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For each triple of positive numbers p,q,r ≥ 1 and each commutative C
∗
-algebra � with

identity 1 and the set s(�) of states on �, the set �
r
(�) of all matrices A = [ajk] over

� such that ϕ[A
[r]

] := [ϕ(|ajk|r )] defines a bounded operator from �
p

to �
q

for all ϕ ∈
s(�) is shown to be a Banach algebra under the Schur product operation, and the norm
||A|| = |||A|||p,q,r = sup{||ϕ[A

[r]
]||1/r

: ϕ ∈ s(�)}. Schatten’s theorems about the dual of
the compact operators, the trace-class operators, and the decomposition of the dual of
the algebra of all bounded operators on a Hilbert space are extended to the �

r
(�) setting.

1. Introduction

Fix p and q with 1 ≤ p,q <∞. The space of pth power summable sequences of com-
plex numbers is denoted by �

p
, and the space of matrices which define bounded linear

transformations from �
p

to �
q

is denoted by �(�
p
,�

q
). Let A = [ajk], B = [bjk] be infi-

nite matrices, not necessarily in �(�
p
,�

q
). The Schur product A •B of A and B is defined

by A •B = [ajkbjk]. Many areas in mathematics such as matrix theory, function theory,
operator theory, and operator algebras have made use of results from the study of Schur
product and have injected new problems in return. See [1, 4, 6] for further references to
the related literature.

As a generalization of a result of Schur in [9] for p = 2, and q = 2, Bennett proved in
[1, Theorem 2.2] the following theorem.

Theorem 1.1 (Bennett). If Λ = [λjk],Σ = [σjk] ∈ �(�
p
,�

q
), then Λ • Σ = [λjkσjk] ∈

�(�
p
,�

q
), and

||Λ•Σ||p,q ≤ ||Λ||p,q||Σ||p,q. (1.1)

(i.e., �(�
p
,�

q
) is a commutative Banach algebra under the Schur product operation and

operator norm || · ||p,q.)

Based on these results of Schur and Bennett, in [2] we studied algebras, under the
Schur product operation, of matrices over a Banach algebra, which have the matrix of
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the norms of the entries define bounded operators. Here we give a functional version
of the generalization. This is another direction of generalization of the numerical Schur
r-algebras, �

r
discussed therein.

A matrix A= [ajk], over C, is in the absolute Schur r-algebra �
r

if the Schur rth power

A
[r]

:= [|ajk|r ] of A is in �(�
p
,�

q
). The r-norm of A is defined by ||A|| := |||A|||p,q,r :=

||A[r]||1/r
, where ||A[r]|| = ||A[r]||p,q is the operator norm of A

[r]
as an element of �(�

p
,�

q
).

That ||| · |||p,q,r is a norm follows, as expected, from an inequality that is analogous to the
Hölder inequality.

Theorem 1.2. For each r ≥ 1, �
r

is a Banach algebra under the Schur multiplication and
the norm ||| · |||p,q,r .

This is a special case of a result in [2] that will be used here. The matrices could be
over a Banach algebra, and the norm is defined by the nonnegative matrix of the rth
power of norms of the entries. Here we investigate the situation where the matrices are
over a commutative C

∗
-algebra �, the norm is defined by the absolute values of linear

functional values of the entries, as the linear functional runs over the set of states on �.
In [7] Schatten’s theorems [8] concerning the dual of the compact operators, the trace-

class operators, and the decomposition of the dual of the algebra of bounded operators on
a Hilbert space have been extended to the setting of matrices of functions acting on func-
tion sequence space analogous to the �

2
sequence space. Here we extend these Schatten-

type theorems to the algebra �
r
(�) consisting of certain classes of matrices over a com-

mutative C
∗
-algebra �, in a situation where p and q need not be equal to 2.

Since the p and q will be fixed throughout our discussion, we will sometimes suppress
the subscripts p, q in || · ||p,q and write || · || instead, if no confusion can arise. We will
occasionally use subscripts if an emphasis for clarity is warranted. We also use || · || to
denote the norm on a Banach space, and let the context determine which one is intended.

For convenience of reference, we also record the following simple useful fact.

Lemma 1.3. Let [αjk] and [βjk] be matrices over the complex field C such that |αjk| ≤ βjk
for all j and k. Suppose that [βjk]∈�(�

p
,�

q
); that is, the matrix defines a bounded linear

transformation from �
p

to �
q
. Then [αjk]∈�(�

p
,�

q
) and ||[αjk]|| ≤ ||[βjk]||.

2. Definitions and preliminary results

We establish some of our results in a more general setting before moving on to the settings
on which Schur product makes sense. Let � be a Banach space with norm || · ||, and dual
space �

#
. Consider the set �(�) of all infinite matrices over �. Let (�

#
)1 denote the set

of all bounded linear functionals on � which have norm 1. Let s(�) ⊆ (�
#
)1 be a set of

linear functionals on � such that
(i) ||x|| = sup{| f (x)| : f ∈ s(�)} for every x ∈�;

(ii) the linear span of s(�) is all of X
#
.

One such example is s(�) = (�
#
)1 by the Hahn-Banach theorem and the fact that all

linear functionals in �
#

are multiples of elements in (�
#
)1.

For each f ∈ �
#
, and each matrix A = [ajk] ∈�(�), denote by f [A] = [ f (ajk)] the

complex matrix whose ( j,k) entry is f (ajk). For fixed p and q with 1≤ p,q <∞, regard
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the matrix f [A] as a linear transformation of �
p

to �
q
, if it is defined. (The closed graph

theorem implies that it is bounded if it is everywhere defined.) Let �(�) = �(�)p,q be
the set of matrices A = [ajk] ∈�(�) such that f [A] ∈�(�

p
,�

q
) for all f ∈ s(�). The

following result provides us with a natural way of defining a norm on �(�).

Theorem 2.1. Let � and s(�) be as above, andA= [ajk]∈�(�), so that f [A]∈�(�
p
,�

q
)

for all f ∈ s(�). Then

sup
{∥∥ f [A]

∥∥ : f ∈ s(�)
}
<∞. (2.1)

Proof. First we note that since each f ∈ �
#

is a linear combination f =∑n
j=1αjgj of

elements g1, . . . ,gn in s(�), and for the given A ∈ �(�), gj[A] ∈ �(�
p
,�

q
), 1 ≤ j ≤ n,

and hence f [A]= α1(g1[A]) + ···+αn(gn[A])∈�(�
p
,�

q
). Therefore, the map �A : f �→

f [A] is a linear transformation from �
#

to �(�
p
,�

q
). Since both the domain �

#
and

codomain �(�
p
,�

q
) are Banach spaces, the continuity of the map �A will follow if we

can show that the graph of �A is closed. To that end, suppose that {( fn,�A( fn))} is a
sequence in the graph �(�A) � �

# ⊕∞ �(�
p
,�

q
) of �A that converges to some ( f ,M) ∈

�
# ⊕∞ �(�

p
,�

q
) with M = [mjk]. Then fn → f in �

#
and fn[A]→M in �(�

p
,�

q
). Thus,

for each j,k = 1,2, . . . , | fn(ajk)−mjk| ≤ || fn[A]−M|| → 0 as n→∞. Also the conver-
gence of { fn} to f implies that | fn(ajk)− f (ajk)| → 0 as n→∞. Therefore, f (ajk)=mjk

for all j, k, and hence f [A] =M. Thus the graph of �A is closed. By the closed graph
theorem, �A is bounded. Therefore,

sup
{∥∥ f [A]

∥∥ : f ∈ s(�)
}= sup{∣∣�A( f )

∣∣ : f ∈ s(�)} ≤ ||�A|| <∞. (2.2)
�

Next we prove that �(�) is a Banach space.

