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ON THE EXISTENCE OF A NON-ZERO LOWER BOUND
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OF AN EVEN INTEGER
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The Goldbach partitions of an even number, given by the sums of two prime addends, form
the nonempty set for all integers 2nwith 2≤n≤ 2×1014. It will be shown how to determine
by the method of induction the existence of a non-zero lower bound for the number of
Goldbach partitions of all even integers greater than or equal to 4. The proof depends on
contour arguments for complex functions in the unit disk.
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The order estimates of the number of partitions of an even integer into a sum of

primes typically have an error term. However, when the partitions are restricted to the

set of sums of two primes, the form of the error term implies that the estimate does

not exclude the possibility of zero being obtained. If the constant c in the error term is

specified, then the integer typically should be greater than some exponential function

of c for the lower bound to be non-zero.

For example, an estimate of the number of partitions into the sum of two primes has

been obtained by using an integral representation of the density of prime powers in a

given interval [5]:

G(2s)=
∫ 2s−2

2

dy
logy · log(2s−y) +O

(
2s

log3 2s

)
+O

(
2s

logq 2s

)
. (1)

A non-zero lower bound for G(2s) only exists if

2s−4

log2 2s
> c · 2s

log3 2s
1

(1+ log2/logs)3
,

s >
1
2
e2c+c′/cq−3

, c′ constant.
(2)

This problem does not arise in the order estimates in the lower bound for the number

of partitions of odd integers into the sum of three primes because the error term is

typically less than the leading estimate by a factor of 1/( logN)A, whereA can be chosen

to be arbitrarily large [6].
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It is conventional to obtain an estimate of the number of partitions of an integer into

the sums of primes by considering the following exponential sums [2, 4]:

R(α)=
∑
p
e2πipα, S(α)=

∑
p
(logp)e2πinα, (3)

and the functions

g(α)= R(α)2e−2πinα, h(α)= S(α)2e−2πinα, (4)

with the integrals

G(n)=
∫ 1

0
R(α)2e−2πinαdα=

∑
p1,p2

∫ 1

0
e2πi(p1+p2−n)αdα,

H(n)=
∫ 1

0
S(α)2e−2πinαdα=

∑
p1,p2

(
logp1

)(
logp2

)∫ 1

0
e2πi(p1+p2−n)αdα.

(5)

Since the integral vanishes when p1+p2 �= n, G(n) equals the number of Goldbach

partitions of n with the order of summands relevant, and the two functions G(n) and

H(n) are simultaneously greater than zero. The method of induction will be used to de-

termine the existence of a non-zero lower bound for the number of Goldbach partitions

of an even integer.

Suppose that the even integer n−2 can be written as the sum of two prime numbers.

Then

H(n−2)= 1
2π

∫ 2π

0
S(θ)2e−i(n−2)θdθ > 0, θ = 2πα. (6)

This integral can be viewed as a contour integral over the unit circle

1
2π

∮
�v · �dl, (7)

where

�v(n−2) = (v(n−2)
r ,v(n−2)

θ
)
, �dl= (0,dθ). (8)

Let �v(n)(r = 1)= e−2iθ �v(n−2)(r = 1). The extrapolation of the function into the disk

is either z−2(r ,θ)�v(n−2)(r ,θ) or z̄2�v(n−2)(r ,θ), after excluding fractional powers of z,

z̄ and independence of the coefficient of �v(m−2) with respect to the radial coordinate. By

Stokes’ theorem, the nonvanishing of the line integral implies that �v(n−2)(r ,θ) �= �∇χ,

where χ is a nonsingular function of r , θ.

Consider z−2 �∇χ = r−2e−2iθ �∇χ(r ,θ) and suppose that there is a singularity in χ at

θ = θs . If �∇ψ1(r ,θ)= z−2 �∇χ(r ,θ), then

ψ1
(
r ,θs

)= e−2iθs
∫
drr−2 ∂χ(r ,θ)

∂r

∣∣∣∣
θs

(9)
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so that when χ(r ,θs) is a singular function of the radial variable r , ψ1(r ,θs) also will

be a singular function of r , giving rise to a non-zero surface integral

∫∫
D
�∇× �v(n)(r ,θ)·d�S,

H(n)= 1
2π

∫ 2π

0
S(θ)2e−inθdθ = 1

2π

∮
�v(n) · �dl �= 0.

