on A. Then we have σ ′ = Int(s)◦σ with s ∈ Alt(A,σ).
For λ∈ F∗, we define on M2(A) the involution θλ by

θλ

(
a b
c d

)
=
(
σ(a) λ−1σ(c)s−1

λsσ(b) σ ′(d)

)
. (2.8)
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The map ν is defined by ν(x)= λsσ(x), for all x ∈A, and we define the map

g : Sym(θλ)→ F by

g
(
a b
c d

)
= f(a)+f ′(d). (2.9)

It is clear that (M2(A),θλ,g) is an algebra with quadratic pair. We recall that

(A,σ ,f )� (A,σ ′,f ′) if and only if there exists v ∈A∗ such that σ ′ = Int(v)◦
σ ◦ Int(v)−1 = Int(vσ(v))◦σ and f ′ = f ◦ Int(v−1).

3. Generalized quadratic forms. Let V be a right vector space on a central

division F -algebra with involution (D,∗). A generalized quadratic form on V is

a pair (ψ,Q) consisting of a hermitian form ψ and a map Q : V →D/Alt(D,∗)
such that

(1) Q(x+y)=Q(x)+Q(y)+[ψ(x,y)];
(2) Q(xλ)= λ∗Q(x)λ;

(3) ψ(x,x)=Q(x)+Q(x)∗.

This notion is due to Gross [4]. The space (V ,ψ,Q) is called a quadratic space.

Let D be a central division algebra over F with an involution ∗ of any kind,

V a D-vector space, and (ψ,Q) a generalized quadratic form. Then we have an

F -linear map ϕψ : V ⊗D ∗V → EndD(V)=A such that

ϕψ
(
v⊗∗w

)
(x)= v ·ψ(w,x) (3.1)

for v,w,x ∈ V . Here ∗V is the left D-vector space

∗V = {∗v | v ∈ V} (3.2)

with structure

∗v+∗w = ∗(v+w), α·∗v = ∗(v ·α∗), (3.3)

for all v,w ∈ V and α∈D.

In fact, ϕψ is one-to-one, by [5, page 54, Theorem 5.1]. If σ is the adjoint

involution on EndD(V) with respect to ψ, then we have

σ
(
ϕψ

(
v⊗∗w

))=ϕψ(w⊗∗v
)

(3.4)

forv,w∈V . Moreover, TrdEndD(V)(ϕψ(v⊗∗w))= TrdD(ψ(w,v)) forv,w ∈ V .

In [3], we established a relation between quadratic pairs and generalized

quadratic forms.

Theorem 3.1. To every generalized quadratic form (V ,ψ,Q), a quadratic

pair (σ ,f ) can be associated on EndD(V), where σ is the adjoint involution to

ψ and f is defined by
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(1) f(vd⊗∗v)= TrdD(dQ(v)) for all v ∈ V and d∈ Sym(D,∗ );
(2) f(x⊗∗y+y⊗∗x)= TrdD(ψ(x,y)) for all x,y ∈ V .

The pair (σ ,f ) is called the adjoint quadratic pair.

From [3], we recall the following result.

Theorem 3.2. Every quadratic pair on EndD(V) is associated to a unique

generalized quadratic form up to a scalar.

We now have the following theorem.

Theorem 3.3. The quadratic pair associated to the orthogonal sum of two

generalized quadratic forms is the orthogonal sum of the associated quadratic

pairs.

Proof. Let (V ,ψ,Q) and (W,ψ′,Q′) be two generalized quadratic forms.

We can construct two algebras with quadratic pairs: (EndD(V),σψ,fQ) and

(EndD(W),σψ′ ,fQ′). We know that HomD(V,W) is an EndD(W)-EndD(V)
bimodule and HomD(W,V) is an EndD(V)-EndD(W) bimodule. Let

ν : HomD(W,V) �→HomD(V,W) (3.5)

be defined by the condition

ψ
(
h(w),v

)=ψ′(w,ν(h)(v)) ∀h∈HomD(W,V). (3.6)

We can easily verify that

((
EndD(V),σψ

)
,
(
EndD(W),σψ′

)
,Hom(W,V),HomD(V,W),g,h,ν

)
(3.7)

is a Morita equivalence (with the same notation as in Section 2), and

EndD(V ⊕W)�
(

EndD(V) HomD(W,V)
HomD(V,W) EndD(W)

)
. (3.8)