Theorem 2.2. The set �(�) is a Banach space under the usual (entrywise) scalar multipli-
cation and addition, and the norm

||A|| := sup
{∥∥ f [A]

∥∥ : f ∈ s(�)
}

, A∈�(�). (2.3)

Proof. First we show that the function as defined in Theorem 2.1 is indeed a norm on
�(�). LetA,B ∈�(�) and let f ∈ s(�). Then || f [A+B]|| = || f [A] + f [B]|| ≤ || f [A]||+
|| f [B]|| ≤ ||A||+ ||B||. Therefore, || f [A+B]|| ≤ ||A||+ ||B|| for all f ∈ s(�), and hence
||A+B|| ≤ ||A||+ ||B||.

To prove that �(�) is complete, let {An} be a Cauchy sequence in �(�). Then for each
f ∈ s(�),∥∥ f [An]− f

[
Am
]∥∥= ∥∥ f [An−Am]∥∥≤ ∥∥An−Am∥∥−→ 0 as n,m−→∞. (2.4)

Thus { f [An]} is a Cauchy sequence in �(�
p
,�

q
). Since �(�

p
,�

q
) is complete, there exists a

bounded matrix Λ f ∈�(�
p
,�

q
) to which { f [An]} converges in �(�

p
,�

q
). For each j,k =

1,2, . . . , ∣∣∣ f (a(n)

jk

)
− f
(
a

(m)

jk

)∣∣∣≤ ∥∥ f [An]− f [Am]
∥∥≤ ∥∥An−Am∥∥−→ 0 (2.5)



2178 Schatten’s theorems on Schur algebras

as n,m→∞. Since this is true for every f ∈ s(�), the quantity ||An −Am|| does not de-
pend on f , and ||x|| = sup{|ψ(x)| : ψ ∈ s(�)} for all x ∈�, we have∥∥∥a(n)

jk − a
(m)

jk

∥∥∥= sup
f∈s(�)

∣∣∣ f (a(n)

jk − a
(m)

jk

)∣∣∣= sup
f∈s(�)

∣∣∣ f (a(n)

jk

)
− f
(
a

(m)

jk

)∣∣∣
≤ ∥∥An−Am∥∥−→ 0 as n,m−→ 0.

(2.6)

Thus the sequence {a(n)

jk} is a Cauchy sequence in �. By the completeness of �, there

exists an ajk ∈� such that a
(n)

jk → ajk in �. Thus there is an A = [ajk] ∈�(�) such that
{An} converges to A entrywise. It is clear from this construction that for each f ∈ s(�),
f [A]=Λ f . Since each Λ f ∈�(�

p
,�

q
), we have A∈�(�).

We have to show that ||An −A|| → 0 as n→∞. Let ε > 0 be given. Since {An} is a
Cauchy sequence, there exists anN such that ||An−Am|| < ε/3, for all n,m≥N . Let n≥N
be arbitrarily fixed. We will show that ||An−A|| < ε. There exists an f ∈ s(�) such that

∥∥An−A∥∥ < ∥∥ f [An−A]∥∥+
ε
3
= ∥∥ f [An]− f

[
A
]∥∥+

ε
3
= ∥∥ f [An]−Λ f

∥∥+
ε
3
. (2.7)

Since f [An]→Λ f in the norm of �(�
p
,�

q
), there exists a ν > N such that || f [Aν]−Λ f || <

ε/3. Thus

∥∥An−A∥∥ < ∥∥ f [An]−Λ f

∥∥+
ε
3
≤ ∥∥ f [An]− f

[
Aν
]∥∥+

∥∥ f [Aν
]−Λ f

∥∥+
ε
3

<
∥∥An−Aν

∥∥+
ε
3

+
ε
3
< ε.

(2.8)

Therefore, �(�) is complete. �

For a given matrix A = [ajk], denote by An� the matrix whose ( j,k) entry is ajk for
1≤ j,k ≤ n and 0 otherwise.

Proposition 2.3. Let A= [ajk]∈�(�). Then ||An� || ↗ ||A|| as n→∞.

Proof. Let ξ = {ξk}∞k=1 ∈ �p ; f ∈ s(�); and n∈N. Denote ξ
(n) = {ξ1,ξ2, . . . ,ξn,0, . . .}. Then

∥∥∥ f [An�
]
ξ
∥∥∥= ( n∑

j=1

∣∣∣∣∣
n∑
k=1

f
(
ajk
)
ξk

∣∣∣∣∣
q)1/q

≤
(n+1∑

j=1

∣∣∣∣∣
n∑
k=1

f
(
ajk
)
ξk

∣∣∣∣∣
q)1/q

=
∥∥∥ f [A(n+1)�

]
ξ

(n)
∥∥∥≤ ∥∥ f [A(n+1)�

]∥∥
p,q

∥∥ξ (n)∥∥
p ≤
∥∥A(n+1)�

∥∥||ξ||.
(2.9)

So ∥∥ f [An�
]∥∥≤ ∥∥A(n+1)n�

∥∥. (2.10)

Since this is true for every f ∈ s(�),∥∥An�
∥∥≤ ∥∥A(n+1)n�

∥∥. (2.11)
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Let ε > 0. There is an f ∈ s(�) such that || f [A]|| ≥ ||A|| − ε/4. Since f [A] is in �(�
p
,

�
q
), there is a unit vector ξ = {ξk}∞k=1 ∈ �p such that

∥∥ f [A]ξ
∥∥
q =
( ∞∑

j=1

∣∣∣∣∣
∞∑
k=1

f
(
ajk
)
ξk

∣∣∣∣∣
q)1/q

≥ ∥∥ f [A]
∥∥− ε

4
. (2.12)

Thus there exists an n0 such that

( n0∑
j=1

∣∣∣∣∣
∞∑
k=1

f
(
ajk
)
ξk

∣∣∣∣∣
q)1/q

≥ ∥∥ f [A]
∥∥− ε

4
− ε

12
= ∥∥ f [A]

∥∥− ε
3
. (2.13)

For the finite sum, there is an n1 such that n1 ≥ n0 and that

∥∥∥ f [A(n1 )�
]
ξ
∥∥∥= ( n1∑

j=1

∣∣∣∣∣
n1∑
k=1

f
(
ajk
)
ξk

∣∣∣∣∣
q)1/q

≥
( n0∑

j=1

∣∣∣∣∣
n1∑
k=1

f
(
ajk
)
ξk

∣∣∣∣∣
q)1/q

≥ ∥∥ f [A]
∥∥− ε

3
− ε

6
= ∥∥ f [A]

∥∥− ε
2
.

