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In a system of interlocking sequences, the assumption that three out of the four sequences
are exact does not guarantee the exactness of the fourth. In 1967, Hilton proved that, with
the additional condition that it is differential at the crossing points, the fourth sequence
is also exact. In this note, we trace such a diagram and analyze the relation between the
kernels and the images, in the case that the fourth sequence is not necessarily exact. Re-
garding the exactness of the fourth sequence, we remark that the exactness of the other
three sequences does guarantee the exactness of the fourth at noncrossing points. As to
a crossing point p, we need the extra criterion that the fourth sequence is differential.
One notices that the condition, for the fourth sequence, that kernel ⊇ image at p turns
out to be equivalent to the “opposite” condition kernel ⊆ image. Next, for the kernel
and the image at p of the fourth sequence, even though they may not coincide, they are
not far different—they always have the same cardinality as sets, and become isomorphic
after taking quotients by a subgroup which is common to both. We demonstrate these
phenomena with an example.

1. The exactness of systems of interlocking sequences

It is well known that, in topology, the homotopy sequence of a triple (X ,A,B), where
X , A, and B are topological spaces with base points and B ⊆ A ⊆ X , is exact. In addi-
tion, the homotopy exact sequences of the pairs (A,B), (X ,A), and (X ,B), respectively,
and the homotopy exact sequence of the triple (X ,A,B) knot together in a one-of-a-kind
commutative diagram, thus,

. . . πn+1(A,B)
1

4

πn(B)
3

1

πn(X)
2

3

πn(X ,A) . . .

. . . . . .

πn+1(X ,B)

3

4

πn(A)

2

1

πn(X ,B)

4

3. . . . . .

. . . πn+1(X)
2

3

πn+1(X ,A)
4

2

πn(A,B)
1

4

πn−1(B) . . .

(1.1)
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156 Further remarks on systems of interlocking exact sequences

In [1], Hilton analyzed the general case of (1.1); namely, a commutative diagram that
interlocks four sequences of which three are known to be exact, and proved the following
theorem.

Theorem 1.1 [1]. Suppose given 4 sequences

α : . . . • • • . . . ,

β : . . . • • • . . . ,

γ : . . . • • • . . . ,

∂ : . . . • • • . . . ,

(1.2)

of which 3 are long exact, forming a commutative diagram

. . . • • • • • • . . .

. . . . . .

• p• • p• • p• •

. . . . . .

. . . • • • • • • . . .

(1.3)

then the fourth is also long exact, provided it is differential; that is, ∂∂ = 0, at its crossing
points p.

Note that one derives Theorem 1.1 through standard diagram chasing. However, the
criterion that the fourth sequence is differential at its crossing points is not needed when
showing the exactness at noncrossing points; thus we have the following.

Proposition 1.2. Suppose 4 sequences of (1.2) are given of which 3 are long exact, forming
the commutative diagram (1.3), then the fourth is automatically exact at all points other
than the crossing points p.
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Proof. In the commutative diagram of sequences

. . . Ci−1•
γi−1

αi−2

Ci•
βi

γi

Ci+1•
∂i+2

βi+1

• . . .

. . . . . .

p •Bi−1

βi−1

αi−1

p •Bi

∂i+1

γi+1

p•

αi+2

βi+2. . . . . .

. . . •
Ai−1

∂i−1

βi−2

•
Ai

αi

∂i

•
Ai+1

γi+2

αi+1

• . . .

(1.4)

assume, without real loss of generality, that the α-, β-, and γ-sequences are exact.
To show the exactness of the ∂-sequence at Ai, first one sees that ∂i∂i−1 = ∂iαi−1βi−2 =