(10)

Next consider the function defined by �∇ψ2(r ,θ)= z̄2 �∇χ(r ,θ). Then

ψ2
(
r ,θs

)= e−2iθs
∫
drr 2 ∂χ(r ,θ)

∂r

∣∣∣∣
θs
, (11)

and the singularity in χ(r ,θ) may be removed by the integral. However, by Stokes’

theorem,

∮
C
f(z, z̄)dz =

∫∫
D

∂f(z, z̄)
∂z̄

dz̄∧dz. (12)

If f(z, z̄)=−(i/r)e−iθ(∂ψ2(z, z̄)/∂θ), the surface integral receives a contribution from

the integral

− i
π

∫∫
D
z̄
e−iθ

r
∂χ(r ,θ)
∂θ

dz̄∧dz. (13)

Combining the two integrals gives

− i
π

∫∫
D
z̄
e−iθ

r
∂χ(r ,θ)
∂θ

dz̄∧dz− i
2π

∫∫
D
z̄2 ∂
∂z̄

(
e−iθ

r
∂χ(r ,θ)
∂θ

)
dz̄∧dz, (14)

and using

∂
∂z̄
= 1

2
e2iθ ∂

∂r
+ i

2
eiθ

r
∂
∂θ

(15)

gives rise to the following expression:

2
π

∫∫
D
re−2iθ ∂χ(r ,θ)

∂θ
dr dθ+ 1

2π

∫∫
D
r 2e−2iθ ∂2χ(r ,θ)

∂θ∂r
dr dθ

+ i
2π

∫∫
D
re−2iθ ∂2χ(r ,θ)

∂θ2
dr dθ.

(16)

Recalling that

v(n−2)
θ (r = 1)= S(θ)2e−i(n−2)θ

=
∑
p1,p2

(
logp1

)(
logp2

)
ei(p1+p2−(n−2))θ = 1

r
∂χ
∂θ

∣∣∣∣
r=1
,

(17)
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it follows that

χ(r = 1,θ)=
∑
p1,p2

p1+p2 �=n−2

(
logp1

)(
logp2

)
i
(
p1+p2−(n−2)

)ei(p1+p2−(n−2))θ

+
∑

p1+p2=n−2

(
logp1

)(
logp2

)
θ.

(18)

If this function on the unit circle is extended to the entire disk, using the variables z,

z̄, it is

χ(z,z̄)= i
∑

p1+p2<n−2

(
logp1

)(
logp2

)
(n−2)−(p1+p2

) z̄((n−2)−(p1+p2))

− i
2

∑
p1+p2=n−2

(
logp1

)(
logp2

)
ln
(
z
z̄

)

−i
∑

p1+p2>n−2

(
logp1

)(
logp2

)
p1+p2−(n−2)

zp1+p2−(n−2).

(19)

This function is nonsingular, and except for the second term, it is well defined every-

where throughout the disk besides the origin. Its value at the origin is undefined as it

depends on the direction in which the limit r → 0 is taken. However, the gradient would

be well defined, and furthermore, it is nonsingular. Setting �v(n−2) equal to a nonsingular

gradient is not consistent with a nonvanishing contour integral
∮
C �v(n−2) · �dl.

However, if this form is chosen for χ(z,z̄), the expression for
∮
C �v(n) · �dl based on

the function ψ2(r ,θ) can be computed. In terms of r , θ,

χ(r ,θ)= i
∑
p1,p2

p1+p2<n−2

(
logp1

)(
logp2

)
(n−2)−(p1+p2

)r (n−2)−(p1+p2)e−i((n−2)−(p1+p2))θ

+
∑

p1+p2=n−2

(
logp1

)(
logp2

)
θ

−i
∑
p1,p2

p1+p2>n−2

(
logp1

)(
logp2

)
p1+p2−(n−2)

rp1+p2−(n−2)ei(p1+p2−(n−2))θ,

4
∂χ(r ,θ)
∂θ

+r ∂
2χ(r ,θ)
∂r∂θ

+i∂
2χ(r ,θ)
∂θ2

= 4
∑

p1+p2 �=2

(
logp1

)(
logp2

)
p1+p2−(n−2)

r |p1+p2−(n−2)|ei(p1+p2−(n−2))θ

+
∑

p1+p2=n−2

(
logp1

)(
logp2

)

(20)
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since
∫ 2π
0 ei(p1+p2−n)θdθ = 0 when p1+p2 �=n, and the integral becomes

2
π

∑
p1+p2=n

(
logp1

)(
logp2

)∫ 1

0
r 3dr ·

∫ 2π

0
dθ

=
∑

p1+p2=n

(
logp1

)(
logp2

)=H(n). (21)

If instead the sum R(θ) is used, the result is
∑
p1+p2=n1=G(n).

