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A new method for constructing Clifford algebra-valued orthogonal polynomials in the open
unit ball of Euclidean space is presented. In earlier research, we only dealt with scalar-valued
weight functions. Now the class of weight functions involved is enlarged to encompass Clif-
ford algebra-valued functions. The method consists in transforming the orthogonality re-
lation on the open unit ball into an orthogonality relation on the real axis by means of
the so-called Clifford-Heaviside functions. Consequently, appropriate orthogonal polynomi-
als on the real axis give rise to Clifford algebra-valued orthogonal polynomials in the unit
ball. Three specific examples of such orthogonal polynomials in the unit ball are discussed,
namely, the generalized Clifford-Jacobi polynomials, the generalized Clifford-Gegenbauer
polynomials, and the shifted Clifford-Jacobi polynomials.
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1. Introduction. In a series of papers [4, 5, 6, 8, 9], higher-dimensional wavelets and

their corresponding continuous wavelet transforms have been studied in the frame-

work of Clifford analysis. Clifford analysis, centred around the notion of monogenic

functions, may be regarded as a direct and elegant generalization to higher dimensions

of the theory of holomorphic functions in the complex plane. An essential step in the

construction of these Clifford-wavelets is the introduction of specific polynomials sat-

isfying orthogonality relations with respect to scalar-valued weight functions. These

polynomials originate as a result of a particular Clifford analysis technique, the so-

called Cauchy-Kowalewski extension of a real-analytic function in Rm to a monogenic

function inRm+1. The Clifford-Hermite polynomials, the Clifford-Gegenbauer polynomi-

als, and the Clifford-Laguerre polynomials constructed this way all give rise to wavelets

in Rm, since they all satisfy the necessary admissibility condition. For an account of the

continuous wavelet transform in Clifford analysis and an overview of the generalized

orthogonal polynomials and their corresponding wavelets thus far obtained, we refer

the reader to [3].

In this paper, we develop a different method for constructing Clifford algebra-valued

orthogonal polynomials in the open unit ball of Euclidean space. It should be empha-

sized that the class of weight functions, which up to now always were scalar-valued,

is now enlarged to encompass Clifford algebra-valued real-analytic functions. In order

to make the paper self-contained, a section on definitions and basic properties of Clif-

ford algebra and Clifford analysis is included (see Section 2). In Section 3, the general

method of our approach is presented. It consists, roughly speaking, of transforming
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the orthogonality relation on the open unit ball into an orthogonality relation on the

real axis. Crucial to this transformation are the so-called Clifford-Heaviside functions;

they generalize to higher dimensions the Heaviside step-function on the real axis and

are a typical feature of Clifford analysis. Apparently our construction method is sim-

ple, but it should nevertheless be emphasized that this is entirely due to the power of

Clifford analysis and the existence of these idempotent Clifford-Heaviside functions,

inexistent in complex or harmonic analysis.

The method is then applied to three specific cases; in each of the cases known or-

thogonal polynomials on the interval [−1,1] or [0,1] lead to orthogonal Clifford algebra-

valued polynomials in the open unit ball. The obtained generalized Clifford-Jacobi poly-

nomials (see Section 4) and shifted Clifford-Jacobi polynomials (see Section 7) are new;

the generalized Clifford-Gegenbauer polynomials (see Section 6) coincide, up to con-

stants, with the generalized Gegenbauer polynomials which were already introduced in

[10], albeit in a different way. A number of those higher-dimensional orthogonal poly-

nomials are explicitly calculated and in most cases an explicit recurrence relation is

established.

2. Clifford algebra and Clifford analysis. Clifford analysis (see, e.g, [7, 11]) offers

a function theory which is a higher-dimensional analogue of the theory of the holo-

morphic functions of one complex variable. The functions considered are defined in

Rm (m > 1) and take their values in the Clifford algebra Rm or its complexification

Cm =Rm⊗C. If (e1, . . . ,em) is an orthonormal basis of Rm, then a basis for the Clifford

algebra Rm is given by (eA : A ⊂ {1, . . . ,m}) where e∅ = 1 is the identity element. The

noncommutative multiplication in the Clifford algebra is governed by the rules

e2
j =−1, j = 1, . . . ,m,

ejek+ekej = 0, j �= k, j,k= 1, . . . ,m.
(2.1)

Conjugation is defined as the anti-involution for which

ej =−ej, j = 1, . . . ,m, (2.2)

with the additional rule i=−i in the case of Cm.

