
EXISTENCE AND ALGORITHM OF SOLUTIONS
FOR GENERALIZED NONLINEAR
VARIATIONAL-LIKE INEQUALITIES

ZEQING LIU, JUHE SUN, SOO HAK SHIM, AND SHIN MIN KANG

Received 28 December 2004 and in revised form 9 June 2005

We introduce and study a new class of generalized nonlinear variational-like inequalities.
Under suitable conditions, we prove the existence of solutions for the class of generalized
nonlinear variational-like inequalities. A new iterative algorithm for finding the approx-
imate solutions of the generalized nonlinear variational-like inequality is given and the
convergence of the algorithm is also proved. The results presented in this paper improve
and generalize some results in recent literature.

1. Introduction

Variational-like inequalities are a useful and important generalization of variational in-
equalities [3, 8, 26]. They have potential and significant applications in optimization the-
ory, structural analysis, and economics, see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Some mixed variational-like inequalities
have been studied by Parida and Sen [26], Tian [27], and Yao [29] by using the Berge
maximum theorem in finite- and infinite-dimensional spaces. Huang and Deng [10] ex-
tended the auxiliary principle technique to study the existence of solutions for a class
of generalized strongly nonlinear mixed variational-like inequalities. By using the mini-
max inequality technique, Ding [5, 6] studied some classes of nonlinear variational-like
inequalities in reflexive Banach spaces.

The purpose of this paper is to introduce and study a new class of generalized nonlin-
ear variational-like inequalities, which includes several kinds of variational-like inequal-
ities as special cases. A few existence results of solutions for the generalized nonlinear
variational-like inequality are established. We construct an iterative algorithm for find-
ing the approximate solutions of the generalized nonlinear variational-like inequality and
obtain the convergence of the algorithm under certain conditions.

2. Preliminaries

Let H be a real Hilbert space endowed with an inner product 〈·,·〉 and norm ‖ · ‖, re-
spectively. Let K be a nonempty closed convex subset of H , let A,C,F : K →H , N : H ×
H →H , and η : K ×K →H be mappings, and let f : K → (−∞,∞] be a real functional.
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Suppose that a : H ×H → (−∞,∞) is a coercive continuous bilinear form, that is, there
exist positive constants c and d such that

(C1) a(v,v)≥ c‖v‖2, for all v ∈H ;
(C2) a(u,v)≤ d‖u‖‖v‖, for all u,v ∈H .
Clearly, c ≤ d.
We consider the following generalized nonlinear variational-like inequality problem.
Find u∈ K such that

a(u,v−u) + f (v)− f (u)≥ 〈N(Au,Cu) +Fu,η(v,u)
〉

, ∀v ∈ K. (2.1)

Special cases. (A) IfN(Au,Cu)=Au−Cu, a(u,v)= 0 and Fu= 0 for all u,v ∈ K , then the
generalized nonlinear variational-like inequality problem (2.1) is equivalent to finding
u∈ K such that

〈
Cu−Au,η(v,u)

〉≥ f (u)− f (v), ∀v ∈ K , (2.2)

which was introduced and studied by Ding [5].
(B) IfN(Au,Cu)= Au−Cu, a(u,v)= 0 and η(u,v)= gu− gv for all u,v ∈ K , then the

generalized nonlinear variational-like inequality problem (2.1) is equivalent to finding
u∈ K such that

〈
Cu−Au,gv− gu〉≥ f (u)− f (v), ∀v ∈ K , (2.3)

which was studied by Yao [29].

Definition 2.1. Let A,C : K →H , N :H ×H →H and η : K ×K →H be mappings.
(1) A is said to be Lipschitz continuous with constant α if there exists a constant α > 0

such that

‖Au−Av‖ ≤ α‖u− v‖, ∀u,v ∈ K. (2.4)

(2) N is said to be Lipschitz continuous with constant β in the first argument if there
exists a constant β > 0 such that

∥∥N(u,w)−N(v,w)
∥∥≤ β‖u− v‖, ∀u,v,w ∈H. (2.5)

(3) N is said to be η-antimonotone with respect to A in the first argument if

〈
N(Au,w)−N(Av,w),η(u,v)

〉≤ 0, ∀u,v ∈ K , w ∈H. (2.6)

(4) N is said to be η-relaxed Lipschitz with constant γ with respect to C in the second
argument if there exists a constant γ > 0 such that

〈
N(w,Cu)−N(w,Cv),η(u,v)

〉≤−γ‖u− v‖2, ∀u,v ∈ K , w ∈H. (2.7)

(5) η is said to be Lipschitz continuous with constant δ if there exists a constant δ > 0
such that

∥∥η(u,v)
∥∥≤ δ‖u− v‖, ∀u,v ∈ K. (2.8)
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Similarly, we can define the Lipschitz continuity of N in the second argument.

