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We have proved a theorem on |T, p,|x summability methods. This theorem includes a
known theorem.
1. Introduction

Let > a, be a given infinite series with partial sums (s, ). By (w3), we denote the nth Cesaro
means of order §(8 > —1) of the sequence (s,). The series > a,, is said to be summable
|C, 01k, k = 1, if (see [3])

(o)
an_l|w,‘2—w2,1|k<00. (1.1)
n=1

In the special case for § = 1, |C, 8|, summability reduces to |C, 1|, summability.
Let (p,) be a sequence of positive numbers such that

P,,:va—»oo as n — oo, (Poi=p_i=0,i=1). (1.2)
v=0

The sequence-to-sequence transformation

1 n
9, = P, Zopvsv (1.3)

defines the sequence (9,) of the (N, p,) means of the sequence (s,), generated by the
sequence of coefficients (p,) (see [4]). The series > a, is said to be summable |N, p, |,

k> 1,if (see [1])

- k-1
S (%) 19, = 9u1] ¥ < . (1.4)
n=1 n

If we take p, = 1 for all values of n, then |N, p,|x summability is the same as |C, 1]k
summability.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:16 (2005) 2517-2522
DOI: 10.1155/JMMS.2005.2517


http://dx.doi.org/10.1155/S0161171205410522

2518  On absolute matrix summability methods

Given a normal matrix T = (£,), we associate two lower semimatrices T = (f,x) and
T = (tux) as follows:

n
fak = Oty mk=0,1,...,
i=k (1.5)

too = too = oo, tak = bnk = En1hs M= 1,2,

It may be noted that T and T are the well-known matrices of series-to-sequence and
series-to-series transformations, respectively. Then, we have

n n
Tu(s) = z LaySy = z Envav)
v=0 v=0

(1.6)
ZTn(s) = z Anvav
v=0
The series >’ ay, is said to be summable | T, p, |k, k = 1, if (see [5])
~ (p k-1
S () |ATA(s)|* < oo, (1.7)
n=1 Pn

In the special case, for t,, = py/Py, | T, pnlr summability is the same as IN, Pnlk summa-
bility.

2. The main result

The object of this paper is to prove the following theorem.

THEOREM 2.1. Letk > 1. Let (s,) be a bounded sequence and suppose that (A,,) is a sequence
such that

k-1

Z(;ﬂ) |tm,| =0(1) asm— oo,
n=0
(2.1)
> AL = asm — oo,
n=0
If
1 n—1
] | Ay(tny) | = O(1)  asn — oo, (2.2)
i y=0

mil g k-1 P k-1
S (p) |Av?m,||tm,|k_l=0((v> |tw|k) as m — oo, (2.3)
n

n=v+1 Py
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F |Z|AA||tW+1| asmn— oo, (2.4)
nn
m+1 k-1

Pn ~ —
> (p_> Bt | [ tan | = O(1)  asm — oo, (2.5)
n=v+1 n

then the series > an\, is summable | T, p, .

Proof. Let (y,) be the T-transform of the series >’ a,A,. Then we have, by (1.6),

Yn =VYn—Yn-1= Z ?nvavlv- (26)

v=0

Since ty = ton, by Abel’s transformation, we get that

n—1
Y, = Z A, (?nv/xv)sv +?nnAn5n
v=0
n—1 (27)
= Z ANy Eyyi18, + Z MAy (Fa) Sy + Sntunn
v=0 v=0
=Y,(1)+Y,(2)+ Y,(3).