For k= 0,1, . . . ,m fixed, we call

Ckm =
 ∑

#A=k
aAeA; aA ∈ C

 (2.3)

the subspace of k-vectors, that is, the space spanned by the products of k different

basis vectors.

The Euclidean space Rm is embedded in the Clifford algebras Rm and Cm by identi-

fying (x1, . . . ,xm) with the vector variable x given by

x =
m∑
j=1

ejxj. (2.4)
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The product of two vectors splits up into a scalar part and a 2-vector or a so-called

bivector part:

x y = x ·y+x∧y, (2.5)

where

x ·y =−〈x,y〉 = −
m∑
j=1

xjyj,

x∧y =
m∑
j=1

m∑
k=j+1

ejek
(
xjyk−xkyj

)
.

(2.6)

In particular,

x2 =−〈x,x〉 = −|x|2. (2.7)

In the sequel, the so-called Clifford-Heaviside functions

P+ = 1
2

(
1+i x|x|

)
, P− = 1

2

(
1−i x|x|

)
(2.8)

will play an important role; they were introduced independently by Sommen in [13] and

McIntosh in [12].

Introducing spherical coordinates in Rm by

x = rω, r = |x| ∈ [0,+∞[, ω∈ Sm−1, (2.9)

with Sm−1 the unit sphere in Rm, the Clifford-Heaviside functions can be rewritten as

P+ = 1
2
(1+iω), P− = 1

2
(1−iω). (2.10)

They are selfadjoint mutually orthogonal primitive idempotents

P++P− = 1, P+P− = P−P+ = 0,
(
P+
)2 = P+, (

P−
)2 = P−. (2.11)

Furthermore, we have

iωP± = ±P± (2.12)

and hence

ixP± = ±rP±. (2.13)

The central notion in Clifford analysis is the notion of monogenicity, the higher di-

mensional analogue of holomorphicity.

An Rm- or Cm-valued function F(x1, . . . ,xm) is called left monogenic in an open re-

gion of Rm if in that region

∂xF = 0. (2.14)
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Here ∂x is the Dirac operator in Rm:

∂x =
m∑
j=1

ej∂xj , (2.15)

an elliptic vector differential operator of the first order, splitting the Laplacian

∆m =−∂2
x. (2.16)

The notion of right monogenicity is defined in a similar way by letting the Dirac operator

act from the right.

Let Ω ⊂ Rm be open, let C be a compact orientable m-dimensional manifold with

boundary ∂C , and define the oriented Rm-valued surface element dσx on ∂C by

dσx =
m∑
j=1

(−1)jejdx̂j, (2.17)

where

dx̂j = dx1∧···∧
[
dxj

]∧···∧dxm, j = 1,2, . . . ,m. (2.18)

If n(x) stands for the outward pointing unit normal at x ∈ ∂C , then

dσx =n(x)dΣ(x), (2.19)

dΣ(x) being the Lebesgue surface measure.

Suppose that f ∈ C1(Ω) is right monogenic in Ω. Then Cauchy’s theorem states that,

for each C ⊂Ω, ∫
∂C
f (x)dσx = 0. (2.20)

An important particular example occurs in the following case: take f = 1 and C =
B(1)= {x ∈Rm; |x| ≤ 1} the closed unit ball in Rm. Then ∂C = Sm−1 and at each point

ω ∈ Sm−1, n(ω) =ω, whence dσω =ωdS(ω) with dS(ω) the Lebesgue measure on

Sm−1.

Consequently, we have ∫
Sm−1

ωdS(ω)= 0, (2.21)

confirming the fact that ω is a spherical harmonic.

The above result will be of crucial importance in our general method for constructing

Clifford algebra-valued orthogonal polynomials in the open unit ball of Rm.

3. The general construction method. In this section, we exhibit a general method

for constructing Clifford algebra-valued polynomials of the form

pn(ix)=
n∑
k=0

ak(ix)k, ak ∈C, k= 0,1,2, . . . ,n, (3.1)
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which are orthogonal with respect to a Clifford algebra-valued weight function on the

open unit ball B(1)= {x ∈Rm; |x|< 1}.
Note that the polynomials considered take their values in C0

m⊕C1
m, that is, a scalar

plus a vector, sometimes called a paravector.

