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A non-Archimedean antiderivational line analog of the Cauchy-type line integration is
defined and investigated over local fields. Classes of non-Archimedean holomorphic func-
tions are defined and studied. Residues of functions are studied; Laurent series represen-
tations are described. Moreover, non-Archimedean antiderivational analogs of integral
representations of functions and differential forms such as the Cauchy-Green, Martinelli-
Bochner, Leray, Koppelman, and Koppelman-Leray formulas are investigated. Applica-
tions to manifold and operator theories are studied.

1. Introduction

Line (Cauchy) integration is the cornerstone in the complex analysis and integral for-
mulas of functions and differential forms such as the Cauchy-Green, Martinelli-Bochner,
Leray, Koppelman, and Koppelman-Leray formulas play a very important role in it and
in analysis of complex manifolds and the theory of Stein and Kihler manifolds and the
theory of holomorphic functions (see, e.g., [8, 23, 24]). In the non-Archimedean case
there is a not-so-developed analog of complex analysis. There are few works devoted to
non-Archimedean holomorphic functions over the complex non-Archimedean field Cp,
and the Levi-Civita fields, which are not locally compact (see [2, 11] and the references
therein). In those works M. M. Vishik and M. Berz have obtained analogs of residues and
the Cauchy formula, but the integrals that they have used were of combinatorial-algebraic
nature and they have operated with power series mainly for their analogs of holomorphic
functions. On the other hand, there is no measure equivalent to the Haar measure on such
nonlocally compact fields because of the Weil [29] theorem stating that the existence of
such nontrivial measure on a topological group implies its local compactness. This pa-
per is devoted to other non-Archimedean analogs of integral representation theorems
that were not yet considered by other authors. Moreover, this paper operates with locally
compact non-Archimedean fields of characteristic zero (local fields) and the correspond-
ing analogs of complex planes. Apart from the classical case in the non-Archimedean case
there is no indefinite integral. Antiderivation operators by Schikhof [22] are used instead.
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It is necessary to note that this paper considers not only manifolds treated by the rigid
geometry but also much wider classes continuing the previous work [19]. The existence
of an exponential mapping for these manifolds is proved. A rigid non-Archimedean ge-
ometry serves mainly the needs of the cohomology theory on such manifolds, but it
is too restrictive and operates with narrow classes of analytic functions [7]. It was in-
troduced at the beginning of the sixties of the 20th century. Few years later on wider
classes of functions were investigated by Schikhof [22]. In this paper, classes of functions
and antiderivation operators by Schikhof and their generalizations from [14, 15, 16] are
used.

Section 2 is devoted to the definition and investigations of the non-Archimedean ana-
logs of the line integration over local fields. Classes of non-Archimedean holomorphic
functions are defined and studied. For this specific non-Archimedean geometry defini-
tions and theorems are given (see also definitions and notationsin [13, 14, 15, 16, 18, 19]).
It is necessary to note that definitions, formulations of theorems, propositions, and so
forth. and their proofs differ substantially from the classical case (over C). Residues of
functions are studied and Laurent series representations are described. In Section 3, non-
Archimedean antiderivational analogs of integral representations of functions and dif-
ferential forms such as the Cauchy-Green, Martinelli-Bochner, Leray, Koppelman, and
Koppelman-Leray formulas are investigated. These studies are accomplished on domains
in finite-dimensional Banach spaces over local fields and also on manifolds over local
fields. All results of this paper are obtained for the first time. Finally applications of the
obtained results to the theory of non-Archimedean manifolds and linear operators in
non-Archimedean Banach spaces are outlined. In works of Vishik (see [11] and the refer-
ences therein) the theory of non-Archimedean (Krasner) analytic operators with compact
spectra in Cp, was developed. In this paper, operators may have noncompact spectra in a
field L such that Q, C L (maybe also L > Cp, and L # C},) continuing the investigation of
[12].

2. Line antiderivation over local fields

To avoid misunderstandings we first present our specific definitions.

