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We introduce and discuss the stability of Jungck and Jungck-Mann iterative procedures
for a pair of Jungck-Osilike-type maps on an arbitrary set with values in a metric or linear
metric space.

1. Introduction

Let (X ,d) be a metric space and T : X → X . Several physical problems, expressed as a
fixed point equation Tx = x, are solved by approximating a sequence {xn} ⊂ X generated
by an iterative procedure f (T ,xn). Let the sequence {xn} converge to a fixed point of T .
The iterative procedure f (T ,xn) is considered numerically stable if and only if a sequence
{yn} ⊂ X approximatively close to {xn} converges to the desired solution of the equation
Tx = x. This kind of study in R1 was initiated by Urabe [32] during the middle of the last
century (see also, Collatz [3] and Ortega and Rheinboldt [17]). However, a formal defi-
nition of the stability of general iterative procedures is due to Harder and Hicks [7, 8] (cf.
definition below). Ostrowski [20] appears to be the first to discuss the stability of iterative
procedures on metric spaces. Due to its increasing importance in computational math-
ematics, especially due to the revolution in computer programming, the stability theory
has extensively been studied by various authors (see, e.g., Berinde [1], Czerwik et al. [4],
Istrăţescu [9], Jachymski [11], Matkowski and Singh [15], Osilike [18, 19], Rus et al. [27],
Rhoades [24, 25], and several references of [1, 27]). However, in all these references cited
above, special cases of the following fundamental iterative procedure

xn+1 = f
(
T ,xn

)
, n= 0,1, . . . , (HH)

have been studied. As discussed by Harder [6], Harder and Hicks [7, 8], and Berinde [1],
the study of stability of iterative procedures is both of theoretical and numerical interest.
We introduce the notion of the stability of the iterative procedure (S-HH) (see below) for
a pair of self-maps and develop the theory for this general procedure. Notice that (S-HH)
reduces to (HH) when Y = X and S = id, the identity map on X . It may be of interest
to note that, besides including the Jungck iterations (see below), (S-HH) includes the
well-known Picard, Mann, and a host of other iterative procedures.
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2. Preliminaries

Throughout the paper, let Y be an arbitrary nonempty set and (X ,d) a metric space. Let
S,T : Y → X and T(Y)⊆ S(Y). For any x0 ∈ Y , consider

Sxn+1 = f
(
T ,xn

)
, n= 0,1, . . . . (S-HH)

For Y = X and f (T ,xn) = Txn, the iterative procedure (S-HH) yields the Jungck it-
erations (or J-iterations in brief), namely, Sxn+1 = Txn, n = 0,1, . . . . This procedure was
essentially introduced by Jungck [12], and it becomes the Picard iterative procedure when
S= id, the identity map on X . Jungck [12] showed that the maps S and T satisfying

d(Tx,Ty)≤ kd(Sx,Sy), 0≤ k < 1, (J)

for all x, y ∈ X have a unique common fixed point in complete X , provided that S and T
are commuting, T(X)⊆ S(X), and S is continuous. However, the following significantly
improved version of this result is generally called the Jungck contraction principle.

Theorem JS [30]. Let S,T : Y → X satisfy (J) for all x, y ∈ Y . If T(Y)⊆ S(Y) and S(Y) or
T(Y) is a complete subspace of X , then S and T have a coincidence. Indeed, for any x0 in Y ,
there exists a sequence {xn} in Y such that

(a) Sxn+1 = Txn, n= 0,1, . . . ,
(b) {Sxn} converges to Sz for some z inY , and Sz = Tz, that is, S andT have a coincidence

at z.
Further, if Y = X and S, T commute (just) at z, then S and T have a unique common fixed
point.

A pair of maps S, T satisfying (J) is generally termed as Jungck contraction or J-con-
traction (cf. Singh [30] and Tivari and Singh [31]). We remark that neither Theorem JS
nor any of all the existing generalizations of Jungck’s common fixed point theorem [12]
says nothing about the convergence of {xn} when Y is a metric space or Y = X (see also
[5, 10, 13, 16, 22, 27, 28, 29, 30, 31] and references thereof). Further, if zi ∈ Y are such
that Szi = Tzi, i= 1,2, . . . ,n, then Szj = Tzi, i, j = 1,2, . . . ,n, that is, under the conditions
of Theorem JS, S and T may have many coincidence points, but the coincidence values are
the same (cf. Singh [29]). For various applications of J-iterations to numerical problems,
one may refer to [30] (see also [16]). For practical applications in numerical computa-
tions and other situations, characterization of J-contractivity for real-valued functions
is of practical importance. So, first we present the following result, wherein [a,b] (resp.,
]a,b[) stands for the closed (resp., open) interval and S′x for the derivative of S at x.