γiβi−1βi−2 = 0. Conversely, to show that ker∂i ⊆ image∂i−1, suppose given ∂i(a)= 0 where
a∈ Ai, then αi(a)= γi+1∂i(a)= 0 so there exists a b ∈ Bi−1 such that αi−1(b)= a, because
the α-sequence is exact. Since γiβi−1(b) = ∂iαi−1(b) = ∂i(a) = 0, βi−1(b) ∈ kerγi. Due to
the fact that the γ-sequence is exact, there is a c ∈ Ci−1 such that γi−1(c)= βi−1(b). Next,
since the element b− αi−2(c) ∈ Bi−1 satisfies βi−1(b− αi−2(c)) = βi−1(b)− βi−1αi−2(c) =
βi−1(b)− γi−1(c)= 0 and the β-sequence is exact, there is an a′ ∈ Ai−1 such that βi−2(a′)=
b− αi−2(c). Finally, this element a′ ∈ Ai−1 fulfills that ∂i−1(a′) = αi−1βi−2(a′) = αi−1(b−
αi−2(c))= αi−1(b)−αi−1αi−2(c)= αi−1(b)= a; thus, ker∂i ⊆ image∂i−1.

As to the exactness of the ∂-sequence at Ci+1, first it is differential because ∂i+2∂i+1 =
αi+2βi+1∂i+1 = αi+2αi+1γi+1 = 0. To show that ker∂i+2 ⊆ image∂i+1, let ∂i+2(c) = 0 where
c ∈ Ci+1. Since αi+2βi+1(c)= ∂i+2(c)= 0, βi+1(c)∈ kerαi+2 so there exists an a∈ Ai+1 such
that αi+1(a) = βi+1(c), by the exactness of the α-sequence. Similarly, since γi+2(a) =
βi+2αi+1(a) = βi+2βi+1(c) = 0, we find a b ∈ Bi satisfying γi+1(b) = a. Next, the condi-
tion that βi+1(−c+ ∂i+1(b))=−βi+1(c) +βi+1∂i+1(b)=−βi+1(c) +αi+1γi+1(b)=−βi+1(c) +
αi+1(a)= 0 forces−c+ ∂i+1(b)∈ kerβi+1, so that, by the exactness of the β-sequence, there
exists a c′ ∈ Ci such that βi(c′) = −c + ∂i+1(b). Now the element b− γi(c′) ∈ Bi satisfies
∂i+1(b− γi(c′)) = ∂i+1(b)− ∂i+1γi(c′) = c + βi(c′)− ∂i+1γi(c′) = c + βi(c′)− βi(c′) = c, so
ker∂i+2 ⊆ image∂i+1, and thus the ∂-sequence is exact at Ci+1. �

Hereafter, it remains to examine the exactness of the ∂-sequence at the crossing points
p, in diagram (1.3). Theorem 1.1 says that, with the assumption that the α-, β-, and γ-
sequences are exact, the fourth sequence, the ∂-sequence, is also exact if it is differential
at p. We trace the diagram and make the following expansion.

Theorem 1.3. In the commutative diagram of sequences (1.4) assume that the α-, β-, and
γ-sequences are exact. Then image∂i ⊆ ker∂i+1 if and only if ker∂i+1 ⊆ image∂i. Thus, the
following are equivalent:

(i) the ∂-sequence is exact at the crossing points p,
(ii) the ∂-sequence is differential at p; that is, ker∂i+1 ⊇ image∂i,

(iii) ker∂i+1 ⊆ image∂i.
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Before proving Theorem 1.3, we note that it is easy to verify that the fourth sequence
in diagram (1.1) is differential at the crossing points; hence the sequence is exact: for the
composite homomorphism πn(A,B)→ πn(X ,B)→ πn(X ,A) is induced by the composite
map

B B A

A X X

(1.5)

which coincides with the composite map

B A A

A A X

(1.6)

but πn(A,A)= 0.