2.1. Notation and remarks. Let K denote a local field, that is, a finite algebraic extension
of the field Qp of p-adic numbers with a norm extending that of Q, [30]. Denote by
Cp the field of complex numbers with the norm extending that of Q, [10]. If i € K,
take & € C;, \ K such that there exists 7 € N with o € K, where 1 is a minimal natural
number, m = m(a), i:= (—1)2. If i ¢ K, take a = i. Denote by K(«) a local field which is
the extension of K with the help of a.
Suppose U is a clopen compact perfect (i.e., dense in itself) subset in K and yo := 0 is
its approximation of the identity: there is a sequence of maps 0;: U — U, where 0 <] € Z,
such that
(i) o9 is constant;
(ii) 0700, = 0,007 = 0, for each [ > n;
(iii) there exists a constant 0 < p < 1 such that for each x, y € U the inequality |x —
y| < p" implies 0,,(x) = 0,(y);
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(iv) lou(x) — x| < p" for each integer n > 0. Consider spaces C"(U,L) of all n-times
continuously differentiable in the sense of difference quotients functions f : U —
L, where L is a field containing K with the multiplicative norm | - |, which is the
extension of the multiplicative norm | - | in K. Then there exists an antideriva-

tion
yP": C"(U,L) - C*(U,L) (2.1)
given by the formula
o n—1 P j+1
9 () (x41 — x1)
uP"f(x) =D > . : (2.2)
10 j=0 (j+1)!

where x; := 01(x), x € U, n > 1 (see [22, Section 80]). Formula (2.2) shows that if yP" is
defined on C"~!(U,K), then it is defined on C"~' (U, Y) for each field L which is complete
relative to its norm such that K C L and a Banach space Y over L. From C"(U,Y) C
C"1(U,Y) for each o0 = m = n € N, it follows that there exists a restriction yP"|cm :
C™(U,Y) — C"(U,Y) which is the L-linear operator for each m > n— 1.

Since P" is the L-linear continuous operator from C"~! into C", then there exists the
L-linear space pCj (U, Y) := P"(C""(U,Y)), putting pC"(U,Y) := pC3(U,Y) & Y, where
n>1, Y is a Banach space over L. For a clopen subset Q) in (K& aK)™ such that Q C
U™ x U™ consider the antiderivation oP” f(z) as the restriction of ymyxy»P" f(2z) on Q,

oP" f(2) := ymxunP" o f (2) = umxumP" f(2)x0(2), (2.3)

where
unxunP" f(z) :=y Py, - - - uPy uP} -+ -uP) f(2), (2.4)

Xa(z) denotes the characteristic function of Q, ya(z) = 1 for each z € Q, ya(z) = 0 for
eachze K\ Q, z=(x,9), x,y € U" CK", x = (X1,...,Xm)> X1,...,xXm € K, and uP},
means the antiderivation by the variable x;. This is correct, since each f € COn-1(Q L) :
=C((0,n—1), Q — L) (see [15, Section 1.2.4] and [16]) has a C®"D_extension on
U™ x U™, for example, f|ymxymq = 0. This means that ym,y=P" f(z) is the antideriva-
tion defined with the help of approximation of the unity on U™ x U™ such that ymyymo =
(UU,...,UU).

The condition of compactness of Q) is not very restrictive, since each locally compact
subset in (K @ aK)™ has a one-point (Alexandroff) compactification which is totally dis-
connected and hence homeomorphic to a clopen subset in (K & aK)™ (see [5, Section 3.5
and Theorem 6.2.16] about universality of the Cantor cube). If p(z,22) := |21 — 22| is the
metric in (K@ aK)™, then the metric p’(z1,22) := p(21,22)/[1 + p(21,22)] has the exten-
sion on the one-point compactification A(K ® aK)™ := (K® aK)™ U {A}, where A is a
singleton. If Y is a metric space with a metric p, then B(Y,y,r):={z€ Y :p(z,y) <r}
denotes the ball of radius > 0 and containing a point y € Y.
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2.2. Notes and definitions.