The integral expression in (z, z̄) coordinates is

− i
π

∫∫
D


 ∑
p1+p2=n−2

(
logp1

)(
logp2

)
z

+
∑

p1+p2>n−2

(
logp1

)(
logp2

)
zp1+p2−(n−1)

+ 1
z

∑
p1+p2<n−2

(
logp1

)(
logp2

)
z̄(n−2)−(p1+p2)


z̄dz̄∧dz.

(22)

By the complex Green formula, it follows that each of the integrals except

− i
π

∫∫
D

∑
p1+p2>n−2

zp1+p2−(n−1)z̄dz̄∧dz (23)

vanishes. Using the Cauchy formula for nonanalytic functions f(z, z̄) [1]

f
(
z0
)= 1

2πi

∫
C

f(z)
z−z0

dz+ 1
2πi

∫∫
D

∂f/∂z̄
z−z0

dz∧dz̄ (24)

and the vanishing of z̄zp1+p2−(n−1) for p1+p2 >n−2 at the origin, it follows that

− i
π

∫∫
D
z̄zp1+p2−(n−1)dz̄∧dz = i

π

∫∫
D
z̄
zp1+p2−(n−2)

z
dz∧dz̄

=− i
π

∫
C

z̄2

2
zp1+p2−(n−2)

z
dz

=− i
2π

∫ 2π

0
ei(p1+p2−(n−1))θe−2iθ ·ieiθdθ

=− i
2π

∫ 2π

0
iei(p1+p2−n)θdθ = δp1+p2,n

(25)

so that the sum above is

∑
p1+p2>n−2

(
logp1

)(
logp2

)
δp1+p2,n =

∑
p1+p2=n

(
logp1

)(
logp2

)=H(n). (26)

This result confirms the equivalence of the integral expression in terms of r , θ and z, z̄.
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Now consider the extrapolation of χ(r = 1,θ) based on function

χ(z,z̄)= i
∑

p1+p2<n−2

(
logp1

)(
logp2

)
(n−2)−(p1+p2

)z−((n−2)−(p1+p2))

− i
2

∑
p1+p2=n−2

(
logp1

)(
logp2

)
ln
(
z
z̄

)

−i
∑

p1+p2>n−2

(
logp1

)(
logp2

)
(
p1+p2

)−(n−2)
zp1+p2−(n−2).

(27)

In terms of r , θ, this expression becomes

χ(r ,θ)= i
∑

p1+p2<n−2

(
logp1

)(
logp2

)
(n−2)−(p1+p2

)r−((n−2)−(p1+p2))e−i((n−2)−(p1+p2))θ

+
∑

p1+p2=n−2

(
logp1

)(
logp2

)
θ

−i
∑

p1+p2>n−2

(
logp1

)(
logp2

)
p1+p2−(n−2)

rp1+p2−(n−2)ei(p1+p2−(n−2))θ,

4
∂χ
∂θ
+r ∂

2χ
∂θ∂r

+i∂
2χ
∂θ2

= 4
∑

p1+p2<n−2

(
logp1

)(
logp2

)
r−((n−2)−(p1+p2))e−i((n−2)−(p1+p2))θ

+4
∑

p1+p2=n−2

(
logp1

)(
logp2

)

+4
∑

p1+p2>n−2

(
logp1

)(
logp2

)
rp1+p2−(n−2)ei(p1+p2−(n−2))θ

+
∑

p1+p2<n−2

(
logp1

)(
logp2

)(
p1+p2−(n−2)

)

×r−((n−2)−(p1+p2))e−i((n−2)−(p1+p2))θ

+
∑

p1+p2>n−2

(
logp1

)(
logp2

)(
p1+p2−(n−2)

)
rp1+p2−(n−2)ei(p1+p2−(n−2))θ

+
∑

p1+p2<n−2

(
logp1

)(
logp2

)(
(n−2)−(p1+p2

))

×r−((n−2)−(p1+p2))e−i((n−2)−(p1+p2))θ

+
∑

p1+p2>n−2

(
logp1

)(
logp2

)(
p1+p2−(n−2)

)
rp1+p2−(n−2)ei(p1+p2−(n−2))θ.