(2.14)

So, for n≥ n1 ,∥∥An�
∥∥≥ ∥∥A(n1 )�

∥∥≥ ∥∥ f [A(n1 )�
]∥∥≥ ∥∥ f [A(n1 )�

]
ξ
∥∥≥ ∥∥ f [A]

∥∥− ε
2

≥ ||A||− ε
4
− ε

2
> ||A||− ε.

(2.15)

Therefore, ||An� || ↗ ||A||, as asserted. �

With � and s(�) as above and for 1 ≤ r <∞, let �
r
(�) denote the set of all ma-

trices A = [ajk] ∈�(�) with the property that f [A]
[r] = [| f (ajk)|r ] ∈�(�

p
,�

q
) for all

f ∈ s(�).

Theorem 2.4. For each A∈�
r
(�), it holds that

sup
{∥∥∥ f [A]

[r]
∥∥∥ : f ∈ s(�)

}
<∞. (2.16)

Proof. By Theorem 1.2, the set of all matrices Λ = [λjk] over C with bounded absolute

Schur rth power (Λ
[r] = [|λ|r ]∈�(�

p
,�

q
)) is a Banach algebra. Since X

#
is the linear span

of s(�), for the fixed A= [ajk]∈�
r
(�), the map �A : f �→ f [A] is a linear map from �

#

into �
r
. To show that �A is a closed map, let {( fn, fn[A])} be a sequence in the graph

�(�A)⊆�
# ⊕∞ �

r
of �A converging to some ( f ,Λ)∈�

# ⊕∞ �
r
. Then fn→ f in �

#
and

fn[A]→Λ in �
r
. Let Λ= [λjk]. We then have, for each ( j,k)∈N×N,

fn
(
ajk
)−→ f

(
ajk
)
, fn

(
ajk
)−→ λjk as n−→∞. (2.17)

Therefore, f [A]=Λ and �A has a closed graph. Since �
#

and �
r

are Banach spaces, �A

is bounded by the closed graph theorem. Thus

sup
{∥∥ f [A]

∥∥
�r : f ∈ s(�)

}≤ sup
{∥∥�A( f )

∥∥ : || f || ≤ 1
}= ∥∥�A

∥∥ <∞. (2.18)
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Since || f [A]||�r = ||| f [A]|||p,q,r = || f [A]
[r]||1/r

, we have

sup
{∥∥∥ f [A]

[r]
∥∥∥ : f ∈ s(�)

}
<∞. (2.19)

�

For each A∈�
r
(�), define ||A|| or |||A|||p,q,r by

||A|| := |||A|||p,q,r := sup
{∣∣∣∣∣∣ f [A]

∣∣∣∣∣∣
p,q,r : f ∈ s(�)

}
= sup

{∥∥∥ f [A]
[r]
∥∥∥1/r

: f ∈ s(�)
}
.

(2.20)

The preceding theorem guarantees that || · || is a function defined on �
r
(�). We will

prove that it is a norm in Theorem 2.6. Using an argument similar to that in Proposition
2.3, we can show that this function has the same monotone property.

Proposition 2.5. Let A= [ajk]∈�
r
(�). Then ||An� || ↗ ||A|| as n→∞.

Proof. This is just a routine adaptation of the proof of Proposition 2.3, therefore omitted.
�

Theorem 2.6. For r ≥ 1, the function || · || defined in (2.20) is a norm on the space �
r
(�),

and �
r
(�) is a Banach space under this norm and the usual addition and scalar multiplica-

tion.

Proof. To see that || · || is indeed a norm, letA,B∈�
r
(�) and f ∈ s(�). Then by Theorem

1.2, ∥∥∥ f [A+B]
[r]
∥∥∥= ∥∥∥( f [A] + f [B]

)[r]∥∥∥= ∣∣∣∣∣∣ f [A] + f [B]
∣∣∣∣∣∣r

p,q,r

≤ (∣∣∣∣∣∣ f [A]
∣∣∣∣∣∣

p,q,r +
∣∣∣∣∣∣ f [B]

∣∣∣∣∣∣
p,q,r

)r
(by the triangle inequality for the norm on �

r
)

≤ (||A||+ ||B||)r .
(2.21)

Since f ∈ s(�) is arbitrary, we have

||A+B|| ≤ ||A||+ ||B||, (2.22)

as asserted.
Let {An = [a

(n)

jk]}∞n=1 be a Cauchy sequence in �
r
(�). Then for each ( j,k)∈N×N,

∥∥∥a(n)

jk − a
(m)

jk

∥∥∥= sup
{∣∣∣ f (a(n)

jk − a
(m)

jk

)∣∣∣ : f ∈ s(�)
}

≤ sup
{∣∣∣∣∣∣ f [An−Am]∣∣∣∣∣∣p,q,r : f ∈ s(�)

}
= ∥∥An−Am∥∥−→ 0 as n,m−→∞.

(2.23)

Thus each {a(n)

jk}
∞
n=1 is a Cauchy sequence in �. By the completeness of �, there is an

ajk ∈� to which {a(n)

jk}
∞
n=1 converges. Let A= [ajk]. For each f ∈ s(�), { f [An]}∞n=1 ⊆�

r
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is a Cauchy sequence. By the completeness of �
r
, there is a Λ f ∈�

r
such that || f [An]−

Λ f || → 0 in �
r
. Since f (a

(n)

jk)→ f (ajk) for all j, k, as n→∞, f [A] = Λ f ∈ �
r
. As this is

true for all f ∈ s(�), we have A∈�
r
(�). To see that ||An−A|| → 0, we first note that for

each ν∈N, we have, by the finiteness of ν and Lemma 1.3,

∥∥(An)ν� −Aν�
∥∥≤ ∥∥∥[∥∥a(n)

jk − ajk
∥∥r]

1≤ j,k≤ν

∥∥∥1/r

p,q
−→ 0 as n−→∞. (2.24)

Let ε > 0. There is an N ∈N such that∥∥An−An+l
∥∥ < ε ∀ n≥N , ∀l ≥ 1. (2.25)

Then, by Proposition 2.5,∥∥∥(An)ν� −
(
An+l

)
ν�

∥∥∥= ∥∥∥(An−An+l
)

ν�

∥∥∥≤ ∥∥An−An+l
∥∥ < ε ∀n≥N , ∀l ≥ 1. (2.26)

Taking limit as l→∞ and using (2.24), we have∥∥∥(An)ν� −Aν�

∥∥∥≤ ε ∀n≥N. (2.27)

Since ν∈N is arbitrary, we have, by Proposition 2.5,∥∥An−A∥∥≤ ε ∀ n≥N ; (2.28)

thus ||An−A|| → 0 as n→∞. �

3. Schur algebras over commutative C
∗

-algebras

In this section, we fix a commutative C
∗
-algebra � with identity 1 and the set s(�) of

states on �, that is, the set of positive linear functionals of norm 1 on �. By the Gelfand-
Naimark theorem, � is isometrically ∗-isomorphic to the function algebra C(X) for
some compact Hausdorff space X . We will treat � as C(X). Since s(�) contains all eval-
uation linear functionals ϕx(a)= a(x) for x ∈ X , and a∈�, we have ||a|| = sup{|ϕ(a)| :
ϕ∈ s(�)}, for all a∈�.