2.2.1. For a local field K there exists a prime p such that K is a finite algebraic exten-
sion of Qp. In view of [30, Theorems 1.1 and 4.6 and Proposition 4.4] there exists a
prime element 77 € K such that P = 7R = R, R/P is a finite field Fyn consisting of p”"
elements for some n € N [30], modx (7) := ¢! and I'x := modk(K), where modg is the
modular function of K associated with the nonnegative Haar measure ¢ on K such that
p(xS) = modk (x)u(S) for each 0 # x € K, modk(0) := 0 and each Borel subset S in K
with u(S) < o0, P:= {x € K: |x| < 1}, R:= B(K,0,1). Then each x € K can be written
in the form x = >, x;7!, where x; € {0,01,...,0pn 1}, miny 4l =: —ordk(x) > —o0, 6y + P,
01 +P,...,0, 1 + Pis the disjoint covering of R, 6 := 0. Consider in K the linear ordering
alb if ax = by,...,a;s = bs, as11 < bsy1, where a,b € K, by our definition 6; < 8, for each
s < v, k:= min(ordg(a),ordk(b)). In B(K,0,1) the largest element relative to such linear
ordering is f:= X% O(pr—1)7! = O(pr_1y/(1 — 7).

Although this linear ordering is preserved neither by additive nor by multiplicative
structures of K, it is useful (see, e.g., [26, 27] and [22, Section 62]).

2.2.2. Letv,...,vx € K(a)™ such that vectors v; — vy,..., vk — vy are K-linearly indepen-
dent, then the subset s:= [vp,...,vk] :={z€ K(@)":z=agvo+ -+ +apv; ao+ -+
ar = 1; ag,...,ar € B(K,0,1)} is called the simplex of dimension k over K, k = dimgs.
A polyhedron P is by our definition the union of a locally finite family ¥p of simplexes.
For compact P a family ¥p can be chosen finite. An oriented k-dimensional simplex is
a simplex together with a class of linear orderings of its vertices vy, ..., vk. Two linear or-
derings are equivalent if they differ in an even transposition of vertices. For a simplicial
complex § let C,(S) be an Abelian group generated by simplices s7 of dimension g over
K and relations s +s1 = 0, if s? and s? are differently oriented simplices (see the real case
in [25, Chapter 4]). Then there exists the homomorphism 9, : C;(S) — C4-1(S) such that
0q[Vo5...,vq] 1= Z?ZO(_I)I[VO,...,Vl_l,V]Jrl,...,Vq] and 9dy[vp,...,v4] is called the oriented
K-boundary of s1.

2.2.3. A clopen compact subset Q in (K @ aK)™ is totally disconnected and its topological
boundary is empty. Nevertheless, using the following affine construction it is possible
to introduce convention about certain curves and boundaries which will serve for the
antiderivation operators.

Let Q be a locally K-convex subset in K(«a)™ for which there exists a sequence ,, of
polyhedra with Q, C Qg4 for each n € N, Q = (U, Qn), where cl(S) denotes the clo-
sure of a subset S in K(a)™. Suppose each (), is the union of simplices s; , with vertices

vé,n,...,v{(’n, j=1,...,b(n) € N; moreover, dimk(s;, N'sj ) <k for each j # j" and each

n, where k > 0 is fixed. Then define the oriented K-border 0Q),, := ZN(— 1)! [vé’n,. . Vljfun

vljﬂ,n,...,v,](,n]. Consider Q, for each n such that if dimK(lsj)n N ij,") = k — 1 for some j #

: j j j j j j’ j’ J’
J’s then sju 0 sin = Vo e Vi Vigie s Vi) = [Vose Vi 1o Vi 1w > Vi) and

(I-1") is odd. For each n choose a set of vertices generating (), of minimal cardinality
and such that the sequence {0Q), : n} converges relative to the distance function d(S,B) :=
max(sup,cgp(x,B),sup,cpp(b,S)), where p(x,B) := infpepp(x,b) and p(x,b) := |x — b|.
Then by our definition 0Q) := lim,,— . 0Q,.
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Evidently, each clopen compact subset Q has such decomposition into simplices and
the described 0€), since Q is the finite union of balls, but for two balls B; and B, in
(Ko aK)™ either By C B, or B, C B or By N B, = & due to the ultrametric inequality
and each ball B has such decomposition into simplices as described above.