(28)

The integral

1
2π

∫∫
D
e−2iθ

(
4
∂χ
∂θ
+r ∂

2χ
∂θ∂r

+i∂
2χ
∂θ2

)
r dr dθ (29)
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equals

2
π

∑
p1+p2>n−2

(
logp1

)(
logp2

)∫ 2π

0
ei(p1+p2−n)θdθ

∫ 1

0
rp1+p2−(n−3)dr

+ 1
2π

∑
p1+p2>n−2

(
logp1

)(
logp2

)·(p1+p2−(n−2)
)

·
∫ 2π

0
ei(p1+p2−(n−2))θe−2iθdθ ·

∫ 1

0
rp1+p2−(n−3)dr

− 1
2π

∑
p1+p2>n−2

(
logp1

)(
logp2

)

·(p1+p2−(n−2)
)·
∫ 2π

0
ei(p1+p2−(n−2))θ ·e−2iθdθ

∫ 1

0
rp1+p2−(n−3)dr .

(30)

When p1+p2 =n, this sum equals

2
π

∑
p1+p2=n

(
logp1

)(
logp2

)· 1
4
·2π+ 1

2π
·2·2π · 1

4

∑
p1+p2=n

(
logp1

)(
logp2

)

− 1
2π

·2·2π · 1
4

∑
p1+p2=n

(
logp1

)(
logp2

)=H(n). (31)

Now consider the integral in terms of the coordinates z, z̄. Since

∂χ
∂z̄

= i
2

∑
p1+p2=n−2

(
logp1

)(
logp2

)
z̄

,

∂χ
∂z

=−i
∑

p1+p2<n−2

(
logp1

)(
logp2

)
z−((n−1)−(p1+p2))

− i
2

∑
p1+p2=n−2

(
logp1

)(
logp2

)
z

−i
∑

p1+p2>n−2

(
logp1

)(
logp2

)
zp1+p2−(n−1),

(32)

the following identities are obtained:

e−2iθ ∂χ(r ,θ)
∂θ

= iz̄ ∂χ
∂z
−i z̄

2

z
∂χ
∂z̄

=
∑

p1+p2<n−2

(
logp1

)(
logp2

)
z̄z−((n−1)−(p1+p2))

+
∑

p1+p2=n−2

(
logp1

)(
logp2

) z̄
z

+
∑

p1+p2>n−2

(
logp1

)(
logp2

)
z̄zp1+p2−(n−1),
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e−iθ

r
∂χ
∂θ

=
∑

p1+p2<n−2

(
logp1

)(
logp2

)
z−((n−1)−(p1+p2))

+
∑

p1+p2=n−2

(
logp1

)(
logp2

)
z

+
∑

p1+p2>n−2

(
logp1

)(
logp2

)
zp1+p2−(n−1),

(33)

and z̄2(∂/∂z̄)((e−iθ/r)(∂χ/∂θ))= 0, so that the integral in (z, z̄) coordinates is

− i
π

∫∫
D

[ ∑
p1+p2<n−2

(
logp1

)(
logp2

)
z̄z−((n−1)−(p1+p2))+

∑
p1+p2=n−2

(
logp1

)(
logp2

) z̄
z

+
∑

p1+p2>n−2

(
logp1

)(
logp2

)
z̄zp1+p2−(n−1)

]
dz̄∧dz.

(34)

The first term in the expression is the integral of a singular function. Using the identity

∫∫
D

∂f/∂z̄(
z−z0

)k dz̄∧dz =
∫
C

f(z, z̄)(
z−z0

)k dz− 1
(k−1)!

2πi
∂(k−1)f
∂z(k−1)

(
z0
)
, (35)

it follows that this term vanishes.

However, this result suggests that there would be a non-zero contribution from the

singular terms once an additional positive-definite function is included in the integral.

An example of such a function is eδ(1−z̄z) = eδ(1−r2). Multiplication by this factor in the

integral over r and θ gives

2
π

∫ 1

0
r 3eδ(1−r

2)dr ·2π
∑

p1+p2=n

(
logp1

)(
logp2

)

= 4I3(δ)
∑

p1+p2=n

(
logp1

)(
logp2

)= 4I3(δ)H(n),
(36)

where I3(δ) is the integral over r which equals 1/4 when δ= 0.