Definition 3.1. If W(r) = ∑∞
j=0bjr j (bj ∈ C, j ∈ N) is real-analytic in the neigh-

bourhood of the origin r = 0, then W(ix) is defined as W(ix)=∑∞
j=0bj(ix)j .

Proposition 3.2. If W(r) is real-analytic in ]−ρ,ρ[, then, in
o
B(0,ρ) := {x ∈ Rm :

|x|< ρ},
(i) W(ix) is real-analytic in the variables (x1, . . . ,xm);

(ii) W(ix)P+ = P+W(ix)=W(r)P+;

(iii) W(ix)P− = P−W(ix)=W(−r)P−;

(iv) W(ix)=W(r)P++W(−r)P−.

Proof. (i) Straightforward.

(ii) Applying the properties of P+, we have successively

W(ix)P+ =
∞∑
j=0

bj(ix)jP+ =
∞∑
j=0

bj(ix)j
(
P+
)j = ∞∑

j=0

bj
(
rP+

)j

=
∞∑
j=0

bjr jP+ =W(r)P+.
(3.2)

Moreover,

W(ix)P+ = P+W(ix). (3.3)

(iii) Similar to (ii).

(iv) The formulae in (ii) and (iii) lead to

W(ix)=W(ix)P++W(ix)P− =W(r)P++W(−r)P−, (3.4)

where we have used the fact that P++P− = 1.

In what follows we will show how, by means of the above properties, integrals over

the open unit ball B(1) can be rewritten in terms of integrals over the real axis. Conse-

quently, the problem of constructing Clifford algebra-valued polynomials {pn(ix)}n≥0

which are orthogonal on B(1) will be reduced to constructing orthogonal polynomials

on the real axis.

Two types of Clifford algebra-valued orthogonal polynomials on B(1) will be distin-

guished.

3.1. Type 1. Orthogonality on B(1) with respect to the weight function W(ix).
First, we consider the construction of Clifford algebra-valued orthogonal polynomials

{pn(ix)}n≥0 with respect to a Clifford algebra-valued weight functionW(ix) in the unit

ball B(1).
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Let �(ix) denote the space of real-analytic functions in B(1) of type

U(ix)=
∞∑
j=0

cj(ix)j, cj ∈ C, (3.5)

for which ∫
B(1)

∣∣U(ix)∣∣2W(ix)dx <∞, (3.6)

where the weight function W(ix) ∈ �(ix) is fixed. Here dx stands for the Lebesgue

measure on B(1).
Then for any U(ix),V(ix)∈ �(ix), we introduce the inner product

(
U(ix),V(ix)

)= ∫
B(1)

U(ix)V(ix)W(ix)dx. (3.7)

By means of the above-mentioned properties of the idempotents P+ and P−, this inner

product is turned into(
U(ix),V(ix)

)
=
∫
B(1)

U(ix)V(ix)W(ix)P+dx+
∫
B(1)

U(ix)V(ix)W(ix)P−dx

=
∫
B(1)

U(r)V(r)W(r)P+dx+
∫
B(1)

U(−r)V(−r)W(−r)P−dx

=
∫ 1

0
U(r)V(r)W(r)rm−1dr

∫
Sm−1

1
2
(1+iω)dS(ω)

+
∫ 1

0
U(−r)V(−r)W(−r)rm−1dr

∫
Sm−1

1
2
(1−iω)dS(ω)

= Am
2

(∫ 1

0
U(r)V(r)W(r)rm−1dr +

∫ 1

0
U(−r)V(−r)W(−r)rm−1dr

)

= Am
2

(∫ 1

0
U(r)V(r)W(r)|r |m−1dr +

∫ 0

−1
U(u)V(u)W(u)|u|m−1du

)

= Am
2

∫ 1

−1
U(r)V(r)W(r)|r |m−1dr

= (U(r),V(r))L2(dµ).

(3.8)

HereAm denotes the area of the unit sphere Sm−1 inRm and dµ =Am/2W(r)|r |m−1dr .

So a function U(ix)∈ �(ix) is square integrable with respect to the weight function

W(ix) if and only if U(r) is square integrable with respect to dµ.