2.2.4. We say that a subset Q in A(K ® aK)™ encompasses a point z if z € Q.

For the unit ball relative to the metric p(z;,2;) := |z; — 23], let its non-Archimedean
canonical oriented K-border d.B, (K ® aK,0,1) be given by the set [(—f3,—f), (5, —f)] U
(B, =B), (B BT U LB B, (=B8] U [(=B,5),(=B,—pB)], where [a,b] := {zec Ko aK:z =
(1 —t/B)a+ (t/B)b, t € B(K,0,1)} for each a,b € K& aK. Then d.B(K® aK)™,0,1) :=
UY, B(K® aK,0,1)"! x 9.B(K @ aK,0,1) x B(K® aK,0,1)", 9.B(K ® aK)", z,q*) :=
z+m %9, B((K® aK)™,0,1). This is the particular case of Section 2.2.3.

A continuous mapping y : B(K,0,1) — A(K(«))™ is called a path. We say that y en-
compasses a point z € A(K(«))™ if

(1) z € Q, where 0Q = y, dimg Q = 2,
(ii) z ¢ y(B(K,0,1)),
(i) |z] < supgep .1y [¥(0)] for z # A, supgepc o) [7(0)] < o for z = A.

A path y is called locally affine if there exists a finite partition & of y(B(K,0,1)) such
thaty = UL, 71, where % := {z0,21,...,24}, 71 := [z1-1,21] for each [ = 1,...,n. We consider
the family %, of all paths y for which there exists a sequence {y, : n} C %, converg-
ing relative to the distance function d’(S,B) := max(sup,.¢p’(x,B),sup,czp’ (b,S)) to y
in (A(K(a))™,p") and such that there exists a homeomorphism v of y(B(K,0,1)) with
B(K,0,1) and v is a piecewise pC7"!-diffeomorphism with it, where %, denotes the fam-
ily of all locally affine paths, g € N. In addition, we take Q and y such that y = 0Q) in
accordance with Section 2.2.3.

Since AK(«)™ and A(K ® aK)™ are compact, then a clopen compact set () in AK(«)™
orin A(K @ aK)™ is homeomorphic with a clopen compact subset x(Q) in K(a)™ or (K ®
aK)™, respectively (see [5, Theorem 6.2.16 and Corollary 6.2.17] about universality of the
Cantor cube for zero-dimensional spaces), where «x : Q — x(Q) is the homeomorphism.
Therefore, we can consider o P", €, and 3o P" induced by « of such sets Q) also.

2.2.5. Let Mbea Cer(1 9-manifold of dimension k over K such that £ = (¢q,n — 1), where
spaces C* (K%, K?) := C(£,K? — K%) and C¢-manifolds and uniform spaces C* (M, N) of all
Cé- -mappings f : M — N were defined in [15, Section.2.4] and [16] 0 < q € Z,0<n € Z,

and

CE+(0,1) (Q Lb) = Pn(CE(Q Lb))

pCHOD(QLY) = pC5 Y Q1Y) @ L 2

were described in [19, Lemma 2.1], where P" := o P" (see Section 2.1).
Suppose that charts (V;,¢;) of the atlas At(M) of M are such that

(@) V; are clopen in M,
([; U] V =M,

(y) ¢;:Vj— ¢;(V;) C U are homeomorphisms on clopen subsets in U¥, where
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(8) ¢ij:=¢io qb]’l € py C-H10 N Cg(W,-,j,Kk) for each i # j with V;nV; # & and
each coordinate x; induced from K, I = 1,...,k, W; ; := dom(¢; ;),
(€) puCHID(Q,Y) := yPE(CHQ,Y)) @ Y

for a Banach space Y over L, K C L. Thus put

sCHL0(Q,Y)

= {f e CHOO(Q,Y): f(x15enn52k) € g CTEO(Q,Y) for each I = 1,...,k}, (2.6)
where Y is a Banach space over L. In particular, sC+:0(U,Y) = pC+OD(U,Y) =
pCI*"(U,Y), but for dimg Q > 1 these spaces are different C**(10 (Q, Y) # pC*+ OV (Q, Y).