With a support function in the integral over z, z̄ and use of the identity for higher

powers of (z−z0)k in the denominator, linear combinations of H(m), m ≤ n, are ob-

tained. As δ is varied, or different support functions are chosen, these linear combina-

tions will change, and given the nonvanishing of H(m) for m ≤ n−2, equivalence of

the integrals in the r , θ coordinates and the z, z̄ coordinates implies a nontrivial result

for the magnitude of H(n). The same conclusions hold for G(n).
Furthermore, considering the different extrapolations of χ(z,z̄) to the interior of the

disk, it can be seen that the use of the nonsingular expression for χ(z,z̄) does not yield

any constraints on H(n) and therefore, it would be consistent to set this value to zero.

Conversely, the feasibility of setting H(n) equal to zero implies that χ(z,z̄) must be

nonsingular, which would, in turn, imply thatH(n−2) vanishes, contrary to the original

assumption that it is non-zero. Thus, the contour integral argument provides a method

for deducing a non-zero value for H(n), given that H(m) �= 0 for 4≤m≤n−2.



ON THE EXISTENCE OF A NON-ZERO LOWER BOUND . . . 797

By induction, it would follow then that H(n) is non-zero for all values of n. The

nonvanishing of H(n) is sufficient for a proof of a lower bound for the number of

Goldbach partitions of any even number greater than or equal to 4, since the induction

argument also holds for G(n)=∑p1+p2=n1.

The special role of the primes in the integrals of the summed expression of expo-

nential functions of θ can be elucidated by noting that any exponential with exponent

given by 2πi multiplied by a rational number e2πi(m/n)α, α = 1, can be obtained as a

power e(2πi(p/n)α)k, α= 1, for some k if p is a prime number. Suppose that

e2πi(m/n) = (e2πi(p1/n)
)k1 = (e2πi(p2/n)

)k2 , m <
[
n
2

]
, (37)

so that for every even numerator,

e2πi(2m/n) = e2πi((p1k1+p2k2)/n) (38)

for some p1, p2. Since the number of Goldbach partitions is assumed to be positive for

2m≤n−2, there is a pair of primes p1, p2 such that 2m= p1+p2. Consequently, this

exponential can be equated with e2πi((p1+p2)/n), revealing the effect of identification of

the exponential of a sum of fractions having prime numerators with an exponential of

a fraction having an even numerator less than n.

This property can be extended to n+2 by noting that

e2πi(2m′/(n+2)) = e2πi(p′1k
′
1+p′2k′2)/(n+2) (39)

for any pair of primes p′1, p′2.

It has been shown that for any even integer 2m ≤ n− 2, there exist integers k1,

k2 such that p1k1+p2k2 ≡ 2m(modn) and p1(k1−1)+p2(k2−1) ≡ 0(modn). This

property can be extended to a congruence modulo n+2.

Since the number of incongruent solutions to the equations

a1x1+···+a	x	+b ≡ 0(modn), (40)

where gcd(a1, . . . ,a	,n)|b, is n	−1 gcd(a1, . . . ,a	,n) [3], the number of solutions to the

congruence p1k1 +p2k2 ≡ 2m(modn) for a pair of primes p1, p2 is n. Conversely,

the number of solutions to a1k1 + a2k2 ≡ 2m(modn) for fixed k1, k2 is equal to

ngcd(k1,k2,n), and by assumption, the intersection of this set with the solutions to

a1(k1−1)+a2(k2−1) ≡ 0(modn) includes the prime pair (p1,p2). For fixed k′1, k′2,

the properties of the intersection of solutions sets of a′1k
′
1+a′2k′2 ≡ 2m′(modn+2)

and a′1(k
′
1−1)+a′2(k′2−1) ≡ 0(modn+2) will be determined by the linearity of the

congruence relations. Extending the solution set Dn to Dn+2, the existence of a prime

pair (p′1,p
′
2) in the set Dn+2 can be deduced from the density of prime pairs in the

planar domain represented by the congruence relation modulo n+2.

It follows that the exponentials with exponents containing fractions with prime nu-

merators can be used as an appropriate basis for all exponentials of the type e2πi(m/n).

This basis can be extrapolated to represent e2πiα, α �= 1, by means of the functional an-

alytic technique of extending the domain of functions from the set of rational numbers

forming a dense subset of the continuous interval [0,1] to the entire interval.
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