Now the polynomials {pn(ix)}n≥0 will form an orthogonal system if, for n �=n′,
(
pn(ix),pn′(ix)

)= 0 (3.9)

or, equivalently,

(
pn(r),pn′(r)

)
L2(dµ) = 0. (3.10)
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So we may conclude that the polynomials {pn(ix)}n≥0 are orthogonal on B(1) with

respect to W(ix) if and only if the polynomials {pn(r)}n≥0 are orthogonal on [−1,1]

with respect to the weight function W(r)|r |m−1.

Note that in the special case where the dimension m is odd, the polynomials

{pn(r)}n≥0 should be orthogonal on [−1,1] with respect to the weight function

W(r)rm−1.

3.2. Type 2. Orthogonality on B(1) with respect to the weight function W(ix)P+.

Now we search for Clifford algebra-valued polynomials {pn(ix)}n≥0 which are orthog-

onal on B(1) with respect to a Clifford algebra-valued weight function of the form

W(ix)P+ =W(r)P+, thus satisfying an orthogonality relation with respect to the inner

product

(
U(ix),V(ix)

)= ∫
B(1)

U(ix)V(ix)W(ix)P+dx, (3.11)

which can be rewritten as

(
U(ix),V(ix)

)= ∫
B(1)

U(r)V(r)W(r)P+dx

=
∫ 1

0
U(r)V(r)W(r)rm−1dr

∫
Sm−1

1
2
(1+iω)dS(ω)

= Am
2

∫ 1

0
U(r)V(r)W(r)rm−1dr

= (U(r),V(r))L2(dν),

(3.12)

where dν =Am/2W(r)rm−1dr .

Consequently, the polynomials {pn(ix)}n≥0 are orthogonal on B(1) with respect to

W(ix)P+ if and only if the polynomials {pn(r)}n≥0 are orthogonal on [0,1] with respect

to the weight function W(r)rm−1.

Note that when considering in B(1) the weight function W(ix)P− = W(−r)P−, one

has, in a similar way as above,

(
U(ix),V(ix)

)= Am
2
(−1)m−1

∫ 0

−1
U(r)V(r)W(r)rm−1dr. (3.13)

In this case, we thus need polynomials {pn(r)}n≥0 which are orthogonal on [−1,0]with

respect to the weight function W(r)rm−1.

4. The generalized Clifford-Jacobi polynomials. In this section, we focus on Clif-

ford algebra-valued orthogonal polynomials in B(1)with respect to the specific Clifford

algebra-valued weight function (1+ix)α(1−ix)β (α,β >−1).

According to the general theory exposed in Section 3.1, we aim at orthogonal polyno-

mials {pn(r)}n≥0 on [−1,1] with respect to the weight function (1+r)α(1−r)β|r |m−1

(α,β >−1).
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In [14], Vanlessen considers the generalized Jacobi weight function

w(x)= (1−x)α(1+x)βh(x)
n0∏
ν=1

∣∣x−xν∣∣2λν , x ∈ [−1,1], (4.1)

where n0 is a fixed number, with

α>−1, β >−1, −1<x1 <x2 < ···<xn0 < 1,

−1
2
< λν < 0 or 0< λν <+∞,

(4.2)

and with h real-analytic and strictly positive on [−1,1].

This weight function leads to a sequence of orthogonal polynomials {Pn(x)}n≥0,

satisfying a recurrence relation; in [14], the asymptotic behaviour of the coefficients in

this recurrence relation is studied. The generalized Jacobi weight function has been the

subject of many other papers. However, neither an explicit expression, a Rodrigues for-

mula, nor an explicit recurrence relation seems to exist for the polynomials {Pn(x)}n≥0

associated to this weight function.

Now, putting n0 = 1, x1 = 0, 2λ1 =m−1, h(x) = 1, and switching α and β in (4.1),

we obtain the specific weight function

w∗(x)= (1+x)α(1−x)β|x|m−1, x ∈ [−1,1]. (4.3)

Consequently, the weight function (1+ r)α(1− r)β|r |m−1 (α,β > −1) belongs to the

class of generalized Jacobi weight functions, yielding the existence of a sequence of

orthogonal polynomials {pn(r)}n≥0, which may be obtained by a Gram-Schmidt proce-

dure starting from the set {1,r ,r 2, . . .}.
This eventually leads to a new sequence of Clifford algebra-valued orthogonal poly-

nomials {J(α,β)n (ix)}n≥0 in the unit ball B(1) with respect to the weight function (1+
ix)α(1−ix)β (α,β >−1).