Proof of Theorem 1.3. First we assume that the fourth sequence is differential at Bi and
show that ker∂i+1 ⊆ image∂i. If ∂i+1(b)= 0 where b ∈ Bi, then αi+1γi+1(b)= βi+1∂i+1(b)=
0 so γi+1(b) ∈ kerαi+1. Thus, there exists an a ∈ Ai such that αi(a) = γi+1(b), because
the α-sequence is exact. Since γi+1(b− ∂i(a)) = γi+1(b)− γi+1∂i(a) = γi+1(b)− αi(a) = 0,
one finds an element c ∈ Ci such that γi(c) = b− ∂i(a). Next, by the assumption that
∂i+1∂i = 0, βi(c) = ∂i+1γi(c) = ∂i+1(b− ∂i(a)) = ∂i+1(b)− ∂i+1∂i(a) = ∂i+1(b) = 0 so there
is a b′ ∈ Bi−1 such that βi−1(b′)= c, because the β-sequence is exact. Then the result that
the element αi−1(b′) + a ∈ Ai satisfies ∂i(αi−1(b′) + a) = ∂iαi−1(b′) + ∂i(a) = γiβi−1(b′) +
∂i(a)= γi(c) + ∂i(a)= b shows that ker∂i+1 ⊆ image∂i.

Conversely, assume that ker∂i+1 ⊆ image∂i, we show that image∂i ⊆ ker∂i+1: let a∈Ai.
Since the α-sequence is exact, βi+1∂i+1∂i = αi+1γi+1∂i = αi+1αi = 0. Thus, image(∂i+1∂i) ⊆
kerβi+1, which forces image(∂i+1∂i) ⊆ imageβi because the β-sequence is exact. Hence,
there exists a c ∈ Ci such that

∂i+1∂i(a)= βi(c). (1.7)

Since the element ∂i(a) − γi(c) ∈ Bi satisfies the criterion that ∂i+1(∂i(a) − γi(c)) =
∂i+1∂i(a)− ∂i+1γi(c) = ∂i+1∂i(a)− βi(c) = 0, ∂i(a)− γi(c) ∈ ker∂i+1. By the assumption
that ker∂i+1 ⊆ image∂i, we find an a′ ∈ Ai such that

∂i(a)− γi(c)= ∂i(a′). (1.8)

Furthermore, αi(a′)= γi+1∂i(a′)= γi+1(∂i(a)− γi(c))= γi+1∂i(a)− γi+1γi(c)= γi+1∂i(a)=
αi(a). Thus, αi(−a′ + a) = 0, and since the α-sequence is exact, there exists a b ∈ Bi−1

such that

αi−1(b)=−a′ + a. (1.9)
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Combining (1.8) and (1.9), we next consider the element c − βi−1(b) ∈ Ci and derive
that γi(c− βi−1(b)) = γi(c)− γiβi−1(b) = γi(c)− ∂iαi−1(b) = γi(c)− ∂i(−a′ + a) = γi(c)−
γi(c)= 0. Thus, there is a c′ ∈ Ci−1 such that

γi−1(c′)= c−βi−1(b), (1.10)

due to the facts that c− βi−1(b)∈ kerγi and the γ-sequence is exact. Finally, the calcula-
tion that

∂i+1∂i(a)= βi(c)
(
by (1.7)

)

= βi
(
γi−1(c′) +βi−1(b)

) (
by (1.10)

)

= βiγi−1(c′) +βiβi−1(b)

= βiγi−1(c′) (because the β-sequence is exact)

= ∂i+1γiβi−1αi−2(c′) (because βi = ∂i+1γi and γi−1 = βi−1αi−2)

= ∂i+1∂iαi−1αi−2(c′) (because γiβi−1 = ∂iαi−2)

= 0 (because the α-sequence is exact)

(1.11)

completes the proof that the ∂-sequence is differential at the crossing points.
Now we have shown that image∂i ⊆ ker∂i+1 if and only if ker∂i+1 ⊆ image∂i, the equiv-

alence of the three assertions of Theorem 1.3 is clear. �

Hence, in a system of interlocking sequences, (1.3), the fact that three out of the
four sequences are exact does not guarantee the exactness of the fourth at the cross-
ing points p. One needs the condition that the sequence is differential at p to assure
its exactness. The next couple of examples demonstrates the necessity of this extra
criterion.

Example 1.4 [1].