Theorem S [30]. Let S,T : [a,b]→ [a,b] be differentiable with Sa �= Sb. Let T′x and S′x
be not both equal to zero for any x ∈ ]a,b[. The pair (S,T) is a J-contraction of [a,b] if and
only if there exists a positive number q < 1 such that |T′y| ≤ q|S′y| for all y ∈ ]a,b[.

Theorem JS, the foregoing discussion, and the fundamental work of Harder and Hicks
[7, 8] motivate the following definition.
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Definition 2.1. Let S,T : Y → X , T(Y) ⊆ S(Y), and z a coincidence point of T and S,
that is, Sz = Tz = p (say). For any x0 ∈ Y , let the sequence {Sxn}, generated by the iter-
ative procedure (S-HH), converge to p. Let {Syn} ⊂ X be an arbitrary sequence, and set
εn = d(Syn+1, f (T , yn)), n= 0,1,2, . . . . Then the iterative procedure f (T ,xn) will be called
(S,T)-stable if and only if limn εn = 0 implies that limn Syn = p.

This definition reduces to that of the stability of iterative procedure (HH) due to
Harder and Hicks [7, 8] when Y = X and S = id. Further, as regards the construction
of the sequences {Sxn} and {xn} under the procedure (S-HH), we may calculate a1 =
f (T ,x0) and then may proceed to solve the equation Sx1 = a1. We remark that if the map
S is not one-one, then we have multiple choices for x1 as we have to find an x1 ∈ S−1a1.
So, one might suspect complications in writing computer programs for solving equations
under the general procedure (S-HH) or, in particular, under the J-iterations (cf. Theorem
JS (a)). The suspicion is blown immediately by the fact that, whatever the choice of x1 (in
S−1a1) is, Sx1 always equals a1. For this kind of computer programs intended to solve nu-
merical problems under J-iterations, one may refer to [30]. However, in actual practice,
the choice of x1 is approximative and Sx1 is not exactly equal to a1. So, in general, instead
of getting an exact sequence {Sxn}, we get an approximative sequence {Syn}, and this is
the main problem that stability plays a crucial role in actual numerical computations.

For several examples discussing the practical aspect and theoretical importance of the
stability when Y = X and S is the identity operator on X in the above definition, one may
refer to Berinde [1] and Harder and Hicks [7, 8].

3. Main results

First, we present a basic result for the stability of J-iterations.

Theorem 3.1. Let S and T be maps on an arbitrary set Y with values in X such that T(Y)⊆
S(Y), and S(Y) or T(Y) is a complete subspace of X . Let z be a coincidence point of T and S,
that is, Sz = Tz = p (say). Let x0 ∈ Y and let the sequence {Sxn}, generated by Sxn+1 = Txn,
n= 0,1, . . . , converge to p. Let {Syn} ⊂ X and define εn = d(Syn+1,Tyn), n= 0,1, . . . . If the
pair (S,T) is a J-contraction, that is, S and T satisfy (J) for all x, y ∈ Y , then

(I) d(p,Syn+1)≤ d(p,Sxn+1) + kn+1d(Sx0,Sy0) +
∑n

i=0 k
n−iεi;

further,
(II) limn Syn = p if and only if limn εn = 0.

Notice that Theorem 3.1 is Theorem 3.4 with a = k and L = 0. However, we give a
blend of the proof of Theorem 3.1.

Proof. By the triangle inequality and the condition (J),

d
(
p,Syn+1

)≤ d
(
p,Sxn+1

)
+ kd

(
Sxn,Syn

)
+ εn

≤ d
(
p,Sxn+1

)
+ k
[
d
(
Txn−1,Tyn−1

)
+d
(
Tyn−1,Syn

)]
+ εn.

(3.1)

Therefore,

d
(
p,Syn+1

)≤ d
(
p,Sxn+1

)
+ k2d

(
Sxn−1,Syn−1

)
+ kεn−1 + εn. (3.2)

This process, when repeated n− 1 times, yields (I).
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To prove (II), first suppose that limn Syn = p. Then,

εn = d
(
Syn+1,Tyn

)
≤ d

(
Syn+1,Sxn+1

)
+d
(
Txn,Tyn

)
≤ d

(
Syn+1,Sxn+1

)
+ kd

(
Sxn,Syn

)−→ 0, as n−→∞.