As in the scalar case, define the Schur product (also known as Hadamard product, or
entrywise product) of two matrices A = [ajk], B = [bjk] in �(�) (the set of all matrices
over �) by A • B = [ajkbjk]. The product ajkbjk is the algebra product defined in �.
Schur product of this form with entries in the algebra of bounded linear operators on a
Hilbert space was first studied in [6]. For each ϕ∈ s(�), and for each A= [ajk]∈�(�),
ϕ[A]= [ϕ(ajk)] is the scalar matrix obtained by applying ϕ to each entry of A. Let �(�)
denote the set of all matrices A∈�(�) with the property that ϕ[A] defines a bounded
linear transformation from �

p
to �

q
for every ϕ ∈ s(�). Denote by �

#
the Banach space

dual of � (the space of bounded linear functionals on �). Since each f ∈�
#

is a linear
combination of at most four states (see [5, Corollary 4.3.7, page 260]), it then follows
from Theorem 2.1 that

sup
{∥∥ϕ[A]

∥∥ : ϕ∈ s(�)
}
<∞ (3.1)
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(where the norm ||ϕ[A]|| is the operator norm of ϕ[A] as an element in �(�
p
,�

q
)). Define

the norm of A∈�(�) by ||A|| = sup{||ϕ[A]|| : ϕ∈ s(�)}.
The following proposition follows immediately from Theorem 2.2.

Proposition 3.1. For a commutative C
∗
-algebra � with state space s(�), �(�) is a Ba-

nach space under the norm || · || and the usual addition and scalar multiplication.

We do not know, however, whether �(�) is a Banach algebra under the Schur multi-
plication operation.

We now turn our attention to functional analog of Schur r-algebras. As before, we
fix a commutative C

∗
-algebra � with the set s(�) of states. For each real number r ≥ 1,

A= [ajk]∈�(�), denote by A
[r] = [|ajk|r ], where |x| = √x∗x for x ∈�. For ϕ∈ s(�),

denote by ϕ[A
[r]

] := [ϕ(|ajk|r )]. Let �
r
(�) denote the set of all matrices A∈�(�) such

that ϕ[A
[r]

] ∈�(�
p
,�

q
), that is, the numerical matrix ϕ[A

[r]
] defines a bounded linear

transformation from �
p

to �
q

for every ϕ∈ s(�).
We show that for each A∈�

r
(�),

||A|| := |||A|||p,q,r := sup
{∥∥∥ϕ[A[r]

]∥∥∥1/r

: ϕ∈ s(�)
}
<∞, (3.2)

and that this is indeed a norm on �
r
(�). Furthermore, we show that �

r
(�) is in fact a

Banach algebra under the Schur multiplication and this norm. As a suitable adaptation
of the argument used in the proof of Proposition 2.3, we have the following.

Proposition 3.2. Let A∈�
r
(�). Then ||An� || ↗ ||A|| as n→∞.

We also need this simple observation.

Lemma 3.3 (Minkowski’s inequality for linear functionals). Let ϕ∈ s(�). Then

[
ϕ
(|a+ b|r)]1/r ≤ [ϕ(|a|r)]1/r

+
[
ϕ
(|b|r)]1/r ∀a,b ∈�. (3.3)

Proof. Since �= C(X) for some compact Hausdorff space X , the given ϕ∈ s(�) has an
integral representation ϕ(a) = ∫X adµϕ for all a ∈ � and some measure µϕ on X . The
Minkowski inequality for µϕ is exactly the asserted inequality. �

Theorem 3.4. The function || · || defined in (3.2) above is a norm on �
r
(�); and �

r
(�) is

a Banach algebra under the Schur product operation and this norm.

Proof. Let A= [ajk]∈�
r
(�). Since each f ∈�

#
is a linear combination of at most four

states, the map f �→ f [A
[r]

] is a linear transformation from �
#

to �(�
p
,�

q
). Using argu-

ments similar to that used in the proof of Theorem 2.1, we have

sup
{∥∥∥ϕ[A[r]]∥∥∥ : ϕ∈ s(�)

}
<∞. (3.4)

Therefore, the expression (3.2) indeed defines a function on �
r
(�).
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To see that (3.2) indeed defines a norm, let A = [ajk], B = [bjk] ∈ �
r
(�). Then

ϕ[A
[r]

]
[1/r] = [(ϕ(|ajk|r ))

1/r
]∈�

r
for all ϕ∈ s(�). Using the norm on �

r
, we have

∥∥∥ϕ[(A+B)
[r]
]∥∥∥1/r

=
∥∥∥[((ϕ(∣∣ajk + bjk

∣∣r))1/r)r]∥∥∥1/r

≤
∥∥∥[((ϕ(∣∣ajk∣∣r))1/r

+
(
ϕ
(∣∣bjk∣∣r))1/r)r]∥∥∥1/r

(
by Lemmas 1.3 and 3.3

)
≤ ∥∥[ϕ(|ajk|r)]∥∥1/r

+
∥∥[ϕ(|bjk|r)]∥∥1/r

(by triangle inequality for the norm on �
r
)

≤ ||A||+ ||B||.