Definition 2.2. Let K be a nonempty closed convex subset of a Hilbert space H and f :
K → (−∞,∞] be a real functional.

(1) f is said to be convex if for any u,v ∈ K and for any α∈ [0,1],

f
(
αu+ (1−α)v

)≤ α f (u) + (1−α) f (v). (2.9)

(2) f is said to be lower semicontinuous on K if for each α∈ (−∞,∞], the set {u∈ K :
f (u)≤ α} is closed in K .

Lemma 2.3 [1, 2]. Let X be a nonempty closed convex subset of a Hausdorff linear topolog-
ical space E, and let φ,ψ : K ×K → R be mappings satisfying the following conditions:

(a) ψ(x, y)≤ φ(x, y), for all x, y ∈ X , and ψ(x,x)≥ 0, for all x ∈ X ;
(b) for each x ∈ X , φ(x, y) is upper semicontinuous with respect to y;
(c) for each y ∈ X , the set {x ∈ X : ψ(x, y) < 0} is a convex set;
(d) there exists a nonempty compact set K ⊂ X and x0 ∈ K such that ψ(x0, y) < 0, for all

y ∈ X \K .
Then there exists ŷ ∈ K such that φ(x, ŷ)≥ 0, for all x ∈ X .

3. Existence theorems

In this section, we give four existence theorems of solutions for the generalized nonlinear
variational-like inequality (2.1).

Theorem 3.1. Let K be a nonempty closed convex subset of a Hilbert space H . Let a : H ×
H → (−∞,∞) be a coercive continuous bilinear form with (C1) and (C2) and let f : K →
(−∞,∞] be a proper convex lower semicontinuous functional with int(dom f )∩K �= ∅.
Suppose that A,C : K →H and N : H ×H →H are continuous mappings, η : K ×K →H
is Lipschitz continuous with constant δ, for each v ∈ K , η(·,v) is continuous and η(v,u)=
−η(u,v) for all u,v ∈ K . Assume that N is η-antimonotone with respect to A in the first
argument and η-relaxed Lipschitz with constant ξ with respect to C in the second argument.
Suppose that for given x, y ∈ H and v ∈ K , the mapping u �→ 〈N(x, y),η(u,v)〉 is concave
and upper semicontinuous. If F : K →H is completely continuous, then the generalized non-
linear variational-like inequality (2.1) has a solution u∈ K .

Proof. We first prove that for each fixed û∈ K , there exists a unique ŵ ∈ K such that

a(ŵ,v− ŵ) + f (v)− f (ŵ)≥ 〈N(Aŵ,Cŵ) +Fû,η(v,ŵ)
〉

, ∀v ∈ K. (3.1)

Let û be in K . Define the functionals φ and ψ : K ×K → R by

φ(v,w)= a(v,v−w) + f (v)− f (w)− 〈N(Av,Cv) +Fû,η(v,w)
〉

,

ψ(v,w)= a(w,v−w) + f (v)− f (w)− 〈N(Aw,Cw) +Fû,η(v,w)
〉 (3.2)

for all v,w ∈ K .
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We check that the functionals φ and ψ satisfy all the conditions of Lemma 2.3 in the
weak topology. It follows from the definitions of φ and ψ that for all v,w ∈ K ,

