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It is proved that up to isomorphism there is only one (2,2)-dimensional supertorus associ-
ated to a nontrivial representation of its underlying 2-torus, and that it has nontrivial odd
brackets. This supertorus is obtained by finding out first a canonical form for its Lie super-
algebra, and then using Lie’s technique to represent it faithfully as supervector fields on a
supermanifold. Those supervector fields can be integrated, and through their various inte-
gral flows the composition law for the supergroup is straightforwardly deduced. It turns out
that this supertorus is precisely the supergroup described by Guhr (1993) following a formal
analogy with the classical unitary group U(2) but with no further intrinsic characterization.
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1. Introduction and motivation. A physical motivation for the problem we address

in this paper is that spacetime is sometimes identified—locally, at least—with the Lie

algebra of the unitary group U(2). In fact, u2 = Lie(U(2)) has the convenient basis

defined by Pauli matrices in terms of which an arbitrary x ∈ u2 can be written as

x = i
(
x0+x3 x1−ix2

x1+ix2 x0−x3

)
with det(x)= x2

1+x2
2+x2

3−x2
0 . (1.1)

It was proved in [4] that making only the most natural assumptions on the Lie algebra

u2 to build up a Lie superalgebra out of u2, one obtains a 3-parameter family of (4,4)-
dimensional real Lie superalgebras u2(λ,µ,ν) whose underlying Lie algebra is u2 itself.

It was further proved there that this 3-parameter family of Lie superalgebras gives rise

to ten different isomorphism classes labeled by the number of parameters that are

different from zero, and keeps the sign of the product λν constant. Now, the point is

that there is a (2,2)-dimensional maximal toral subsuperalgebra inside each of these

ten different (4,4)-dimensional unitary Lie superalgebras. Not all of them, however,

are different. It was also shown in [4] that there are only seven different isomorphism

classes of (2,2)-dimensional toral Lie superalgebras. All of them are associated to the

trivial (which in the toral case coincides with the adjoint) representation of the underly-

ing torus in its “odd 2-dimensional sector”, and exactly one of them has trivial brackets

restricted to the odd sector. What we prove in this paper is that if one is interested in

a (2,2)-dimensional Lie superalgebra having the real 2-dimensional Lie algebra of the

torus as its underlying Lie algebra, giving rise to a nontrivial action of it on the odd
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sector, and having nontrivial odd brackets, then there is, up to isomorphism, only one

such case, namely, the (2,2)-dimensional torus studied by Guhr in [1]. By establishing

the uniqueness of this nontrivial supertorus, its relevance is now brought to the fore-

ground, and it can be identified easier as it keeps appearing in the literature under

different disguises. Furthermore, it sits inside any of the different (4,4)-dimensional

unitary Lie supergroups build out of the different Lie superalgebras u2(λ,µ,ν). These

facts are now accompanied in this paper by a set of appealing elementary and straigh-

forward proofs, thus shedding some light into the nature of possible additional struc-

tures for superspacetime. The sense that one should provide for the “determinant” that

yields the Minkowski metric will be given elsewhere.

2. Statement of the problem and description of the results. Let F stand for either

the real or the complex number fields. A real or complex Lie superalgebra is a Z2-graded

vector space g = g0⊕g1 equipped with its grading map | · | : (g0−{0})∪(g1−{0})→ Z2

and a bilinear map [[·,·]] : g×g→ F satisfying the following properties:

(1) [[gµ,gν]]⊂ gµ+ν ,

(2) [[x,y]]=−(−1)|x||y|[[y,x]], for any elements x and y in the domain of |·|,
(3) (−1)|x||z|[[[[x,y]],z]]+(−1)|z||y|[[[[z,x]],y]]+(−1)|y||x|[[[[y,z]],x]]= 0, for any el-

ements x, y , and z in the domain of |·|.
It is well known [5] that this is equivalent to the following structures.

(a) A Lie algebra g0, with Lie bracket [·,·]= [[·,·]]|g0×g0 .