(3.5)

Since this is true for all ϕ∈ s(�), we have ||A+B|| ≤ ||A||+ ||B||.
For the completeness, pick a Cauchy sequence {A(n) = [a

(n)

jk]} in �
r
(�). For each ϕ ∈

s(�),

ϕ
(∣∣∣a(n)

jk − a
(m)

jk

∣∣∣r)1/r

≤
∥∥∥∥ϕ[(A(n) −A(m)

)[r]]∥∥∥∥1/r

≤ ∥∥A(n) −A(m)∥∥−→ 0. (3.6)

Since ||a|| = supϕ∈s(�) |ϕ(a)| for all a∈�,

∥∥∥a(n)

jk − a
(m)

jk

∥∥∥−→ 0 as n,m−→∞. (3.7)

Since � is complete, there is an ajk ∈� such that a
(n)

jk → ajk. Let A= [ajk]. We show that

A∈�
r
(�) and A

(n) → A.
For a fixed ν∈N, since ϕ(|a(n)

jk − ajk|r )≤ ||a
(n)

jk − ajk||r for all ϕ∈ s(�) and all ( j,k)∈
N×N, we have, by Lemma 1.3,

∥∥∥A(n)

ν� −Aν�

∥∥∥≤ ∥∥∥[∥∥∥a(n)

jk − ajk
∥∥∥r]

1≤ j,k≤ν

∥∥∥1/r

−→ 0 as n−→∞. (3.8)

Let ε > 0. There is an N such that ||A(n) −A(m)|| < ε for all n,m ≥ N . Then, for a fixed
ν∈N, by Proposition 3.2,

∥∥∥A(n)

ν� −A
(m)

ν�

∥∥∥= ∥∥∥(A(n) −A(m)
)

ν�

∥∥∥≤ ∥∥A(n) −A(m)∥∥ < ε ∀m,n≥N. (3.9)

Taking limit as m→∞, we have ||A(n)

ν� −Aν� || ≤ ε for all n≥N . Since this is true for all ν∈
N, we have, by Proposition 3.2, ||A(n) −A|| ≤ ε for all n ≥ N . Thus ||A|| ≤ ||A−A(N)||+
||A(N)|| ≤ ε+ ||A(N)|| <∞, and hence A∈�

r
(�), and also A

(n) → A.
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To see the submultiplicativity of the norm, let A,B ∈ �
r
(�); and let ϕ ∈ s(�). Then

ϕ[A
[r]

],ϕ[B
[r]

]∈�(�
p
,�

q
). For each ( j,k),

∣∣ajkbjk∣∣r = ∣∣ajk∣∣r∣∣bjk∣∣r ≤ ∥∥ajk∥∥r∣∣bjk∣∣r ≤ ∥∥A∥∥r∣∣bjk∣∣r . (3.10)

Thus

ϕ
(∣∣ajkbjk∣∣r)= ϕ(∣∣ajk∣∣r∣∣bjk∣∣r)≤ ∥∥A∥∥r ϕ(∣∣bjk∣∣r). (3.11)

Therefore, by Lemma 1.3,

∥∥∥ϕ[(A•B)
[r]
]∥∥∥1/r

= ∥∥[ϕ(∣∣ajkbjk∣∣r)]∥∥1/r ≤ ∥∥[∥∥A∥∥r ϕ(|bjk|r)]∥∥1/r

p,q

= ||A||
∥∥∥ϕ[B[r]

]∥∥∥1/r

p,q
≤ ||A||||B||.

(3.12)

Since ϕ∈ s(�) is arbitrary, A•B ∈�
r
(�) and

||A•B|| ≤ ||A||||B||. (3.13)

This completes the proof. �

The following simple observation will be used to prove a Hölder inequality for the
norm ||| · |||p,q,r .

Lemma 3.5 (Hölder’s inequality for positive linear functionals). Let a,b ∈�. Then, for
each ϕ∈ s(�), r ∈ (1,∞), and r

∗
satisfying 1/r + 1/r

∗ = 1,

ϕ
(|ab|)≤ [ϕ(|a|r)]1/r[

ϕ
(
|b|r

∗ )]1/(r
∗

)

. (3.14)

Proof. As in the proof of Lemma 3.3, ϕ has an integral representation, and the asserted
inequality is just the usual Hölder inequality, written in functional form. �

Theorem 3.6 (Hölder’s inequality). Let A= [ajk] and B = [bjk] be matrices with entries
in �. Then, for r ∈ (1,∞) and r

∗
satisfying 1/r + 1/r

∗ = 1,

|||A•B|||p,q,1 ≤ |||A|||p,q,r · |||B|||p,q,r∗ . (3.15)

Note that this inequality should be interpreted with the conventions 0 ·∞ = 0, and
a ·∞=∞ for a∈ (0,∞).
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Proof. If the right-hand side is ∞, there is nothing to prove. So suppose that both fac-
tors on the right are finite and nonzero. Let ϕ ∈ s(�) and ξ = {ξk}∞k=1 ∈ �

p
. Write |ξ| =

{|ξk|}∞k=1. Using Lemma 3.5 and the usual Hölder inequality, we have

∥∥∥(ϕ[(A•B)
[1]
])
ξ
∥∥∥
q

=
( ∞∑

j=1

∣∣∣∣∣
∞∑
k=1

ϕ
(∣∣ajkbjk∣∣)ξk

∣∣∣∣∣
q)1/q

≤
( ∞∑

j=1

[ ∞∑
k=1

ϕ
(∣∣ajkbjk∣∣)∣∣ξk∣∣

]q)1/q

≤
( ∞∑

j=1

( ∞∑
k=1

([
ϕ
(∣∣ajk∣∣r)]1/r∣∣ξk∣∣1/r)([

ϕ
(∣∣bjk∣∣r∗ )]1/(r

∗
)∣∣ξk∣∣1/(r

∗
)
))q)1/q

(by Lemma 3.5)

≤
( ∞∑

j=1

[ ∞∑
k=1

[
ϕ
(∣∣ajk∣∣r)]∣∣ξk∣∣

]q/r[ ∞∑
k=1

[
ϕ
(∣∣bjk∣∣r∗ )

]∣∣ξk∣∣
]q/(r

∗
))1/q

≤
( ∞∑

j=1

[ ∞∑
k=1

ϕ
(∣∣ajk∣∣r)∣∣ξk∣∣

]q)1/(qr)( ∞∑
j=1

[ ∞∑
k=1

ϕ
(∣∣bjk∣∣r∗ )∣∣ξk∣∣

]q)1/(qr
∗

)

=
∥∥∥ϕ[A[r]

]
|ξ|
∥∥∥1/r

q
·
∥∥∥ϕ[B[r

∗
]
]
|ξ|
∥∥∥1/(r

∗
)

q

≤
∥∥∥ϕ[A[r]

]∥∥∥1/r

p,q
·∥∥(|ξ|)∥∥1/r

p

∥∥∥ϕ[B[r
∗

]
]∥∥∥1/(r

∗
)

p,q
·∥∥(|ξ|)∥∥1/(r

∗
)

p

≤ |||A|||p,q,r|||B|||p,q,r∗ |||ξ|||p = |||A|||p,q,r|||B|||p,q,r∗ ||ξ||p.

(3.16)

Therefore,

∣∣∣∣∣∣ϕ[A•B]
∣∣∣∣∣∣

p,q,1 ≤ |||A|||p,q,r|||B|||p,q,r∗ . (3.17)

Since ϕ∈ s(�) is arbitrary, we have, as asserted,

|||A•B|||p,q,1 ≤ |||A|||p,q,r|||B|||p,q,r∗ . (3.18)

�

Here is an analogue of the relationship between �
p

and its dual space.