φ(v,w)−ψ(v,w)= a(v−w,v−w)− 〈N(Av,Cv)−N(Aw,Cv),η(v,w)
〉

− 〈N(Aw,Cv)−N(Aw,Cw),η(v,w)
〉

≥ (c+ ξ)‖v−w‖2 ≥ 0,

(3.3)

which means that φ and ψ satisfy the condition (a) of Lemma 2.3. Notice that f is a
convex lower semicontinuous functional and for given x, y ∈ H , v ∈ K , the mapping
u �→ 〈N(x, y),η(u,v)〉 is concave and upper semicontinuous. It follows that φ(v,w) is
weakly upper semicontinuous with respect to w and the set {v ∈ K : ψ(v,w) < 0} is con-
vex for each w ∈ K . Therefore, the conditions (b) and (c) of Lemma 2.3 hold. Since f is
proper convex lower semicontinuous, for each v ∈ int(dom f ), ∂ f (v) �= ∅, see Ekeland
and Temam [9]. Let v∗ be in int(dom f )∩K . It follows that

f (u)≥ f (v∗) +
〈
r,u− v∗〉, ∀r ∈ ∂ f (v∗), u∈ K. (3.4)

Put

D = (c+ ξ)−1(‖r‖+ δ
∥∥N(Av∗,Cv∗

)∥∥+ δ‖Fû‖),
T = {w ∈ K :

∥∥w− v∗∥∥≤D}. (3.5)

Obviously, T is a weakly compact subset of K and for any w ∈ K \T ,

ψ
(
v∗,w

)= a(w− v∗,v∗ −w)+ f
(
v∗
)− f (w)− 〈N(Aw,Cw) +Fû,η

(
v∗,w

)〉

≤−a(w− v∗,w− v∗)− 〈r,w− v∗〉

+
〈
N(Aw,Cw)−N(Av∗,Cw

)
,η
(
w,v∗

)〉

+
〈
N
(
Av∗,Cw

)−N(Av∗,Cv∗
)
,η
(
w,v∗

)〉

+
〈
N
(
Av∗,Cv∗

)
,η
(
w,v∗

)〉
+
〈
Fû,η

(
w,v∗

)〉

≤−∥∥w− v∗∥∥[(c+ ξ)
∥∥w− v∗∥∥−‖r‖− δ∥∥N(Av∗,Cv∗

)∥∥− δ‖Fû‖] < 0,
(3.6)

which yields that the condition (d) of Lemma 2.3 holds. Thus Lemma 2.3 ensures that
there exists a ŵ ∈ K such that φ(v,ŵ)≥ 0 for all v ∈ K , that is,

a(v,v− ŵ) + f (v)− f (ŵ)≥ 〈N(Av,Cv) +Fû,η(v,ŵ)
〉

, ∀v ∈ K. (3.7)

Let t be in (0,1] and v be in K . Replacing v by vt = tv+ (1− t)ŵ in (3.7), we see that

a
(
vt, t(v− ŵ)

)
+ f (vt)− f (ŵ)≥ 〈N(Avt,Cvt

)
+Fû,η

(
vt,ŵ

)〉
, ∀v ∈ K. (3.8)

Note that a is bilinear and f is convex. From (3.8) we deduce that

t
[
a
(
vt,v− ŵ

)
+ f (v)− f (ŵ)

]≥ t〈N(Avt,Cvt
)

+Fû,η(v,ŵ)
〉

, ∀v ∈ K , (3.9)
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which implies that

a
(
vt,v− ŵ

)
+ f (v)− f (ŵ)≥ 〈N(Avt,Cvt

)
+Fû,η(v,ŵ)

〉
, ∀v ∈ K. (3.10)

Letting t→ 0+ in the above inequality, we conclude that

a(ŵ,v− ŵ) + f (v)− f (ŵ)≥ 〈N(Aŵ,Cŵ) +Fû,η(v,ŵ)
〉

, ∀v ∈ K. (3.11)

That is, ŵ is a solution of (3.1). Now we prove the uniqueness. For any two solutions
w1,w2 ∈ K of (3.1), we know that

a
(
w1,w2−w1

)
+ f
(
w2
)− f

(
w1
)≥ 〈N(Aw1,Cw1

)
+Fû,η

(
w2,w1

)〉
,

a
(
w2,w1−w2

)
+ f
(
w1
)− f

(
w2
)≥ 〈N(Aw2,Cw2

)
+Fû,η

(
w1,w2

)〉
.