Then we call M satisfying conditions (& — €) the sC*+(»%_manifold, and such map-
pings ¢; ; are called the sCE (10 _mappings.

Tensor fields over M were defined in [19, Sections 2.1.2 and 2.1.3]. Then the bundle
of r-differential forms is the antisymmetrized bundle v, : A"M — M of the bundle 7, :
T,M — M of r-fold covariant tensors.

A mapping ¢ : V — W of a (cl)open subset V on a (cl)open subset W of K* is called
a sC+ (10 _diffeomorphism if ¢ is surjective and bijective with ¢ € sC**(:9(V,K¥) and
¢—1 c SC£+(1’0)(W,Kk).

Consider the sC*(10)_diffeomorphism ¢ : 7 — ¢(17), where

(1) n = [vo,v1] X [vi,v2] X = = - X[vg—1,v]
is the parallelepiped in KX, vectors v; — vp,..., vk — v are K-linearly independent. Then
for a k-differential C(*"~V-form w on ¢(1) define
(1) g P"w := y Pp*w,
where ¢*w is the pullback of w defined in local coordinates in the standard way, since ¢
is the sC5*(10)_diffeomorphism such that
(2) ¢(P"w = 0 for dimg 17 # k,

since w = 0 for k > dimg M. Without loss of generality, take 0 € U and 0y(0) = 0, then
01(0) = 0 for each I € N, consequently, yP"|{o; = 0. Therefore, ymP" | (ymnkkxfojm-iyw = 0
for k < dimg Q = m. Each such parallelepiped # is the finite union of simplices satis-
fying conditions of Section 2.2.3. The orientation of d is induced by the orientations
constituting its simplices which are consistent. Consider such parallelepipeds 7; 4, with
I=1,...,b(q) e Nand

(i) dimk (7,40 N 7jqr) <k foreach I # 1,

(i) cl(Ugxj,q) = ¢;(V;), where

(i) Uiy njqr =25

(v) limg .  max; diam(#;,4,) = 0.

Since ,,, P"v + ., P"v =y, 0y, P"v for each differential C*"~) — k-form v with sup-
port in U* and each [ # I’ and y«P" is the continuous operator from C®"~D(U*,L) to
COm (U L), then there exists

- b(q)
(vi) limg .o Zl;{ nia PV =5 ¢, P
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Using transition mappings ¢; ; and considering clopen disjoint covering

(vii) W;:= V;\ UL, V; of M,
we get

(viii) MP"w = > ; w,P"w
independent of the choice of local coordinates in M. Note that since || = 1, then
B(K!,z,r) can be represented as the parallelepiped with the K-boundary d.B(K/,z,r) de-
scribed above due to the ultrametric inequality. Due to (vi), (vii), and (viii), ,P"v is de-
fined for locally affine path y (see Section 2.2.4), which is the pC”-manifold that will be
supposed henceforth.

Each compact manifold M has a finite dimension over K and using W; we get an
embedding into K for some b € K. Let ¢ : QO — M be such that ¢ is surjective and
bijective, ¢ and ¢~ € sC**(10), which means that ¢; o ¢ € sC**0(¢~1(V;),K¥) and
plogil e sCH L0 (¢:(V;),KF) for each j, where ¢~'(M) = Q c U* satisfies condi-
tions of Section 2.2.3, At(M) = {(V;,¢;) : j} is an atlas of a sC**(*0)-manifold M (see
above). Such ¢ is called the sC**(10_diffeomorphism of Q onto M. Then M is oriented
together with Q. Thus OM := ¢(dQ) is the oriented boundary. We can also consider the
analytic manifold M and the analytic diffeomorphism ¢. Each compact C*-manifold M

can be supplied with the analytic manifold structure using a disjoint covering refined into
At(M).

THEOREM 2.1. Let M be a compact sCt-or pCf—manifold over the local field K with dimen-
sion dimg M = k and an atlas At(M) = {(Vj,¢;): j = 1,...,n}, where = (g,n), 1 <q €
N, 0 < n € Z, then there exists a sCt- or pCE-embedding of M into Kk, respectively.