(3.3)

Now, suppose that limn εn = 0.
Let A denote the lower triangular matrix with entries ani = kn−i. Then, limn ani = 0

for each i and
∑n

i=0 ani = (1− kn+1)/(1− k)→ 1/(1− k) as n→∞. Therefore, A is mul-
tiplicative, that is, for any convergent sequence {sn}, limnA(sn) := {1/(1− k)} limn sn (cf.
Rhoades [25, page 692]). Since limn εn = 0, limn

∑n
i=0 k

n−iεi = 0. Also, limn Sxn = p implies
that limn d(p,Sxn+1)= 0. This completes the proof. �

The following classical result is obtained from Theorem 3.1 with Y = X and S= id.

Corollary 3.2 (Ostrowski [20]). Let (X ,d) be a complete metric space and T : X → X .
Let p ∈ X be a fixed point of T . Let x0 ∈ X and xn+1 = Txn for n= 0,1,2, . . . . Suppose that
{yn} ⊂ X , εn = d(yn+1,Tyn). If T is the Banach contraction on X with contraction constant
k, then

d
(
p, yn+1

)≤ d
(
p,xn+1

)
+ kn+1d

(
x0, y0

)
+

n∑
i=0

kn−iεi. (3.4)

Also, limn yn = p if and only if limn εn = 0.

We remark that deriving an inspiration from Park and Bae [21] and using Corollary
3.2, one may have an alternative proof of Theorem 3.1. We give a sketch of the same.

Another proof. With the notations of Theorem 3.1, let an = Sxn and zn = Syn. Then, xn ∈
S−1an and yn ∈ S−1zn, so that we can write an+1 = Txn ∈ T(S−1an). As a matter of fact,
for every u∈ S(Y), the set T(S−1u) is a singleton. Indeed, for a,b ∈ T(S−1u), there exist
α,β ∈ S−1u such that a= Tα, b= Tβ, and Sα= u= Sβ. Therefore,

d(a,b)= d(Tα,Tβ)≤ kd(Sα,Sβ)= 0=⇒ a= b. (3.5)

Hence, if we define a map F : S(Y)→ T(Y) ⊆ S(Y) such that F(u) = T(S−1u), then F is
well defined. Further, as above, for a∈ T(S−1u) and b ∈ T(S−1v),

d(Fu,Fv)= d(a,b)= d(Tα,Tβ)≤ kd(Sα,Sβ)= kd(u,v). (3.6)

Consequently, F is a Banach contraction. Thus, the procedure (S-HH) can be rewritten
as

an+1 = Fan (3.7)

which is of the form (HH). Moreover,

εn = d
(
Syn+1,Tyn

)= d
(
zn+1,Fzn

)
. (3.8)

All these show that the conclusions of Theorem 3.1 follow from Corollary 3.2. �
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We remark that, following the above construction, one may derive the conclusions (a)
and (b) of Theorem JS from the Banach’s fixed point theorem.

Consider the following conditions for S,T : Y → X , x, y ∈ Y , and for some k ∈ (0,1):
we give a comparison of these conditions;

d(Tx,Ty)≤ kmax

{
d(Sx,Sy),d(Sx,Tx),d(Sy,Ty),

[
d(Sx,Ty) +d(Sy,Tx)

]
2

}
, (S)

d(Tx,Ty)≤ kmax

{
d(Sx,Sy),

[
d(Sx,Tx) +d(Sy,Ty)

]
2

,d(Sx,Ty),d(Sy,Tx)

}
, (R)

d(Tx,Ty)≤ kmax
{
d(Sx,Sy),d(Sx,Tx),d(Sy,Ty),d(Sx,Ty),d(Sy,Tx)

}
, (RDN)

d(Tx,Ty)≤ ad(Sx,Sy) +Ld(Sx,Tx), a∈ (0,1), L≥ 0. (JO)

Proposition 3.3. (i) (J)⇒(S)⇒(RDN); (ii) (J)⇒(R)⇒(RDN); (iii) (S) and (R) are in-
dependent; (iv) (R)⇒(JO); (v) (S) and (JO) are independent; (vi) (RDN) and (JO) are
independent; (vii) reverse implications of (i), (ii), and (iv) are not true.