(3.12)

Adding these inequalities, we deduce that

c
∥∥w1−w2

∥∥2 ≤ a(w1−w2,w1−w2
)

≤ 〈N(Aw1,Cw1
)−N(Aw2,Cw1

)
,η
(
w1,w2

)〉

+
〈
N
(
Aw2,Cw1

)−N(Aw2,Cw2
)
,η
(
w1,w2

)〉

≤−ξ∥∥w1−w2
∥∥2

,

(3.13)

which yields that w1 = w2. That is, ŵ is a unique solution of (3.1). This means that there
exists a mapping G : K → K satisfying G(û)= ŵ, where ŵ is the unique solution of (3.1)
for each û∈ K .

Next we show that G is a completely continuous mapping. Let u1 and u2 be arbitrary
elements in K . Using (3.1), we get that

a
(
Gu1,Gu2−Gu1

)
+ f
(
Gu2

)− f
(
Gu1

)≥ 〈N(A(Gu1
)
,C
(
Gu1

))
+Fu1,η

(
Gu2,Gu1

)〉
,

a
(
Gu2,Gu1−Gu2

)
+ f
(
Gu1

)− f
(
Gu2

)≥ 〈N(A(Gu2
)
,C
(
Gu2

))
+Fu2,η

(
Gu1,Gu2

)〉
.

(3.14)

Adding (3.14), we arrive at

c
∥∥Gu1−Gu2

∥∥2 ≤ a(Gu1−Gu2,Gu1−Gu2
)

≤ 〈N(A(Gu1
)
,C
(
Gu1

))−N(A(Gu2
)
,C
(
Gu1

))
,η
(
Gu1,Gu2

)〉

+
〈
N
(
A
(
Gu2

)
,C
(
Gu1

))−N(A(Gu2
)
,C
(
Gu2

))
,η
(
Gu1,Gu2

)〉

+
〈
Fu1−Fu2,η

(
Gu1,Gu2

)〉

≤−ξ∥∥Gu1−Gu2
∥∥2

+ δ
∥∥Fu1−Fu2

∥∥∥∥Gu1−Gu2
∥∥,

(3.15)

that is,

∥∥Gu1−Gu2
∥∥≤ δ

c+ ξ

∥∥Fu1−Fu2
∥∥. (3.16)
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Since F is completely continuous, it follows from (3.16) that G : K → K is a completely
continuous mapping. Hence the Schauder fixed point theorem guarantees that G has a
fixed point u ∈ K , which means that u is a solution of the generalized nonlinear
variational-like inequality (2.1). This completes the proof. �

Theorem 3.2. Let a, f , C, N , F, and η be as in Theorem 3.1 and let N be Lipschitz contin-
uous with constant ζ in the first argument. Suppose that A : K →H is Lipschitz continuous
with constant ρ. If c + ξ > δζρ, then the generalized nonlinear variational-like inequality
(2.1) has a solution u∈ K .

Proof. Put

D = (c+ ξ − δζρ)−1(‖r‖+ δ
∥∥N(Av∗,Cv∗

)∥∥+ δ‖Fû‖),
T = {w ∈ K :

∥∥w− v∗∥∥≤D}. (3.17)

As in the proof of Theorem 3.1, we conclude that

ψ
(
v∗,w

)≤−a(w− v∗,w− v∗)− 〈r,w− v∗〉

+
〈
N(Aw,Cw)−N(Av∗,Cw

)
,η
(
w,v∗

)〉

+
〈
N
(
Av∗,Cw

)−N(Av∗,Cv∗
)
,η
(
w,v∗

)〉

+
〈
N
(
Av∗,Cv∗

)
,η
(
w,v∗

)〉
+
〈
Fû,η

(
w,v∗

)〉

≤−∥∥w− v∗∥∥[(c+ ξ − δζρ)
∥∥w− v∗∥∥

−‖r‖− δ∥∥N(Av∗,Cv∗
)∥∥− δ‖Fû‖] < 0

(3.18)

for any w ∈ K \T . The rest of the argument is now essentially the same as in the proof of
Theorem 3.1 and therefore is omitted. �

Theorem 3.3. Let a, f ,A,C,N , and η be as in Theorem 3.1. Suppose that F : K →H is Lips-
chitz continuous with constant l. If δl/(c+ ξ) < 1, then the generalized nonlinear variational-
like inequality (2.1) has a unique solution u∈ K .