Using Minkowski’s inequality, it is sufficient to show that

o k-1
S(B) nmlcs forr-n2a 29
n=1 n

Since (s,) is bounded, when k > 1, applying Holder’s inequality with indices k and k’,
where 1/k + 1/k’ = 1, we have that

S () mor<E ()

Pn pn

k— k

1
{z A Fpen| |sv|}
v=0

A

m+1 Pn k=1p-1 N -1
=O(1)Z P_ z|A/1v||tn,v+l||trm|

n v=0

< L3 z L, ||tm+1|}“

m+1 P k ln 1 1
_ o) (p) S 180 e | ]
v=0

n

(2.9)

m m+1 P k=1 1
z AA| Z (P) |tn,v+1||tnn|

v=0 n=v+1

3

=O(12|AA|— asm — oo,

by virtue of the hypothesis of Theorem 2.1.
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Again using Holder’s inequality, we have

:g(;f:)“m(zn" z(i){z ] |8 m}k

m+1 k’ln—l k 1
1>z(p) S 15 8| £

v=0

Ay 31 t””'}kl

L (2.10)
m+1 P “lp-1 X R 1
:O(I)Z (_n) Z |Av| |Avtnv||tnn|
n=1 Pn v=0
m+1 k=1
P, ~ _
WSS () Ikl Il
n=v+1 p
m o K
—o(1) Y (—) Lt |F=01) asm — o,
v=0 Py
by virtue of the hypothesis of Theorem 2.1.
Finally, we have that
morp \K! m k-1
Z(—") 1Y,3)* Z( ) Lt | ¥ [0 ¥ = 0(1) asm — o, (2.11)
n=1 Pn =
by virtue of the hypothesis of Theorem 2.1.
Therefore, we get that
m [ p k-1
Z (—") |Y,,(r)|k=O(1) as m — oo, forr = 1,2,3. (2.12)
n=1 Pn
This completes the proof of Theorem 2.1. O

3. An application
Now we will prove the following corollary.

CoROLLARY 3.1 (see [2]). Let k > 1. If the sequence (s,) is bounded and (A,) is a sequence
such that

i )L| =0(1) asm— oo,

(3.1)

M§ "u|"o

AL, | =0O(1) asm— oo,

1
—_

n

then the series > ayAy is summable N, py .
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Proof. In Theorem 2.1, let t,,, = p,/P,. Then to prove the corollary, it is sufficient to show
that the conditions of Theorem 2.1 are satisfied.
If tyn = pn/Pp, (2.1) are automatically satisfied.

Since
Av?nv = 2'\nv - /t\n,v+1
= Erw - anl,v - ?n,v+l +zn71,v+l
n - n n—1
Z Z n—1,i = Z tni + Z tnfl,i
i=v i=v i=v+1 i=v+1 (3.2)
=—sz——2pz —sz Zp,
”i*v “i v+l P Limys1
_ _ _Pnpy
PnPn—l ’
we get
- P n—1 p p
Aty | = 2> 2 —0(1) asn — oo. (3.3)
|tnn|1§)~ | PnVZOPPnl
Thus condition (2.2) is satisfied.
Using Ayt and t,,
k-1 k—1 _
S(B) el = S (B) (2
n=v+1 Pn o " n=v+1 Pn PPy \ Py
m+1
pn pv (
=p, _— == 3.4)
p nzz:vﬂ PnPnfl Pv
p k-1
=(—V) Ity |* asm — oo,
Py

condition (2.3) is satisfied.
Since

n n—1
tnv =ty — tn—l,v = Z bni — Z tn—l,i
i=v i=v

u[\/]:

L
P,
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n—1 n—1
1 I P, Pn
A ||t = — AA, | P
|trm|1;)| v||n,v+1| Pn;| v| Vpnpnfl
1 n—1 n—1
=5 > 1AM P, =0(1) > [AL | =0(1) asn— o,
n=1,-9 v=0
(3.5)
and condition (2.4) is satisfied.
Finally,
k-1 k-1 _
s (P) et [ = S (P> Pin(£2)”
v+ =
n=v+1 Pn " " n=v+1 Pn PyPpy \ Py
m+1 (36)
_ pn_ _ _
=P, Z PP =0(1) asm 00,
n=v+1
so condition (2.5) is satisfied.
This completes the proof of the corollary. O
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