Theorem 3.7. Let B = [bjk] be a matrix with entries in � and 1 < r <∞. Then B ∈�
r
(�)

if and only if A•B ∈�
1
(�) for all A∈�

r
∗

(�), where 1/r + 1/r
∗ = 1. Moreover, whenever

applied,

|||B|||p,q,r = sup
{|||A•B|||p,q,1 : A∈�

r
∗

(�), |||A|||p,q,r∗ ≤ 1
}
. (3.19)
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Proof. Sufficiency follows from the preceding Theorem 3.6. For necessity, define Φ :

�
r
∗

(�) → �
1
(�) by Φ(A) = A • B for all A ∈ �

r
∗

(�). We show that the graph of Φ

is closed. Suppose An = [a
(n)

jk]→ A = [ajk] in �
r
∗

(�) and An • B → C = [cjk] in �
1
(�).

Then for all ( j,k),

a
(n)

jk −→ ajk, a
(n)

jkbjk −→ cjk as n−→∞. (3.20)

Therefore, ajkbjk = cjk. Since this is true for all ( j,k), we have the graph of Φ is closed
and Φ is a bounded linear transformation, by the closed graph theorem.

By the same argument, we see also that B
[1] = [|bjk|] has the same property as B, and

B
[1]

defines a bounded linear transformation ΦB[1] from �
r
∗

(�) to �
1
(�). For each n∈

N, (B
[r
∗

]
)n� = [|bjk|r

∗
]n� is in �

1
(�), as it has only finitely many nonzero entries, and

ϕ[(B
[r
∗

]
)

[1]
]= ϕ[B

[r
∗

]
] for all ϕ∈ s(�). Thus

∣∣∣∣∣∣∣∣∣(B[r])
n�

∣∣∣∣∣∣∣∣∣
p,q,1

≤
∣∣∣∣∣∣∣∣∣(B[r−1])

n� •B
[1]
∣∣∣∣∣∣∣∣∣

p,q,1
≤ ∥∥ΦB[1]

∥∥∣∣∣∣∣∣∣∣∣(B[r−1])
n�

∣∣∣∣∣∣∣∣∣
p,q,r∗

. (3.21)

It is just a matter of writing out the definitions to see that ||ΦB[1] || = ||ΦB||, and that

|||(B[r]
)n� |||p,q,1 = |||Bn� |||

r

p,q,r and |||(B[r−1]
)n� |||p,q,r∗ = |||Bn� |||

r/r
∗

p,q,r . Therefore, the preceding
inequality is equivalent to

|||B|||p,q,r ≤
∥∥∥ΦB[1]

∥∥∥= ∥∥ΦB

∥∥ <∞. (3.22)

Thus B ∈�
r
(�). We also have

|||B|||p,q,r ≤ ||Φ|| = sup
{|||A•B|||p,q,1 : A∈�

r
∗

(�), |||A|||p,q,r∗ ≤ 1
}≤ |||B|||p,q,r ,

(3.23)

by Hölder’s inequality, Theorem 3.6. Therefore, all inequalities reduce to equalities. �

Arguments similar to those used in [2] can be used to proof the following.

Proposition 3.8. For 1≤ r < r′ <∞, and � as above, �
r
(�) � �

r′
(�).

Proof. Let A= [ajk]∈�
r
(�). Then for each ( j,k), we have

∥∥ajk∥∥= ∥∥(∣∣ajk∣∣r)∥∥1/r =
(

sup
ϕ∈s(�)

ϕ
(∣∣ajk∣∣r))1/r

≤ |||A|||p,q,r . (3.24)

Choose a suitable constant α, with 0 < α ≤ 1, such that αA has all entries bounded in
norm by 1. Then for r < r′ and ϕ∈ s(�), we have, for each ( j,k)∈N×N,

α
r′
ϕ
(
|ajk|r

′)≤ αr
ϕ
(∣∣ajk∣∣r); (3.25)
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that is, each entry of ϕ[(αA)
[r′]

] is bounded by the corresponding entry of ϕ[(αA)
[r]

].
Thus

α|||A|||p,q,r′ = |||αA|||p,q,r′ ≤ |||αA|||p,q,r = α|||A|||p,q,r . (3.26)

So that |||A|||p,q,r′ ≤ |||A|||p,q,r , and hence �
r
(�) ⊆ �

r′
(�). To see that the inclusion is

proper, we take a sequence {αk} of nonnegative numbers which is in �
r′

but not in �
r

(more explicitly, take αk = [1/k]
1/r

). Then the matrixAwith the first column, the sequence

{(αk)
1/q

1} (1 the identity of �), and all other columns 0 is in �
r′

(�) but not in �
r
(�). �

4. Dual spaces

We consider in this section an analogue of compact and trace-class operators on a Hilbert
space, in the Schur algebras considered in the preceding sections. Analogues of Schatten’s
trace duality theorems will be proved in this setting. Let � be a unital commutative C

∗
-

algebra with the set s(�) of states as in the preceding section. Let �0 be the set of all
infinite matrices with entries in � having only finitely many nonzero entries. Denote by
�

r
(�) the closure in �

r
(�) of �0. That is,

�
r
(�)= {A∈�

r
(�) :∀ε > 0 ∃A0 ∈�0 such that

∥∥A0−A
∥∥ < ε}, (4.1)

where the norm || · || is the norm ||| · |||p,q,r of �
r
(�). With the norm inherited from

�
r
(�), �

r
(�) is a Banach space. We will identify the dual of �

r
(�), in analogy with the

fact that the dual of the compact operators on a Hilbert space is the trace-class operators.
Denote by (��) the space of matrices over the complex field C that are absolutely

summable. This is just the space �
1
(N×N). Therefore, it is a Banach space with the �

1

norm; that is, a matrix S= [s jk] over C is in (��) if and only if

||S||(��) :=
∞∑

j,k=1

∣∣s jk∣∣ <∞. (4.2)

As an analogue of the trace-class operators on a Hilbert space, we consider the space
�(�

r
(�),(��)) defined as follows:

�
(
�

r
(�),(��)

)
:=
{
Φ= [ϕjk] : ϕjk ∈�

#
,
∞∑

j,k=1

∣∣ϕjk(ajk)∣∣ <∞∀A= [ajk]∈�
r
(�)

}
.

(4.3)

Thus a matrix Φ of functionals is in �(�
r
(�),(��)) if and only if it “Schur multiplies”

each matrix in �
r
(�) to a matrix in (��). Each Φ∈�(�

r
(�),(��)) defines a bounded

linear transformation by the Schur multiplication by Φ, that is, by the closed graph theo-
rem, Φ • [ajk]= [ϕjk(ajk)] from the Banach space �

r
(�) to the Banach space (��) is a

bounded linear transformation. Therefore, it has an operator norm

||Φ||�(�r (�),(��)) := sup
{||Φ•A||(��) :A∈�

r
(�), ||A|| ≤ 1

}
. (4.4)
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Theorem 4.1. The space �(�
r
(�),(��)) equipped with the norm defined above is a Ba-

nach space.