Using this isomorphism, we deduce that the quadratic pair (σψ⊕ψ′ ,fQ⊕Q′) cor-

responds to the orthogonal sum of quadratic pairs (σψ,fQ) and (σψ′ ,fQ′). In

fact, for

(
f h
	 g

)
∈
(

EndD(V) HomD(W,V)
HomD(V,W) EndD(W)

)
, (3.9)

we want to show that

(
σψ⊕σψ′

)(f h
	 g

)
=
(
σψ(f) ν−1(	)
ν(h) σψ′(g)

)
= σψ⊕ψ′

(
f h
l g

)
, (3.10)
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that is, if we have

(
f h
	 g

)
:V ⊕W �→ V ⊕W

(x,y) 
 �→ (
f(x)+h(y),	(x)+g(y)),

(3.11)

then we have to show that

(ψ⊕ψ′)
((
x1

y1

)
,
(
f h
	 g

)(
x2

y2

))

= (ψ⊕ψ′)
((
σψ(f) ν−1(	)
ν(h) σψ′(g)

)(
x1

y1

)
,
(
x2

y2

))
.

(3.12)

We have

(ψ⊕ψ′)
((
x1

y1

)
,
(
f h
	 g

)(
x2

y2

))

= (ψ⊕ψ′)
((
x1

y1

)
,
(
f
(
x2
)+f (y2

)
	
(
x2
)+g(y2

)
))

=ψ(x1,f
(
x2
)+h(y2

))+ψ′(y1,	
(
x2
)+g(y2

))
.

(3.13)

On the other hand,

(ψ⊕ψ′)
((
σψ(f)

(
x1
)+ν−1(	)

(
y1
)

ν(h)
(
x1
)+σψ′(g)(y1

)
)
,
(
x2

y2

))

=ψ(σψ(f)(x1
)
,x2

)+ψ(ν−1(	)
(
y1
)
,x2

)
+ψ′(ν(h)(x1

)
,y2

)
+ψ′(σψ′(g)(y1

)
,y2

)
.

(3.14)

Now ν : HomD(W,V)→HomD(V,W) has the property that

ψ
(
h(w),v

)=ψ′(w,ν(h)(v)) (3.15)

for allh∈HomD(W,V). Since ν is bijective,h=ν−1(	) for some 	∈HomD(V,W),
and we have that

ψ
(
ν−1(	)(w),v

)=ψ′(w,	(v)) (3.16)
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for all 	 ∈HomD(V,W), which implies that

(ψ⊕ψ′)
((
σψ(f)

(
x1
)+ν−1(	)

(
y1
)

ν(h)
(
x1
)+σψ′(g)(y1

)
)
,
(
x2

y2

))

=ψ(σψ(f)(x1
)
,x2

)+ψ′(y1,	
(
x2
))

+ψ(x1,h
(
y2
))+ψ′(σψ′(g)(y1

)
,y2

)
=ψ(x1,f

(
x2
))+ψ′(y1,	

(
x2
))

+ψ(x1,h
(
y2
))+ψ′(y1,g

(
y2
))

=ψ(x1,f
(
x2
)+h(y2

))+ψ′(y1,	
(
x2
)+g(y2

))

= (ψ⊕ψ′)
((
x1

y1

)
,
(
f h
	 g

)(
x2

y2

))
,

(3.17)

and this proves (3.12).

Observe that Sym(EndD(V⊕W),σψ⊕ψ′) is linearly generated by elements of

the two following types.

Type 1. The first type of generators is

ϕψ⊕ψ′
((
x
y

)
d⊗

∗(
x
y

))
=

ϕψ(xd⊗∗x) xdψ′(y,·)
ydψ(x,·) ϕψ′(yd⊗∗y)


 . (3.18)

Type 2. The second type is

ϕψ⊕ψ′
((
x1

y1

)
⊗
∗(
x2

y2

)
+
(
x2

y2

)
⊗
∗(
x1

y1

))

=ϕψ⊕ψ′
((
x1

y1

)
⊗
∗(
x2

y2

))
+σ

(
ϕψ⊕ψ′

((
x1

y1

)
⊗
∗(
x2

y2

)))
.

(3.19)

For two symmetric elements f and g, we have, by definition,

fQ⊕fQ′

 f h

ν(h) g


= fQ(f)+fQ′(g). (3.20)

So it suffices to show the following equality:

fQ⊕Q′


 f h

ν(h) g


= fQ(f)+fQ′(g), (3.21)
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where

(
f h
ν(h) g

)
(3.22)

is a generator of Type 1 or Type 2.