(b) A representation ρ : g0→ Endg1, so that ρ(x)u= [[x,u]].
(c) A symmetric bilinear map Γ : g1× g1 → g0, with Γ(u,v) = [[u,v]], satisfying the

following super -Jacobi identities:

(J1)

[
x,Γ(u,v)

]= Γ(ρ(x)u,v)+Γ(u,ρ(x)v) (2.1)

for any x ∈ g0 and any u, and v in g1, and

(J2)

ρ
(
Γ(u,v)

)
(w)+ρ(Γ(w,u))(v)+ρ(Γ(v,w))(u)= 0 (2.2)

for any u, v , and w in g1.

There are two extreme examples where both conditions are trivially satisfied:

(1) ρ is identically zero,

(2) Γ is identically zero.

The case ρ = 0 of superalgebras associated to the trivial representation occurs in the

following nontrivial setting (see [4]). Suppose g0 = g1 and ρ = ad, the adjoint represen-

tation. If, furthermore, g0 is the abelian Lie algebra, ad= 0. For example, when g0 is the

2-dimensional real Lie algebra of the torus, one might pose the problem of classifying

the nonisomorphic Lie superalgebras that can be built upon g0 associated to the ad-

joint representation. The answer to this problem has been given in [4], and it turns out

that there are seven such cases. On the other hand, the case Γ = 0 also appears on the

nontrivial superalgebras studied in [2], with applications to geometry and topology.



ON THE UNIQUENESS OF THE (2,2)-DIMENSIONAL SUPERTORUS . . . 3933

It is our purpose to determine, up to isomorphism, all the real Lie superalgebras that

can be defined upon the Lie algebra g0 of the 2-dimensional torus associated to a real

2-dimensional representation space g1 for which neither ρ nor Γ are identically zero;

thus, it is assumed that ρ : g0 → gl (g1) satisfies Exp(tρ(x)) ∈ O(g1), for all x ∈ g0, all

t ∈R, and O(g1)= {g ∈ GL(g1) | ∀u,v ∈ g1, (gu,gv)= (u,v)}, where (·,·) stands for

the ordinary scalar product in the 2-dimensional real space g1. It is proved that, up to

isomorphism, there is only one such Lie superalgebra. We also find its associated Lie

supergroup and show that it is isomorphic to the supertorus studied in [1].

Convention. Throughout this work, g0 = Lie(S1×S1), in the sense that the only

Lie group we are interested in recovering from g0 is S1 × S1; thereby explaining the

assumption on ρ.

We proceed as follows. We first use the super-Jacobi identity (J1) to show that if ρ
is a nontrivial 2-dimensional representation of the Lie algebra g0, then ρ determines Γ
up to scalars (see Proposition 3.1). We then use the super -Jacobi identity (J2) to show

in Proposition 3.3 that a certain relationship must hold true amongst the scalars that

Proposition 3.1 left free. At this point we realize that any Lie superalgebra on the torus

associated to a nontrivial 2-dimensional representation with a nontrivial symmetric g0-

valued pairing Γ can be specified by 5 real parameters with which ρ and Γ are built

up. We then discuss the natural action of the group Aut(g0)×GL(g1) on the set of pairs

(ρ,Γ) and show that it acts transitively on the set of such nontrivial pairs, thus showing

that there is only one (2,2)-dimensional Lie superalgebra based on the torus, for which

neither ρ, nor Γ are zero. A convenient canonical form for such a Lie superalgebra is

given as follows in Theorem 4.3: there is a choice of bases {e1,e2} of g0, and {f1,f2} of

g1 with respect to which

[[
e1,f1

]]= f2,
[[
e1,f2

]]=−f1,
[[
e2,f1

]]= 0,
[[
e2,f2

]]= 0,[[
f1,f1

]]= e2,
[[
f1,f2

]]= 0,
[[
f2,f2

]]= e2.
(2.3)

To describe its associated Lie supergroup, let (eis ,eit) be the standard coordinates on

the 2-torus (that is, s,t ∈ R), and let σ and τ be the odd coordinates. The product

(eis ,eit ;σ,τ)∗ (eis′ ,eit′ ;σ ′,τ′) can be best described in terms of the complex-valued

odd variable φ= σ−iτ , and by reading off the result at the end in terms of its real and

imaginary parts. Thus

(
eis ,eit ;φ

)∗(eis′ ,eit′ ;φ′)= (ei(s+s′),ei(t+t′−(1/2)Re(e−is′ φ̄′φ));φ′ +e−is′φ). (2.4)

Note the nontrivial effect of the odd coordinates in the “body” of the underlying smooth

torus through the term (−1/2)Re(e−is′φ̄′φ).