In view of rigorous comparisons of contracting maps presented by Rhoades [23], it is
easy to see (i), (ii), (iv), and (vii). The condition (JO) with Y = X and S= id is discussed
by Osilike [18], and the same conclusion makes (vi) evident (see also Berinde [1, pages
137 and 153]). Proof of (v) is akin to that of (vi).

Theorem JS with (J) replaced by (R) is true (cf. Singh [29]). We remark that maps S
and T satisfying (JO) need not have a coincidence point. For example, if Y = X = {1,2},
d is the discrete metric, T1 = 2, T2 = 1, and Sx = x for x ∈ X , then (JO) holds for all
x, y ∈ Y = X with a= L= 1/2 (see also Osilike [18] and Berinde [1, page 137]). Further,
the condition (S) was first studied by Singh [28], while (RDN), as a generalization of (S),
was studied independently by Ranganathan [22] and Das and Naik [5]. The stability of
(R) with Y = X and S= id has been studied by Rhoades [25] (see Corollary 3.6 below).
It may be mentioned that (RDN) with Y = X and S= id is the most general contraction
condition due to Ćirić [2] (see [5]). Osilike’s very general stability result [18] is obtained
under the condition (JO) with Y = X and S= id (see Rhoades and Saliga [26, page 204]).

We now present general stability results for maps satisfying (JO).

Theorem 3.4. Let S and T be maps on an arbitrary set Y with values in X such that T(Y)⊆
S(Y), and S(Y) or T(Y) is a complete subspace of X . Let z be a coincidence point of T and
S, that is, Sz = Tz = p (say). Let x0 ∈ Y and the sequence {Sxn}, generated by Sxn+1 = Txn,
n = 0,1, . . . , converge to p. Let {Syn} ⊂ X and define εn = d(Syn+1,Tyn), n = 0,1, . . . . If
(S,T) satisfies (JO) for all x, y ∈ Y , then

(III) d(p,Syn+1)≤ d(p,Sxn+1) +L
∑n

i=0 a
n−id(Sxi,Txi) + an+1d(Sx0,Sy0) +

∑n
i=0 a

n−iεi;
further,

(IV) limn Syn = p if and only if limn εn = 0.
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Proof. It may be completed following the proof of Theorem 3.5. �

Notice that Theorem 3.4 reduces to Theorem 3.1 when L= 0. Also, the general stability
result, given by Osilike [18], is derivable from Theorem 3.4 with Y = X and S= id.

In all that follows, X is a normed linear space and d stands for the metric induced by
the norm of X . Consider the iterative procedure

Sxn+1 =
(
1−αn

)
Sxn +αn f

(
T ,xn

)
, (∗∗∗)

where {αn} satisfies (i) α0=1, (ii) 0≤αn≤1 for n>0, (iii)Σαn=∞, and (iv)
∑n

j=0αj
∏n

i= j+1{1−
αi + aαi} converges.

We will call it Jungck-Mann iterations or simply JM-iterations. Taking Y = X , S= id,
and f (T ,xn)= Txn, (∗∗∗) reduces to the following:

xn+1 =
(
1−αn

)
xn +αnTxn, (M)

with {αn} satisfying (i)–(iv). This process was introduced by Mann [14] and has been
found very useful in approximating solutions of fixed point equations (see, e.g., [1, 24,
25, 26, 27]).

Now, in the next theorem, we prove that the JM-iterative procedure is (S,T)-stable for
maps S and T satisfying (JO).

Theorem 3.5. Let S and T be maps on an arbitrary set Y with values in X such that T(Y)⊆
S(Y), and S(Y) or T(Y) is a complete subspace of X . Let z be a coincidence point of T
and S, that is, Sz = Tz = p (say). Let x0 ∈ Y and the sequence {Sxn}, generated by Sxn+1 =
(1−αn)Sxn +αnTxn, n= 0,1, . . . , with {αn} satisfying (i)–(iv), converge to p. Let {Syn} ⊂ X
and define

εn = d
(
Syn+1,

(
1−αn

)
Syn +αnTyn

)
, n= 0,1, . . . . (3.9)

If the pair (S,T) satisfies (JO) for all x, y ∈ Y , then
(V)

d
(
p,Syn+1

)≤ d
(
p,Sxn+1

)
+L

n∑
j=0

αj

n∏
i= j+1

(
1−αi + aαi

)
d
(
Sxi,Txi

)