Proof. Since �(�
r
(�),(��)) ⊆ �(�

r
(�),(��)), the space of bounded linear trans-

formations from �
r
(�) to (��), it suffices to show that it is closed. To that end, sup-

pose that {Ψn = [ψ
(n)

jk ]} is a sequence in the space �(�
r
(�),(��)) such that Ψn → T ∈

�(�
r
(�),(��)). Then each {ψ (n)

jk }
∞
n=1 is a Cauchy sequence in �

#
, therefore converges to

some ψjk ∈�
#
. Let Ψ= [ψjk]. We show that Ψ= T . Let ε > 0. There is an N such that

∥∥Ψn−Ψn+l
∥∥ < ε ∀n≥N , l ≥ 1. (4.5)

Let A∈�
r
(�); and m∈N. Then∥∥∥[Ψn •A−Ψn+l •A

]
m�

∥∥∥
(��)

=
∥∥∥Ψn •Am� −Ψn+l •Am�

∥∥∥
(��)

≤ ε∥∥Am�
∥∥≤ ε||A|| ∀ n≥N , l ≥ 1.

(4.6)

Taking limits as l→∞, we have

∥∥∥[Ψn •A−Ψ•A]
m�

∥∥∥
(��)

≤ ε||A|| ∀n≥N , ∀A∈�
r
(�). (4.7)

Now as m→∞, we obtain

∥∥Ψn •A−Ψ•A∥∥(��) ≤ ε||A|| ∀n≥N , ∀A∈�
r
(�). (4.8)

So we see that Ψn→Ψ. Therefore, T(A)=Ψ•A for all A∈�
r
(�). �

LetΨ∈ (�
r
(�))

#
. For each ( j,k), define a linear functional on � as follows. For b ∈�,

let Ab, j,k be the matrix whose ( j,k) entry is b and all others 0. Put

ψjk(b)=Ψ
(
Ab, j,k

)
. (4.9)

Then ψjk is a bounded linear functional on �. Put BΨ = [ψjk].
Each matrix Φ= [ϕjk]∈�(�

r
(�),(��)) defines a linear functional

Φ̃(A)=
∞∑

j,k=1

ϕjk
(
ajk
)
, A= [ajk]∈�

r
(�). (4.10)

Theorem 4.2. (1) Let Ψ∈ (�
r
(�))

#
; and let ψjk and BΨ be as defined above. Then

BΨ ∈�
(
�

r
(�),(��)

)
, Ψ− B̃Ψ ∈�

r
(�)

⊥
. (4.11)

(2) The map Ψ �→ BΨ from (�
r
(�))

#
to �(�

r
(�),(��)) is an isometric isomorphism

between (�
r
)

#
and �(�

r
(�),(��)).
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Proof. (1) Let A = [ajk] ∈ �
r
(�). For z ∈ C, let sgn(z) = z/|z| if z �= 0, and sgn(0) = 0.

Let Ā= [sgn(ψjk(ajk))ajk]. Then Ā∈�
r
(�), and for each n,

n∑
j,k=1

∣∣ψjk
(
ajk
)∣∣= ∥∥Ψ(Ān�

)∥∥
(��) ≤ ||Ψ||

∥∥Ān�
∥∥≤ ||Ψ||||Ā|| ≤ ||Ψ||||A||. (4.12)

So

∞∑
j,k=1

∣∣ψjk
(
ajk
)∣∣≤ ||Ψ||||A|| <∞; (4.13)

and BΨ •A∈ (��) for all A∈�
r
(�); that is, BΨ ∈�(�

r
(�),(��)).

For A= [ajk]∈�
r
(�), we have for each n,

B̃Ψ
(
An�
)=Ψ

(
An�
)

(4.14)

by linearity. Since ||An� −A|| → 0 as n→∞, by the continuity of both functionals, we have

B̃Ψ(A)=Ψ(A) ∀ A∈�
r
(�). (4.15)

(2) Let Ψ∈ (�
r
(�))

#
. For each A= [ajk]∈�

r
(�) such that ||A|| ≤ 1,

∣∣Ψ(A)
∣∣= ∣∣B̃Ψ(A)

∣∣= ∣∣∣∣∣
∞∑

j,k=1

ψjk
(
ajk
)∣∣∣∣∣≤ ∥∥B̃Ψ∥∥�(�r (�),(��)), (4.16)

by the definition of the norm on �(�
r
(�),(��)). Therefore,

||Ψ|| ≤ ∥∥BΨ∥∥�(�r (�),(��)). (4.17)

Let ε > 0. There is an A= [ajk]∈�
r
(�) such that ||A|| ≤ 1 and

∥∥BΨ∥∥�(�r (�),(��))−
ε
3
<

∞∑
j,k=1

∣∣ψjk
(
ajk
)∣∣. (4.18)

By the absolute convergence of the series, there is an N such that

N∑
j,k=1

∣∣ψjk
(
ajk
)∣∣ > ∞∑

j,k=1

∣∣ψjk
(
ajk
)∣∣− ε

3
>
∥∥BΨ∥∥�(�r (�),(��))

−2ε
3

. (4.19)

Let Â be the matrix whose ( j,k) entry is (sgn(ψjk(ajk))ajk) for j,k = 1,2, . . . ,N and all

others 0. Then Â∈�
r
(�), ||̂||A≤ 1, and

Ψ()̂A=
N∑

j,k=1

∣∣ψjk
(
ajk
)∣∣ > ∥∥BΨ∥∥�(�r (�),(��))

−2ε
3

. (4.20)
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Therefore, we have

||Ψ|| > ∥∥BΨ∥∥�(�r (�),(��))− ε. (4.21)

Since ε is arbitrary, we have equality of the norms. �

A linear functional Φ on �
r
(�) is singular if Φ(A)= 0 for all A∈�

r
(�). Recall that

for each Ψ ∈�
r
(�)

#
, there corresponds a bounded linear functional B̃Ψ on �

r
(�). De-

note

�
r
(�)

#

a := {B̃Ψ : Ψ∈�
r
(�)

#}
. (4.22)

Theorem 4.3. The set �
r
(�)

#

s consisting of all singular linear functionals together with
the zero functional on �

r
(�) is a nontrivial closed subspace of the dual �

r
(�)

#
of �

r
(�).