As a result of the above-mentioned Gram-Schmidt procedure, we find, for the lower-

degree polynomials,

J(α,β)0 (ix)= 1,

J(α,β)1 (ix)= (ix)− N(1)
N(0)

,

J(α,β)2 (ix)= (ix)2− N(3)N(0)−N(1)N(2)
N(2)N(0)−(N(1))2 (ix)− N(2)

N(0)

+ N(3)N(0)−N(1)N(2)
N(2)N(0)−(N(1))2

N(1)
N(0)

,

(4.4)

and so forth, where

N(n)= (−1)nB(n+m,α+1)F(−β,n+m;α+n+m+1;−1)

+B(n+m,β+1)F(−α,n+m;β+n+m+1;−1),
(4.5)

with B(x,y) the beta function and F(a,b;c;z) the hypergeometric function.

We call these polynomials the generalized Clifford-Jacobi polynomials.
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5. Special case of the generalized Clifford-Jacobi polynomials. For the generalized

Clifford-Jacobi polynomials constructed in the foregoing section, we have neither an

explicit formula nor an explicit recurrence relation.

However, for the special case where β = α+1, we do obtain an explicit recurrence

relation. Indeed, in [1], Atia explicitly gives the coefficients in the recurrence relation of a

sequence of monic orthogonal polynomials {P(α,α+1)
n (x,µ)}n≥0, Re(α) >−1, on [−1,1]

with respect to the weight function |x|−µ(1+x)α(1−x)α+1. Here µ is an arbitrary

parameter with Re(−µ) >−1. For µ = 0, one obtains the well-known Jacobi polynomial

sequence.

The polynomials {P(α,α+1)
n (x,µ)}n≥0 satisfy a three-term recurrence relation

P(α,α+1)
n+2 (x,µ)= (x−βn+1

)
P(α,α+1)
n+1 (x,µ)−γn+1P(α,α+1)

n (x,µ),

P(α,α+1)
0 (x,µ)= 1, P(α,α+1)

1 (x,µ)= x−β0,
(5.1)

with

β0 =− µ−1
µ−2α−3

,

βn+1 = (−1)n
µ(µ−2n−2α−4)+(−1)n+1(2α+1)
(2n+2α+3−µ)(2n+2α+5−µ) ,

γ2n+1 = 2
(n+α+1)(2n+1−µ)
(4n+2α+3−µ)2 ,

γ2n+2 = (2n+2)(2n+2α+3−µ)
(4n+2α+5−µ)2 .

(5.2)

Putting µ = 1−m, we obtain orthogonal polynomials on [−1,1] with respect to the

weight function |x|m−1(1+x)α(1−x)α+1, Re(α) >−1.

According to Section 3.1, the polynomials {P(α,α+1)
n (x,1−m)}n≥0 lead in a straight-

forward manner to orthogonal Clifford algebra-valued polynomials {J̃ (α,α+1)
n (ix)}n≥0

in B(1)with respect to the Clifford-valued weight function (1+ix)α(1−ix)α+1; α>−1.

From (5.1), we obtain the recurrence relation they satisfy

J̃ (α,α+1)
n+2 (ix)= (ix− β̃n+1

)
J̃ (α,α+1)
n+1 (ix)− γ̃n+1J̃ (α,α+1)

n (ix), n≥ 0,

J̃ (α,α+1)
0 (ix)= 1, J̃ (α,α+1)

1 (ix)= ix− β̃0,
(5.3)

with

β̃0 =− m
2α+m+2

,

β̃n+1 = (−1)n
(m−1)(m+2n+2α+3)+(−1)n+1(2α+1)

(2n+2α+m+2)(2n+2α+m+4)
,

γ̃2n+1 = 2
(n+α+1)(2n+m)
(4n+2α+m+2)2

,

γ̃2n+2 = (2n+2)(2n+2α+m+2)
(4n+2α+m+4)2

.