Proof. Let (V;,¢;) be the chart of the atlas At(M), where V is clopen in M, hence M \ V;
is clopen in M. Therefore, there exists a sC¢- or pCé-mapping y; of M into K* such that
v;(M\ V;)={x;} is the singletonand y; : V; — y;(V;) is the sCt- or pCé-diffeomorphism
onto the clopen subset y;(V;) in KF, correspondingly, x; € KK\ v;(V;), since the opera-
tor »P" is K-linear, »P"0 = 0 and the covering {V; : j} of M has a disjoint finite refine-
ment { Wy : k} such that P2 [ f1=P1 [ > fxw.] =2k P2 fxw,] for each f € Cl4"~ D (M,K)
and each coordinate x; (see Sections 2.1 and 2.2.5). Then the mapping y(z) := (y1(2),...,
¥.(z)) is the embedding into K, since the rank is such that rank[d,y(z)] = k at each
point z € M, because rank[d,y;(z)] = k for each z € V; and dimg y(V;) < dimg M = k.
Moreover, y(z) # y(y) foreachz # y € Vj,since y;(z) # yj(y).Ifz€ Vijandy e M\ V},
then there exists [ # j such that y € Vi\ 'V}, yj(2) # y;(y) = x;. O

THEOREM 2.2. Let M be a compact oriented manifold over K of dimension dimg M =k >0
with an oriented boundary oM and let w be a differential (k — 1)-form as in Section 2.2.5
such that its pullback ¢*w is a differential (k — 1)sCH"=V_form, then

MPndW = aMP"W. (2.7)

Proof. Since M is the manifold of dimg M = k >0, then M is dense in itself and compact,
hence Q) is dense in itself and compact (see [5, Chapter 1 and Theorems 3.1.2 and 3.1.10])
and the approximation of the identity can be applied to Q. In view of formulas (2.1)—(2.4)
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and (1), (2) on the space of C¢-differential forms, operators uPY, and y P} commute for
each 1 < g,s < k. Then
(1) UP”f|Z = —UP”f|Z, where UP"f|2 = UPnf(b) — UP”f(a).

In view of conditions imposed on the manifold M, partitions of (), into unions of
parallelepipeds, which are finite unions of simplices as in Section 2, formula (i), and
(1), also using the limit (vi) and formula (viii), it is sufficient to verify (2.1) for a par-
allelepiped and an arbitrary term v := f(2)dz; A - - - Adzg 1 Adzgi1 A -+ A dzg corre-
sponding to the differential (k — 1)sC»"*~D-form ¢*w. Consider in K* the standard or-
thonormal base ey,..., ek, where ¢;:= (0,...,0,1,0,...,0) is the vector with 1 in /th place.
Without loss of generality, using limits we can take the parallelepipeds 7 = [vo,v1] X
<o X [Vi—1,vi] with vi —vi_; = Lje; for each [ = 1,...,k, where 0 # A; € K. Therefore,
df (z) = (=1)771(0f (2)/9z)dz1 A - - - A dzg. Since f € C"~V, then UP;‘q(af(z)/azq)IZ
= f(z15.052¢- 150,244 15 2) — f(215...,24-1,8:24415-.-,2k) for each [ = 1,...,k. Conse-
quently,

(ii)
rPndV/ = (_1)q71[Vﬂrvl]x"'X[quzavqfl]X[Vq+lyvq+2]><"'X[kalka]Pndzl

df(z)

Ao ANdzg gy Ndzggr A A dzk["qfl"’q]Pn< 0z, )dzq

_ -1
= (= D)7 (g1 15X [rg 2,9 11X [Vge1ovgea) XX Vi1, ve] (2.8)

XPH f(215...529-1,VqA2g4 15 - »A2k)

— f(z1,..52g- 1,V 1,d2g415. ., dzi) Yz
A ANdzgi Ndzgi A - -+ Adzg

for each g = 1,...,k. In view of (2) antiderivations of y by other pieces (—1)S ! [vg,v1] X
o X [Wsmas Vem1 I X ({vsh — {vs1}) X [Vs, Vs ] X - - - X[ k-1, V] corresponding to s # g of
the K-border are zero. O