We have the identification

(V ⊕V ′)⊗D ∗(V ⊕V ′) 
 �→ EndD(V ⊕V ′),
(V ⊕V ′)⊗D ∗(V ⊕V ′)= (V ⊗∗V)⊕(V ⊗∗V ′)⊕(V ′ ⊗∗V)⊕(V ′ ⊗∗V ′).

(3.23)

The definition of ϕψ⊕ψ′ implies that

ϕψ⊕ψ′
(
x1⊗∗x2

)(v
v′

)
= x1(ψ⊕ψ′)

(
x2,v

)= x2ψ
(
x2,v

)
(3.24)

for all x1,x2 ∈ V , and it follows that

ϕψ⊕ψ′
(
x1⊗∗x2

)=
(
ϕψ

(
x1⊗∗x2

)
0

0 0

)
. (3.25)

Now take x ∈ V , y ∈ V ′, and d∈ Sym(D,∗). Then

fψ⊕ψ′


ϕψ⊕ψ′

[(
x
y

)
·d⊗

∗(
x
y

)]

= TrdD

(
d·(Q+Q′)

(
x
y

))

= TrdD
(
d·Q(x))+TrdD

(
d·Q′(y))

(3.26)

by the definition of the associated quadratic pair.

On the other hand,

fψ⊕fψ′
(
ϕψ

(
xd⊗∗x

)
xdψ′(y,·)

ydψ(x,·) ϕψ′
(
yd⊗∗y

)
)

= fψ
(
ϕψ

(
xd⊗∗x

))+fψ′(ϕψ′(yd⊗∗y
))

= TrdD
(
dQ(x)

)+TrdD
(
dQ′(y)

)
,

(3.27)

which implies that (3.21) holds for Type 1 generators of Sym(EndD(V ⊕W),
σψ⊕ψ′). Now takex1,x2 ∈ V andy1,y2 ∈ V ′. Since (σψ⊕ψ′ ,fψ⊕ψ′) is a quadratic
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pair, we have

fψ⊕ψ′
(
ϕψ⊕ψ′

((
x1

y1

)
⊗
∗(
x2

y2

)
+
(
x2

y2

)
⊗
∗(
x1

y1

)))

= fψ⊕ψ′
(
ϕψ⊕ψ′

((
x1

y1

)
⊗
∗(
x2

y2

))

+σ
(
ϕψ⊕ψ′

(
x1

y1

)
⊗
∗(
x2

y2

)))

= TrdEndD(V⊕V ′)

(
ϕψ⊕ψ′

(
x1

y1

)
⊗
∗(
x2

y2

))

= TrdD

(
ψ⊕ψ′

((
x2

y2

)
,
(
x1

y1

)))

= TrdD
(
ψ
(
x2,x1

))+TrdD
(
ψ′
(
y2,y1

))
= TrdD

(
ψ
(
x1,x2

))+TrdD
(
ψ′
(
y1,y2

))
.

(3.28)

On the other hand,

fψ⊕fψ′
(
ϕψ⊕ψ′

((
x1

y1

)
⊗
∗(
x2

y2

)
+
(
x2

y2

)
⊗
∗(
x1

y1

)))

= fψ
(
x1⊗∗x2+x2⊗∗x1

)+fψ′(y1⊗∗y2+y2⊗∗y1
)

= TrdD
(
ψ
(
x1,x2

))+TrdD
(
ψ′
(
y1,y2

))
,

(3.29)

which implies that (3.21) also holds for Type 2 generators, and this completes

our proof.

Assume that (σ ,f ), (σ ′,f ′), and (σ ′′,f ′′) are quadratic pairs onA such that

(σ ,f )⊥ (σ ′,f ′)� (σ ,f )⊥ (σ ′′,f ′′). (3.30)

Does this imply that (σ ′,f ′)� (σ ′′,f ′′)?
Proposition 3.4. There is no Witt cancellation theorem for quadratic pairs

in characteristic 2.

Counterexample 3.5. Let k be a field of characteristic 2 and F = k(x,y,z,
t). We consider the quadratic forms

q = 〈1,1,x,y〉[1, t], q′ = 〈1,1,x,z〉[1, t],
q′′ = 〈1,x,y,yz〉[1, t] (3.31)

(see [1, page 5] for notation). Then q ⊥ q′ and q ⊥ q′′ are isometric up to a

scalar factor, but q′ and q′′ are not isometric up to a scalar factor since the

first form is isotropic whereas the second is anisotropic. We conclude that, in

general, there is no Witt cancellation theorem for quadratic pairs.
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