(5.4)
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Using the symbolic software Maple, we get

J̃ (α,α+1)
0 (ix)= 1,

J̃ (α,α+1)
1 (ix)= ix+ m

2+m+2α
,

J̃ (α,α+1)
2 (ix)= (ix)2+ 2

2α+4+m(ix)− m
2α+4+m,

J̃ (α,α+1)
3 (ix)= (ix)3+ 2+m

2α+6+m(ix)2− 2+m
2α+6+m(ix)

− (2+m)m
(2α+4+m)(2α+6+m),

(5.5)

and so forth. It can be verified, by a tedious calculation, that indeed the above polynomi-

als coincide with the generalized Clifford-Jacobi polynomials of the foregoing section,

where β=α+1.

6. The generalized Clifford-Gegenbauer polynomials. In this section, we construct

orthogonal Clifford algebra-valued polynomials in B(1)with respect to the scalar-valued

weight function (1−|x|2)α, α>−1. These polynomials apparently are a special case of

the generalized Clifford-Jacobi polynomials of Section 4, where now α= β.

The starting point is the generalized Gegenbauer orthogonal polynomials

{S(α,γ)n (x)}n≥0 (see [2]) which are orthogonal on [−1,1] with respect to the weight func-

tion (1−x2)α|x|2γ+1, α,γ >−1, γ �= −1/2.

Applying the general method of Section 3, we finally obtain the monic generalized

Clifford-Gegenbauer polynomials {G(α)n (ix)}n≥0, which are orthogonal on B(1) with

respect to (1−|x|2)α, α>−1.

Note however that already in [10] so-called generalized Gegenbauer polynomials

Cαn,m(x) were constructed by means of a Rodrigues formula.

Both sequences of Gegenbauer polynomials are related by

Cα2n,m(x)= (−1)n22n(α+n+1)n
(
α+n+m

2

)
n
G(α)2n (ix),

Cα2n+1,m(x)= (−1)ni22n+1(α+n+1)n+1

(
α+n+m

2
+1

)
n
G(α)2n+1(ix),

(6.1)

with (a)n the Pochhammer symbol.

7. The shifted Clifford-Jacobi polynomials. In order to construct Clifford algebra-

valued orthogonal polynomials in B(1) with respect to the Clifford algebra-valued

weight function (1− ix)αP+, α > −1, we need orthogonal polynomials on [0,1] with

respect to (1−r)αrm−1, α > −1 (see Section 3.2). These polynomials are obtained by

the change of variables x = 2r − 1 in the Jacobi polynomials {P(α,m−1)
n (x)}n≥0, thus
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satisfying the orthogonality relation∫ 1

0
P(α,m−1)
n (2r −1)P(α,m−1)

n′ (2r −1)(1−r)αrm−1dr

= Γ(α+n+1)Γ(m+n)
n!Γ(α+n+m)(α+2n+m)δn,n′ .

(7.1)

According to the general theory of Section 3, this orthogonality relation leads to∫
B(1)

P(α,m−1)
n

(
2(ix)−1

)
P(α,m−1)
n′

(
2(ix)−1

)
(1−ix)αP+dx

= Am
2

Γ(α+n+1)Γ(m+n)
n!Γ(α+n+m)(α+2n+m)δn,n′

(7.2)

expressing the orthogonality on B(1) of the polynomials

Q(α)
n (ix)= P(α,m−1)

n
(
2(ix)−1

)
, n∈N, (7.3)

which we call the shifted Clifford-Jacobi polynomials.

From the explicit expression for the Jacobi polynomials we obtain an explicit expres-

sion for our shifted Clifford-Jacobi polynomials:

Q(α)
n (ix)=

n∑
k=0

(
n+α
k

)(
n+m−1
n−k

)
(ix)k(ix−1)n−k

= Γ(α+n+1)
n!Γ(α+m+n)

n∑
k=0

(
n
k

)
Γ(α+m+n+k)
Γ(α+k+1)

(ix−1)k.

(7.4)

Moreover, the recurrence relation for the Jacobi polynomials leads to the following

three-term recurrence relation for the polynomials Q(α)
n (ix):

2n(α+m+n−1)(α+m+2n−3)Q(α)
n (ix)

= ((α+m+2n−3)3(2ix−1)+(α2−(m−1)2
)
(α+m+2n−2)

)
×Q(α)

n−1(ix)−2(α+n−1)(m+n−2)(α+m+2n−1)Q(α)
n−2(ix),

(7.5)

with n= 2,3,4, . . . .
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