Furthermore,

�
r
(�)

# =�
r
(�)

#

a⊕�
r
(�)

#

s . (4.23)

Proof. Since �
r
(�) is a nontrivial closed subspace of �

r
(�), the Hahn-Banach theorem

ensures that �
r
(�)

#

s is a nonempty proper subset of �
r
(�)

#
.

The preceding theorem shows that �
r
(�)

# = �
r
(�)

#

a + �
r
(�)

#

s . Let Ψ = [ψjk] ∈
�

r
(�)

#

a

⋂
�

r
(�)

#

s . Then Ψ(K) = 0 for all K ∈ �
r
(�). Let b ∈ �; and let Ab, j,k be the

matrix whose ( j,k) entry is b and all others 0. Then for each ( j,k),

ψjk(b)=Ψ
(
Ab, j,k

)= 0. (4.24)

Therefore, Ψ= 0. �

Since � may not be the dual of any normed space, we cannot expect �
r
(�) to be a

dual space. For if it were, then it would not be hard to see that � must be a dual space as
well. We therefore assume, from this point on, that � is the dual of some Banach space
�#. We can then consider the space

�
0

#

(
�

r
(�),(��)

)={B = [bjk] : bjk ∈�#,
∞∑

j,k=1

∣∣ajk(bjk)∣∣ <∞, ∀A= [ajk]∈�
r
(�)

}
(4.25)

with the norm

||B|| = sup

{∣∣∣∣∣
∞∑

j,k=1

ajk
(
bjk
)∣∣∣∣∣ : A= [ajk]∈�

r
(�),|||A|||p,q,r ≤ 1

}
, (4.26)

for B = [bjk]∈�
0

#(�
r
(�),(��)).

Arguments similar to those used in the proof of Theorem 4.1 can be used to prove that
�

0

#(�
r
(�),(��)) is also a Banach space.

Since the predual of B(�
2
) is the trace-class operators, which is the class of matrices that

are the trace norm limits of their upper left-hand corner truncations, we define, analo-
gously, the space �#(�

r
(�),(�S)) as the space of all matrices B ∈�

0

#(�
r
(�),(�B)) such



P. Chaisuriya and S.-C. Ong 2191

that ||B−B
n� || → 0 as n→∞. It is not hard to see that �#(�

r
(�),(�S)) is a closed sub-

space of �
0

#(�
r
(�),(�S)) under the norm defined above. For brevity of notation, denote

by � the space �#(�
r
(�),(�S)) with the induced norm. Then � is a Banach space. We

show that �
r
(�) is the dual of �.

Theorem 4.4. Under the standing assumption that � has a predual �#, and the notations
defined above, the dual of � is isometrically isomorphic to �

r
(�) (as Banach spaces).

Proof. By the definition of �, it is clear that eachA= [ajk]∈�
r
(�) can be used to define

a bounded linear functional φA on � as

φA(M)=
∞∑

j,k=1

ajk
(
mjk
) ∀M = [mjk

]∈�. (4.27)

Notice that by the definition (4.26) of the norm on �, we also have |φA(M)| ≤ ||A||||M||.
Thus ||φA|| ≤ ||A||. Therefore, �

r
(�) can be regarded as a subspace of �

#
. Denote by

�1 the closed unit ball of �
r
(�). Then �1 separates points in �. We show that �1 is

complete in the weak
∗

topology, σ , it inherits from �
#
. To this end, let {Aα = [a

α

jk]}α∈Λ
be a σ-Cauchy net in �1. We show that for each (µ,ν)∈N×N, the net of the (µ,ν)-entries
{aαµν} of {Aα} is a weak

∗
Cauchy net in �. Let m∈�#. Choose M to be the matrix whose

(µ,ν)-entry is m and zero for all others. Then we see that M ∈� and {φ
A
α (M)= aαµν(m)}

is a Cauchy net in C. Thus {aαµν}α is a weak
∗

Cauchy net in �. Since ||Aα|| ≤ 1 for all α
and ||aαµν|| ≤ ||Aα||, {aαµν}α∈Λ is a weak

∗
Cauchy net in the closed unit ball of �. Since

the closed unit ball is weak
∗

compact, by the Alaoglu theorem, there is aµν ∈� such that
a
α

µν → aµν in the weak
∗

topology. Let A= [ajk]. We show that A∈�1 and that A
α → A in

the weak
∗

topology of �
#

induced on �1. Let ε > 0; and let M = [mjk]∈�. There is an
α0 such that |φ

A
α (M)−φ

A
β (M)| < ε/2 for all α,β � α0. By definition of �, there is an N

such that ||M−M
n� || < ε/4 for all n≥N . Thus, for n≥N and α,β � α0, we have∣∣∣((φ(Aα )

)
n� −
(
φ(Aβ )

)
n�

)
(M)

∣∣∣= ∣∣∣(φ
A
α −φ

A
β

)(
M

n�

)∣∣∣
≤
∣∣∣(φ

A
α −φAβ

)(
M

n� −M
)∣∣∣+

∣∣∣(φ
A
α −φAβ

)
(M)

∣∣∣
<
∥∥φ

A
α −φAβ

∥∥∥∥M
n� −M

∥∥+
ε
2

≤ ∥∥Aα −Aβ∥∥ε
4

+
ε
2
≤ ε.

(4.28)

For a fixed n≥N , (A
α
)
n� → A

n� in the weak
∗

topology σ . Taking limit in β, we have∣∣∣((φ(Aα )
)
n� −

(
φA
)
n�

)
(M)

∣∣∣≤ ε ∀n≥ n0, α� α0. (4.29)

Since this is true for all n≥N , we may take the limit as n→∞ to obtain∣∣(φ
A
α −φA

)
(M)

∣∣≤ ε ∀α� α0. (4.30)

This shows that A
α → A in the weak

∗
topology, and hence �1 is σ-complete.
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We claim that the norm on �
#

is the same as that on �
r
(�), and �

# =�
r
(�). For each

A∈�1, ||φA|| ≤ ||A|| ≤ 1. Thus �1 is contained in the closed unit ball of �
#
. Suppose this

inclusion is proper. Then there is A0 ∈�
#

with ||A0|| ≤ 1 such that A0 �∈�1. Since �1 is
weak

∗
closed and convex, by [3, Theorem V 2.10, page 417], there is a weak

∗
continuous

linear functional on �
#
, that is, an element M ∈�, such that

	e
(
φM(A)

)≤ c− ε < c ≤	e
(
φM
(
A0
)) ∀A∈�1, (4.31)

for some constants c and ε > 0.
For each A ∈ �1, let Ã = ζA, where ζ ∈ C is chosen such that |ζ| = 1 and φM(Ã) =

|φM(A)|. Since Ã∈�1 for each A∈�1, we have, by the definition (4.26) of the norm on
�,

||M|| = sup
{∣∣φM(A)

∣∣=	e
(
φM
(
Ã
))

: A∈�1
}≤ c− ε < c ≤	e

(
φM(A0)

)≤ ||M||,
(4.32)

a contradiction. Therefore, �1 is the unit ball of �
#
.

Let A∈�
r
(�). As a linear functional φA on �,∥∥φA∥∥= sup

{∣∣φA(M)
∣∣ :M ∈�,||M|| ≤ 1

}≤ ||A||. (4.33)

If ||φA|| = 1, then A is in the unit ball of �
#
, which is just �1. Thus ||A|| ≤ 1 ≤ ||φA|| ≤

||A||, and hence ||A|| = ||φA||. �
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