3. ρ determines Γ through the Jacobi identities

Proposition 3.1. Let {e1,e2} be a basis of g0, and let {f1,f2} be a basis of g1. Assume

ρ(e1) =
(a b
c d
)

with respect to {f1,f2}. If (J1) holds true, and ρ(e1) 	= 0 exponentiates to
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a rotation, then d=−a and there are real constants x1, and x2, such that

Γ i = xiJρ
(
e1
)
, i= 1,2, (3.1)

where J = (0 −1
1 0

)
. Similarly, write, ρ(e2)=

(α β
γ δ
)

with respect to {f1,f2}. If (J1) holds true,

and ρ(e2) 	= 0 exponentiates to a rotation, then δ=−α, and there are real constants y1,

and y2, such that

Γ i =yiJρ
(
e2
)
, i= 1,2. (3.2)

In particular, if ρ(e1) 	= 0, and ρ(e2) 	= 0, then, xiρ(e1)=yiρ(e2) for i= 1,2.

Proof. We will only work in detail the statement for ρ(e1). The one for ρ(e2) is

analogous. Note that ρ(e1) exponentiates to a rotation if and only if its characteristic

polynomial has complex conjugate roots, which is true if and only if (a+d)2−4(ad−
bc) < 0; that is, if and only if (a−d)2+4bc < 0. It then follows that ad−bc 	= 0 and

bc 	= 0.

Now, write Γ(fi,fj)= Γ 1
ije1+Γ 2

ije2, and see that putting x = e1 in (J1), one obtains

(
a c
b d

)(
Γ i11

Γ i12

)
=−

(
0

aΓ i12+cΓ i22

)
, bΓ i12+dΓ i22 = 0, i= 1,2. (3.3)

Since the matrix is invertible, and b 	= 0, we may write Γ i12 = −(d/b)Γ i22, and make the

corresponding substitution in the matrix equation to get Γ i11 = −(c/b)Γ i22, and (a+
d)Γ i22 = 0.

It is now clear that either Γ = 0, or there exists some i ∈ {1,2} for which Γ i22 	= 0, in

which case a+d = 0, and setting xi = Γ i22/b we can write Γ i as in the statement. The

last assertion in the statement is clear.

Remark 3.2. If we were not interested in representations of the torus we would

not have had to require that ρ(ei) had a characteristic polynomial with complex con-

jugate roots. If we were only interested in having a nontrivial representation of the

2-dimensional abelian Lie algebra g0 
 R2 in the 2-dimensional odd sector, then (J1)

yields nontrivial Γ ’s if and only if aγ = cα and bδ= dβ.

Table 3.1 summarizes what we have just found. Note from the proof of Proposition

3.1 that not all the parameters are independent, since x1y2 = x2y1.

Proposition 3.3. Under the hypotheses of Proposition 3.1, (J2) yields

x1 =−λx2, y2 =−νy1. (3.4)

In particular, if λ= 0 (i.e., ρ2 = 0), then Γ 1 = 0, whereas if ν = 0 (i.e., ρ1 = 0), then Γ 2 = 0.
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Table 3.1

ρ(e1) ρ(e2) Γ1 Γ2 x1y2 = x2y1(a b
c −a

)
λρ(e1) x1Jρ(e1) x2Jρ(e1) λ= 0 or ∃k, λ= xk/yk

νρ(e2)
(α β
γ −α

)
y1Jρ(e2) y2Jρ(e2) ν = 0 or ∃k, ν =yk/xk

Proof. Note that (J2) implies

(
Γ 1
11+λΓ 2

11

)(a
c

)
=
(

0

0

)
,

(
νΓ 1

11+Γ 2
11

)(α
γ

)
=
(

0

0

)
. (3.5)

Since bc 	= 0 when ρ(e1) 	= 0, we have Γ 1
11+λΓ 2

11 = 0. Similarly, βγ 	= 0, when ρ(e2) 	= 0,

in which case νΓ 1
11+Γ 2

11 = 0.