Z2
the identity map

ι1

Z2

Z2⊕Z2

∂=∂i+1

ε2

Z2

ι2=∂i

the identity map
Z2

(1.12)

where ι1, ι2 are the inclusions into the first and the second factors, respectively, ε2 is
the projection onto the second factor, and ∂ = 〈1Z2 ,1Z2〉; that is, ∂(a,b) = a + b where
a,b ∈ Z2.
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Example 1.5. Let G be an arbitrary nontrivial abelian group

G
the identity map

ι1

G

G⊕G

ε1=∂i+1

ε2

G

∆=∂i

the identity map
G

(1.13)

where ι1 is the inclusion into the first factor, ε1, ε2 are the projections onto the first and
the second factors, respectively, and ∆= {1G,1G}; that is, ∆(g)= (g,g) where g ∈G.

Note that, in either example, it is easy to verify all the necessary commutativity rela-
tions; yet the exactness of the fourth sequence ··· • • ··· fails at the
crossing point because none of these equivalent relations

ker∂i+1 = image∂i,

ker∂i+1 ⊇ image∂i,

ker∂i+1 ⊆ image∂i

(1.14)

holds.

2. Kernels versus images at the crossing points

As discussed in Section 1, in a commutative diagram such as (1.4), where the α-, β-, and γ-
sequences are exact, the fourth sequence, the ∂-sequence, may not be exact at the crossing
points p. Nevertheless, in Example 1.4, Example 1.5, and a few other examples, we notice
that even though image∂i and ker∂i+1 might not coincide, they seem to be isomorphic
in most cases and they always have the same cardinality as sets. The following theorem
assures our assertion and shows the close relation between image∂i and ker∂i+1.

Theorem 2.1. In the commutative diagram of sequences (1.4) assume that the α-, β-, and
γ-sequences are exact. Then image∂i/ imageγiβi−1

∼= ker∂i+1/ imageγiβi−1. Thus, image∂i
and ker∂i+1 always have the same cardinality as sets.

Proof. Suppose given an equivalence class [b] ∈ ker∂i+1/ imageγiβi−1, then b ∈ ker∂i+1.
Since αi+1γi+1(b) = βi+1∂i+1(b) = 0, γi+1(b) ∈ kerαi+1 so there exists an a ∈ Ai such that
αi(a) = γi+1(b), because the α-sequence is exact. Then, ∂i(a) ∈ image∂i; thus, we define
the map χ : ker∂i+1/ imageγiβi−1 → image∂i/ imageγiβi−1 by χ([b]) = [∂i(a)] and show
that it is an isomorphism as follows.

To assure that χ is well defined, assume that there are elements a and a′ in Ai such that
αi(a)= γi+1(b)= αi(a′). Then αi(a− a′)= 0, so there exists an x ∈ Bi−1 such that a− a′ =
αi−1(x), since the α-sequence is exact. This yields [∂i(a)]=[∂i(αi−1(x) + a′)]=[∂iαi−1(x) +
∂i(a′)]= [γiβi−1(x) + ∂i(a′)]= [∂i(a′)] in image∂i/ imageγiβi−1. Thus, χ([b])= [∂i(a)] is
independent of the choice of a. The proof that χ([b]) = [∂i(a)] is independent of the
choice of b is similar.



P. Hilton and C. Joanna Su 161

We show that the map χ is monomorphic: suppose given [b] ∈ ker∂i+1/ imageγiβi−1

such that χ([b])= [∂i(a)]= 0 in image∂i/ imageγiβi−1, where a∈ Ai and αi(a)= γi+1(b).
Since γi+1(b − ∂i(a)) = γi+1(b)− γi+1∂i(a) = γi+1(b)− αi(a) = 0, b − ∂i(a) ∈ kerγi+1 so
there exists a c ∈ Ci such that

γi(c)= b− ∂i(a), (2.1)

because the γ-sequence is exact. In addition, since [∂i(a)] = 0 in image∂i/ imageγiβi−1,
there is an x ∈ imageγiβi−1 such that

∂i(a)= γiβi−1(x). (2.2)

Thus,

βi(c)= ∂i+1γi(c) (because βi = ∂i+1γi)

= ∂i+1
(
b− ∂i(a)

) (
by (2.1)

)
= ∂i+1(b)− ∂i+1∂i(a)

=−∂i+1∂i(a)
(

because [b]∈ ker∂i+1

imageγiβi−1
, so b ∈ ker∂i+1

)

=−∂i+1γiβi−1(x)
(
by (2.2)

)
=−βiβi−1(x) (because βi = ∂i+1γi)

= 0 (because the β-sequence is exact).