CoROLLARY 2.3. Let M be a compact oriented manifold over K of dimension dimg M =
k >0 with an oriented boundary OM and let w be a differential (k — 1)C"~V-form as in
Section 2.2.5 such that its pullback ¢*w = >; c...cj | fir,..ji 142 A -+ Adzj, has each
function f;, ., in p,,C"(U,L) by the variable z; for each j such that j € {1,...,k}\
{jl,...,jk_l}, then

MPndW = aMPnW. (2.9)

Proof. Repeating the proof of Theorem 2.2 for each term f; ;. dzj, A--- Adzj,_ of w
and applying (i), (ii), we get the statement of this corollary. O

2.2.6. Remarks and notations. Let f € C'(K(«),Y), where Y is a Banach space over L,
L is a field containing K(«) such that L is complete relative to its uniformity, and the
multiplicative norm in L is the extension of the multiplicative norm in K(«). As the Ba-
nach space K(«) over K is isomorphic with K’, where 2 < r € N consider such structure
of K(«) over K. That is, K(«) over K is considered as EB:,;lO a”K, where o = 1. Thus
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each z € K(a) has the unique decomposition z = x + ay with x € K and y € @/, % «™K.
Henceforth, either we consider » = 2 which implies that in the decomposition z = x + ay
of z € K(«) both x and y € K, or we consider K @ aK for r > 2 such that again each
z € K& aK has the unique decomposition z = x + ay with both x and y € K. Only these
two variants with K ® aK will be considered below if nothing else is specified (see also a
justification of this in Remark 2.10).

Then we write each { € K(«) in the form { = x+ay, wherex €K, y € 69:,,;20 oK, o
for K is chosen as in Section 2.1. Denote by  := x — ay the so-called conjugate element
to ¢. Then x = ({+()/2 and y=({- {)/(2a). Therefore,

(i) 9 (¢, {)/ax = f (1.E)/0C +3f (1,£)/a¢ and
(ii) 9f ((,¢)/dy = adf((,{)/9{ — ad f ({,{)/9(, consequently,
(i) 9f ({,0)/9¢ = [9f ({,{)/ox +a~"af ({,{)/dy]/2 and
(iv) 9f (£,$)/9¢ = [0 ({,{)/ox — a1 9f ({,$)/ayl/2.
In particular, the external differentiation of differential C!-forms w on a clopen subset
in (K@ aK)™ has the form

(v) dw = ow + ow, where i
(vi) w = ZI,] WI,]((,()d(M AdTM, B
(vii) ow = Xy ;,(0wr/98)d() A dCh A dCH,
(vii) ow = (=) Y, (9w ;/38)dz! A Al A dJV, where d{M = dG, A -+ A dG,,
AV =dl A AdG 1< < <ly<m1<]i<---<J.<m,
such that w is the (b,¢)-form with coefficients w;; € C'(Q,Y), |I| := b.
If r > 2, then the differential s-form w can be written as
(ix) w =2 j=swydzV, z = (z1,...,2mm), z1 €K, for each | = 1,...,rm, dz™ := dzj, A
o Adz, 1< <0 < Jg < rm. Let A(K(a)™) denote the Grassmann alge-
bra (exterior algebra) of K(a)™, where K(«) is considered as a K-linear space,
AK(a)™) = @7 A{(K(«)™). Then w € C5(Q, L(AK(x)™),Y)) is the differen-
tial form, since the space (K(a)™)* of K-linear functionals on K(«)™ is the space
isomorphic with K(«)™ due to discreteness of I'x, where L(A(K(«)™),Y) is the
Banach space of K-linear operators from A(K(«)™) into Y.

Henceforth, if on a manifold M functions f will be considered having the property
df =0, then it will be supposed that d¢; ; = 0 for each transition mapping ¢; ;, if another
is not specified.

Consider w such that w C E, where E := {z € K(a) : |z] < p"/(1=P)}, since exp is the
bijective analytic function on E, therefore we put

(x) exp(w) = Q, thatis, w = Log(Q)) for Q C 1 +E, where exp: E — (1+E) and Log :
(1+E) — E are defined with the help of standard series (see [22, Sections 25 and
44]).