Proof. Let u1 and u2 be arbitrary elements in K . As in the proof of Theorem 3.1, we
deduce that

∥∥Gu1−Gu2
∥∥≤ δ

c+ ξ

∥∥Fu1−Fu2
∥∥≤ δl

c+ ξ

∥∥u1−u2
∥∥, ∀u1,u2 ∈ K , (3.19)

which yields that G : K → K is a contraction mapping and hence it has a unique fixed
point u∈ K , which is a unique solution of the generalized nonlinear variational-like in-
equality (2.1). This completes the proof. �

The following theorem follows from the arguments of Theorems 3.1, 3.2 and, 3.3.

Theorem 3.4. Let a, f ,A, C,N , and η be as in Theorem 3.2. Suppose that F : K →H is Lip-
schitz continuous with constant l. If 0 < δl/(c+ ξ − δζρ) < 1, then the generalized nonlinear
variational-like inequality (2.1) has a unique solution u∈ K .
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4. Algorithm and convergence theorems

Based on Theorem 3.1, we suggest the following iterative algorithm.

Algorithm 4.1. Let A,C,F : K → H , N : H ×H → H , and η : K ×K → H be mappings,
and let f : K → (−∞,∞] be a real functional. For any given u0 ∈ K , compute sequence
{un}n≥0 by the iterative scheme

a
(
un+1,v−un+1

)
+ f (v)− f

(
un+1

)≥ 〈N(Aun+1,Cun+1
)

+Fun,η
(
v,un+1

)〉
, (4.1)

for all v ∈ K and n≥ 0.

Theorem 4.2. Let a, f , F, N , A, C, and η be as in Theorem 3.3. If δl/(c + ξ) < 1, then
the generalized nonlinear variational-like inequality (2.1) possesses a unique solution and
the iterative sequence {un}n≥0 generated by Algorithm 4.1 converges strongly to the unique
solution.

Proof. Using Algorithm 4.1, we obtain that

a
(
un+1,un−un+1

)
+ f
(
un
)− f

(
un+1

)≥ 〈N(Aun+1,Cun+1
)

+Fun,η
(
un,un+1

)〉
,

a
(
un,un+1−un

)
+ f
(
un+1

)− f
(
un
)≥ 〈N(Aun,Cun

)
+Fun−1,η

(
un+1,un

)〉
,

(4.2)

for all n≥ 1. Adding (4.2), we get that

c
∥∥un+1−un

∥∥2 ≤ a(un+1−un,un+1−un
)

≤ 〈N(Aun+1,Cun+1
)−N(Aun,Cun+1

)
,η
(
un+1,un

)〉

+
〈
N
(
Aun,Cun+1

)−N(Aun,Cun
)
,η
(
un+1,un

)〉

+
〈
Fun−Fun−1,η

(
un+1,un

)〉

≤−ξ∥∥un+1−un
∥∥2

+ δl
∥∥un−un−1

∥∥∥∥un+1−un
∥∥,

(4.3)

that is,

∥∥un+1−un
∥∥≤ δl

c+ ξ

∥∥un−un−1
∥∥, ∀n≥ 1, (4.4)

which yields that {un}n≥0 is a Cauchy sequence by δl/(c+ ξ) < 1. Consequently, {un}n≥0

converges to some element u in K . Letting n→∞ in (4.1), we infer that

a(u,v−u) + f (v)− f (u)≥ 〈N(Au,Cu) +Fu,η(v,u)
〉

, ∀v ∈ K. (4.5)

Hence u is a solution of the generalized nonlinear variational-like inequality (2.1). It
follows from Theorem 3.3 that u is the unique solution of the generalized nonlinear
variational-like inequality (2.1). This completes the proof. �
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Similarly we have the following result.

Theorem 4.3. Let a, f , F, N , A, C, and η be as in Theorem 3.4. If 0 < δl/(c+ ξ − δζρ) < 1,
then the generalized nonlinear variational-like inequality (2.1) possesses a unique solution
and the iterative sequence {un}n≥0 generated by Algorithm 4.1 converges strongly to the
unique solution.
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