(2.3)

Next, since βi(c)= 0 and the β-sequence is exact, there is a y ∈ Bi−1 such that

c = βi−1(y). (2.4)

Substituting (2.1) with (2.4) and (2.2), we have b = γi(c) + ∂i(a)= γiβi−1(y) + γiβi−1(x)=
γiβi−1(y + x), which means that b ∈ imageγiβi−1. Thus, [b] = 0 in ker∂i+1/ imageγiβi−1,
and therefore, the map χ is monomorphic.

Finally, we show that χ is epimorphic: suppose given [b]∈ image∂i/ imageγiβi−1, then
b ∈ image∂i so there is an a∈ Ai such that b = ∂i(a). Thus, βi+1∂i+1(b)= βi+1∂i+1∂i(a)=
αi+1γi+1∂i(a) = αi+1αi(a) = 0, which says that ∂i+1(b) ∈ kerβi+1. Then there exists a c ∈
Ci such that βi(c) = ∂i+1(b), because the β-sequence is exact. Now we find an element
b− γi(c) ∈ Bi satisfying the condition that b− γi(c) ∈ ker∂i+1 because ∂i+1(b− γi(c)) =
∂i+1(b) − ∂i+1γi(c) = ∂i+1(b) − βi(c) = 0. Hence [b − γi(c)] ∈ ker∂i+1/ imageγiβi−1 and
γi+1(b− γi(c)) = γi+1(b)− γi+1γi(c) = γi+1(b) = γi+1∂i(a) = αi(a). By the construction of
χ, we assign that χ([b− γi(c)])= [∂i(a)]= [b]. Thus the map χ is epimorphic.

Knowing that χ : ker∂i+1/ imageγiβi−1 → image∂i/ imageγiβi−1 is an isomorphism, it is
evident that image∂i and ker∂i+1 must have the same cardinality as sets. �

It is unfortunate that, in (1.3), the fact that three out of the four sequences are exact
does not promise the exactness of the fourth. Nevertheless, the only places that we need
to examine are the crossing points p. Even though the kernel and the image may not agree
here, they are not far different—they always have the same cardinality as sets, and they
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become isomorphic after taking quotients by a subgroup which is common to both. We
close the discussion with an example that demonstrates these phenomena.

Example 2.2.

Z8
mod4

ι1

γi

Z4

Z2

×4

βi−1

×4

Z8⊕Z4

∂i+1

ε2

Z8

∂i

mod4
Z4

(2.5)

where ι1 is the inclusion into the first factor, ε2 is the projection onto the second factor,
×4 : Z2 � Z8 is the map of multiplication by 4, mod4 : Z8 � Z4 is the map of modulo
by 4, ∂i = {1Z8 ,mod4}; that is, ∂i(a)= (a,a(mod4)) where a∈ Z8, and ∂i+1 = 〈mod4,0〉;
that is, ∂i+1(a,b)= a(mod4) where (a,b)∈ Z8⊕Z4.

Note that, in (2.5), image∂i = {(0,0),(1,1),(2,2),(3,3),(4,0),(5,1),(6,2),(7,3)} = 〈(1,
1)〉 ∼= Z8 and ker∂i+1 = {(0,0),(0,1),(0,2),(0,3),(4,0),(4,1),(4,2),(4,3)} = 〈(4,0),(0,1)〉
∼=Z2⊕Z4, so that they are not isomorphic. However, imageγiβi−1={(0,0),(4,0)}=〈(4,0)〉,
which yields image∂i/ imageγiβi−1 = {[(0,0)],[(1,1)],[(2,2)],[(3,3)]} = 〈[(1,1)]〉 ∼= Z4

and ker∂i+1/ imageγiβi−1 = {[(0,0)],[(0,1)],[(0,2)],[(0,3)]} = 〈[(0,1)]〉 ∼= Z4. Thus,
image∂i/ imageγiβi−1

∼= ker∂i+1/ imageγiβi−1.
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