Observation 3.4. So far, we have obtained a parametric description of any (2,2)-
dimensional Lie superalgebra having g0 = Lie(S1×S1), compatible ρ 	= 0, and Γ 	= 0. We

have proved that any such superalgebra depends on 5 real parameters. We now want

to see whether given two such sets of five parameters, the Lie superalgebras they give

rise to, are isomorphic or not. This is done in Section 4 below.

Observation 3.5. Write Γ(u,v) = Γ 1(u,v)e1 + Γ 2(u,v)e2, with Γ i (i = 1,2) a real

symmetric bilinear form on g1. Write OΓ i (g1) for the group {g ∈ GL(g1) | Γ i(gu,gv) =
Γ i(u,v)}. If Γ i is nondegenerate then it defines a scalar product in g1, and OΓ i (g1) is

actually an orthogonal group. It follows from (J1) that for all x ∈ g0, ρ(x) ∈ Lie(OΓ i ).
The proof of Proposition 3.1 shows (see Table 3.1 above) that Γ 1 and Γ 2 are scalar multi-

ples of a single bilinear form, say Γ 0, whose matrix in the basis {f1,f2} is either Jρ(e1)
or Jρ(e2). Here an alternative argument is presented. If Exp(tρ(x)) ∈ O(g1) = {g ∈
GL(g1) | ∀u,v ∈ g1, (gu,gv) = (u,v)}, where (·,·) stands for the ordinary scalar

product in the 2-dimensional space g1, then Γ 0 = c(·,·) for some nonzero real scalar c.

Whence, Γ i = ci(·,·) (i = 1,2). In particular, the basis {f1,f2} of g1 we started with in

Proposition 3.1 could have been orthogonal. This would have made Γ kij = 0 for i 	= j, and

would have eliminated the off-diagonal parameters Γ k12. Since we were going to classify

all Lie superalgebras with the stated properties, there was no point for choosing the

orthonormal basis at this point, and we preferred to let that follow at the end of the

classification argument (the basis {f1,f2} in Theorem 4.3 below turns out to be orthog-

onal). Nevertheless, the reader might have preferred to introduce an orthogonal basis

at this earlier stage, and then use S ∈ O(g1) instead of S ∈ GL(g1) in Section 4 below.

We are indebted to one of the referees for pointing this out to us.

4. Classification up to isomorphism. Two Lie superalgebras g and g′ are isomorphic

if and only if there exists a pair (T ,S) where T : g0 → g′0 is a Lie algebra isomorphism,

and S : g1→ g′1 is a linear isomorphism such that

[[
(T ⊕S)(·),(T ⊕S)(·)]]′ = (T ⊕S)([[·,·]]). (4.1)
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Since, a Lie superalgebra g = g0⊕g1 can be described by the data (g0,ρ,Γ) satisfying (J1)

and (J2), the isomorphism conditions can be read in the following form:

[·,·]′ = T [T−1(·),T−1(·)], ρ′ = S ◦ρ(T−1(·))◦S−1, Γ ′ = T(Γ(S−1(·),S−1(·))).
(4.2)

Now, for g0 = g′0, the first condition simply says that T ∈Aut(g0). We now want to act on

the pairs (ρ,Γ) with (T ,S) ∈ Aut(g0)×GL(g1) in order to determine the isomorphism

classes defined by them.

Lemma 4.1. Let ρ stand for either ρ(e1) or ρ(e2) as described above, and let Γ = zJρ
as in Proposition 3.1. Let S ∈ GL(g1) be such that SρS−1 = µJ, then

(
S−1)tΓS−1 = −zµ

detS
I, (4.3)

where I = (1 0
0 1

)
.