+
n∏
i=0

(
1−αi + aαi

)
d
(
Sx0,Sy0

)
+

n∑
j=0

αj

n∏
i= j+1

(
1−αi + aαi

)
εj ,

(3.10)

where the product is 1 when j = n. Further,
(VI) limn Syn = p if and only if limn εn = 0.
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Proof. By the triangle inequality, (∗∗∗) and (JO),

d
(
p,Syn+1

)≤ d
(
p,Sxn+1

)
+d
((

1−αn
)
Sxn +αnTxn,

(
1−αn

)
Syn +αnTyn

)
+d
((

1−αn
)
Syn +αnTyn,Syn+1

)
≤ d

(
p,Sxn+1

)
+
(
1−αn

)
d
(
Sxn,Syn

)
+αnd

(
Txn,Tyn

)
+ εn

≤ d
(
p,Sxn+1

)
+
(
1−αn

)
d
(
Sxn,Syn

)
+αn

[
ad
(
Sxn,Syn

)
+Ld

(
Sxn,Txn

)]
+ εn

≤ d
(
p,Sxn+1

)
+
(
1−αn + aαn

)
d
(
Sxn,Syn

)
+αnLd

(
Sxn,Txn

)
+ εn.

(3.11)

Also,

d
(
Sxn,Syn

)≤ d
((

1−αn−1
)
Sxn−1 +αn−1Txn−1,

(
1−αn−1

)
Syn−1 +αn−1Tyn−1

)
+d
((

1−αn−1
)
Syn−1 +αn−1Tyn−1,Syn

)
≤ (1−αn−1

)
d
(
Sxn−1,Syn−1

)
+αn−1d

(
Txn−1,Tyn−1

)
+ εn−1

≤ (1−αn−1
)
d(Sxn−1,Syn−1

)
+αn−1

[
ad
(
Sxn−1,Syn−1

)
+Ld

(
Sxn−1,Txn−1

)]
+ εn−1

≤ (1−αn−1 + aαn−1
)
d
(
Sxn−1,Syn−1

)
+αn−1Ld

(
Sxn−1,Txn−1

)
+ εn−1.

(3.12)

Therefore,

d
(
p,Syn+1

)≤ d
(
p,Sxn+1

)
+
(
1−αn + aαn

)(
1−αn−1 + aαn−1

)
d
(
Sxn−1,Syn−1

)
+
(
1−αn + aαn

)
αn−1Ld

(
Sxn−1,Txn−1

)
+αnLd

(
Sxn,Txn

)
+
(
1−αn + aαn

)
εn−1 + εn.

(3.13)

This process, when repeated n− 1 times, yields (V).
To prove (VI), suppose that limn Syn = p. Then,

εn = d
(
Syn+1,

(
1−αn

)
Syn +αnTyn

)
≤ d

(
Syn+1, p

)
+
(
1−αn

)
d
(
p,Syn

)
+αnd

(
p,Tyn

)
≤ d

(
Syn+1, p

)
+
(
1−αn

)
d
(
p,Syn

)
+αnd

(
Tp,Tyn

)
≤ d

(
Syn+1, p

)
+
(
1−αn

)
d
(
p,Syn

)
+αn

[
ad
(
Sp,Syn

)
+Ld(Sp,Tp)

]−→ 0, as n−→∞.
(3.14)

Now, suppose that limn εn = 0. Let A denote the lower triangular matrix with entries

bnj = αj

n∏
i= j+1

(
1−αi + aαi

)
. (3.15)

Hence, the condition (iii) implies that this product diverges. Hence, limn bnj = 0 for each
j. Now, (iv) implies that the limit of the row sum exists. Therefore, A is multiplicative.
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Also, limn Sxn = p implies that limn d(Sxn,Txn)= 0. Thus,

lim
n
L

n∑
j=0

αj

n∏
i= j+1

(
1−αi + aαi

)
d
(
Sxi,Txi

)= 0, lim
n

n∑
j=0

αj

n∏
i= j+1

(
1−αi + aαi

)
εj = 0.

(3.16)

This completes the proof. �

The following result may be derived from Theorem 3.5.

Corollary 3.6. In Theorem 3.5 if (JO) is replaced by (R), then (V) and (VI) hold with
a= k and L= k/(1− k).

We remark that Theorems 3.4 and 3.5 extend and unify several stability results of
Harder and Hicks [7, 8], Rhoades [24, 25], and Osilike [18]. In particular, Corollary 3.6
with Y = X and S= id extends several results from [8, 24, 25].
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