Proof. We use the fact that for any 2×2-matrix P , we have PtJP = detPJ. Thus if

Γ = zJρ, we get

(
S−1)tΓS−1 = z(S−1)tJS−1SρS−1 = zµdet

(
S−1)J2. (4.4)

Lemma 4.2. Let ρ′ = S ◦ρ(T−1(·))◦S−1 and Γ ′ = T(Γ(S−1(·),S−1(·))).
(1) Suppose ρ(e2)= λρ(e1), so that Γ 1 =−λΓ 2, and Γ 2 = x2Jρ(e1). Then,

ρ′
(
e1
)= T22−λT21

detT
Sρ
(
e1
)
S−1, Γ ′1 = (−T11λ+T12

)(
S−1)tΓ 2S−1,

ρ′
(
e2
)= −T12+λT11

detT
Sρ
(
e1
)
S−1, Γ ′2 = (−T21λ+T22

)(
S−1)tΓ 2S−1.

(4.5)

(2) Suppose ρ(e1)= νρ(e2), so that Γ 2 =−νΓ 1, and Γ 1 =y1Jρ(e2). Then,

ρ′
(
e1
)= νT22−T21

detT
Sρ
(
e2
)
S−1, Γ ′1 = (T11−νT12

)(
S−1)tΓ 1S−1,

ρ′
(
e2
)= −ν T12+T11

detT
Sρ
(
e2
)
S−1, Γ ′2 = (T21−νT22

)(
S−1)tΓ 1S−1.

(4.6)

The proof of Lemma 4.2 is a straightforward and immediate computation.

Our main result is now an immediate consequence of the two previous lemmas.

Theorem 4.3. There is, up to isomorphism, only one (2,2)-dimensional Lie superal-

gebra on the torus with nontrivial ρ and nontrivial Γ . In fact, there is a basis {e1,e2} of

g0 and {f1,f2} of g1 such that (2.1) holds.

Proof. In either of the two statements of Lemma 4.2, we can choose S so that

Sρ(ei)S−1 = µiJ, and choose T and detS so that ρ′(e1) = J, ρ′(e2) = 0, Γ ′1 = 0, and

Γ ′2 = I.
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5. The Lie supergroup associated to the nontrivial torus. It is a remarkable fact that

this Lie superalgebra sits inside of almost any of the unitary Lie superalgebras u2(λ,µ,ν)
described in [4]. In fact, the only condition to provide an embedding is ν 	= 0. To prove

this fact, look first at the real Lie algebra u2 of the unitary group U2. A convenient basis

for it is {iI,iH,E−F,i(E+F)} where

I =
(

1 0

0 1

)
, H =

(
1 0

0 −1

)
, E =

(
0 1

0 0

)
, F =

(
0 0

1 0

)
. (5.1)

Now, look at the set {π(iI),π(iH),π(E−F),π(i(E+F))} regarded as a basis for an odd

copy of u2 as in [4]. Let u2(λ,µ,ν) be the Lie superalgebra structure on u2⊕u2 associated

to the adjoint representation and the real parameters (λ,µ,ν) as in [4]. It is then clear

that the map

e1 
 �→ i
2
H, f1 
 �→

√
−iπ(E−F),

e2 
 �→ 2iI, f2 
 �→ i
√
−iπ(E+F),

(5.2)

is a Lie superalgebra monomorphism.

Moreover, by looking at the representation of the basis vectors {2iI,(i/2)H;
√−iπ(E−

F),i
√−iπ(E+F)} in terms of supervector fields as in [4], it is a straightforward matter

to obtain an explicit expression for the composition law of the corresponding super-

torus:

e1←→ i
2

(
z1 ∂
∂z1

−z2 ∂
∂z2

+ζ1 ∂
∂ζ1

−ζ2 ∂
∂ζ2

)
,

e2←→ 2i
(
z1 ∂
∂z1

+z2 ∂
∂z2

+ζ1 ∂
∂ζ1

+ζ2 ∂
∂ζ2

)
,

f1←→
√
−i
(
z1 ∂
∂ζ2

−z2 ∂
∂ζ1

+ζ1 ∂
∂z2

−ζ2 ∂
∂z1

)
,

f2←→ i
√
−i
(
z1 ∂
∂ζ2

+z2 ∂
∂ζ1

+ζ1 ∂
∂z2

+ζ2 ∂
∂z1

)
.

(5.3)

The integral flows can be easily computed as in [3] to obtain

Exp
(
te2

)z
1 
 �→ e2itz1, ζ1 
 �→ e2itζ1,

z2 
 �→ e2itz2, ζ2 
 �→ e2itζ2,

Exp
(
se1

)z
1 
 �→ ei(s/2)z1, ζ1 
 �→ ei(s/2)ζ1,

z2 
 �→ e−i(s/2)z2, ζ2 
 �→ e−i(s/2)ζ2,

Exp
(
τf2

)z
1 
 �→ z1+i√−iτζ2, ζ1 
 �→ ζ1+i√−iτz2,

z2 
 �→ z2+i√−iτζ1, ζ2 
 �→ ζ2+i√−iτz1,

Exp
(
σf1

)z
1 
 �→ z1−√−iσζ2, ζ1 
 �→ ζ1−√−iσz2,

z2 
 �→ z2+√−iσζ1, ζ2 
 �→ ζ2+√−iσz1.

(5.4)
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We introduce the complex-valued odd variable φ= σ−iτ , in terms of which the (local)

superdiffeomorphism Exp(σf1)◦Exp(τf2)◦Exp(se1)◦Exp(te2) is given by

z1 
 �→ e2it+(i/2)s
(
z1
(

1+ i
2
φφ̄

)
+
√
−iζ2φ

)
,

ζ1 
 �→ e2it+(i/2)s
(
ζ1
(

1+ i
2
φφ̄

)
−
√
−iz2φ

)
,

z2 
 �→ e2it−(i/2)s
(
z2
(

1− i
2
φφ̄

)
−
√
−iζ1φ̄

)
,

ζ2 
 �→ e2it−(i/2)s
(
ζ2
(

1− i
2
φφ̄

)
+
√
−iz1φ̄

)
.

(5.5)

We set Φ(s,t;σ,τ)= Exp(σf1)◦Exp(τf2)◦Exp(se1)◦Exp(te2), and find from Φ(s′′, t′′;
σ ′′,τ′′)= Φ(s′, t′;σ ′,τ′)◦Φ(s,t;σ,τ), the following set of equalities:

e2i(t+t′)+(i/2)(s+s′)
((

1+ i
2
φ′φ̄′

)(
1+ i

2
φφ̄

)
−ie−is′φ̄′φ

)

= e2it′′+(i/2)s′′
(

1+ i
2
φ′′φ̄′′

)
,

e2i(t+t′)+(i/2)(s+s′)
(
φ′
(

1+ i
2
φφ̄

)
+e−is′

(
1− i

2
φ′φ̄′

)
φ
)

= e2it′′+(i/2)s′′φ′′,

e2i(t+t′)−(i/2)(s+s′)
((

1− i
2
φ′φ̄′

)(
1− i

2
φφ̄

)
−ieis′φ′φ̄

)

= e2it′′−(i/2)s′′
(

1− i
2
φ′′φ̄′′

)
,

e2i(t+t′)−(i/2)(s+s′)
(
φ̄′
(

1− i
2
φφ̄

)
+eis′

(
1+ i

2
φ′φ̄′

)
φ̄
)

= e2it′′−(i/2)s′′φ̄′′.

(5.6)

The first and third equations can be multiplied side by side in order to solve for t′′.
One may also multiply the first with the complex conjugate of the third to solve for s′′.
Using the results for t′′ and s′′ in the second equation, one finally solves for φ′′. The

result is the composition law for the supertorus:

t′′ = t+t′ − 1
4

(
e−is

′
φ̄′φ+eis′φ′φ̄),

s′′ = s+s′,
φ′′ =φ′ +e−is′φ.

(5.7)

Note that an embedding of this nontrivial (2,2)-supertorus can be given into the su-

pergroup (see [4]) U2(2,2,1) by means of the map

(
eis ,eit ;φ

) 
 �→
(
e2it 0

0 e2it

)(
eis/2 0

0 e−is/2

)1+ i
2
φφ̄

√−iφ
√−iφ̄ 1− i

2
φφ̄


 , (5.8)

which was the way Guhr originally described in [1].
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