Consider an extension of Log. Denote C;; ={zeC,:]z-1[ <1} and K(a)" :=
K(x) n (G Then K(«a)* is the Abelian subgroup in the additive group (@3 and G =
Cp \ {0} is the Abelian multiplicative group. The group Cj is divisible, that is, for each
y € Cj and each n € N there exists x € C; such that x" = y. Let X be a proper divisible
subgroup in Cj such that C}, C X. Let G be a subgroup generated by X and y € C; \ X.
Suppose y" & X for each n € N, then for each g € G there exist unique n € Z and x € X
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such that ¢ = y"x. Choose z € C,, then put Log(g) := nz +Log(x). The second possibility
is y" € X for some n € N, n > 1. For each g € G there exist unique n € {0,1,...,m — 1}
and x € X such that ¢ = y"x, where m := min»ex;sen 1. Since C,, is divisible, there ex-
ists z € C;, such that z,, = Log(y.), therefore, define Log(g) := nz + Log(x). Using Zorn’s
lemma we can extend Log from C, on C}. In particular we can consider values of Log(i)
and Log(«) using identities Log(1) = 0, i* = 1, ™ € K, a" = 1 for some minimal n € N.

The field C,, considered as the locally Qp-convex space is of countable type over Qp,
where Q) is the locally compact field of p-adic numbers [28]. As the topological space Cp,
is Lindelof, there exists consequently a countable family {g;: j € N} € C, g1 = 1, such
that {g;B\ Uv<j(qu) : j € N} is the disjoint clopen covering of C5, where B:= {z € C;:
lz— 1] < p(1=P)}. In view of Log(yz) = Log(y) +Log(z) for each y,z € Cj; the function
Log is completely characterized by values of Log on B > z and Log on y = g; for each
j € N. The restriction Log |5 = Log | has only one analytic branch. It is known from [22,
Section 45] that such extension Log of Log is locally analytic, hence Log is of class C*. In
accordance with [22, Theorem 45.9] if f,g : € — Cy, are two extensions of Log : Cj, — Cy
as above, then there exists a constant ¢ € Cp, such that f(x) = g(x) + cord,(x) for all
x € €. Thus in view of [22, Theorem 45.9] we can choose an infinite family of branches
of Log indexed by Z. For the sake of convenience, put Log(0) := A.

From the consideration above it follows that we can choose Log(a) # 0 for K(a) and
a € C3 \ € as in Section 2.1 for which the extension Exp of exp on Cj, and the extension
Log of Log on Cy;, \ {0} can be chosen such that directed going (defined by going from 0
to B in linearly ordered B(K,0, 1); see Section 2.2) by the oriented loop 9.B(K(«),0, p~2)
changes a branch , Log of Log on 1 in the following manner: ,+; Log(x) — , Log(x) =: & #
0 for each n € N, where Exp(d) = 1, § is independent of n. This is possible, since alge-
braically C;, and C are isomorphic fields [10]; also, points p*(—1,-1), p*(1,—1), p*(1,1),
and p(1,—1) belong to 9.B(K(«),0, p~2).

TuEOREM 2.4. Let M be a compact sC'%" -manifold over K satisfying conditions of Sections
2.2.5 and 2.2.6 for which ¢$~1(M) = Q c K(a) with a K-boundary y := oM, dimxM =
2,2<reN,0<qeZ 1<neN, then there exists a constant 0 # C:= C,(«a) € K(a),
such that

f@ =P (FOC -2 g - eSS o)
for each
fi(z+Exp(n)) = v(n) € sC" V(w,Y) (2.11)

and each marked z € M encompassed by .

Foreache =€j,0<¢j, j €N, {€;:j} is asequence in Tx withlim;_.o€; =0, f;:= f o
¢, where w := w(z) := {n € K(«) : z+ Exp(y) € Q}, we := w \ Log(B(K(«),z,€)), z € Q.
Moreover, Cy(a) = Ci(«) = 8 for eachn € N.

Proof. Using the sC(@"-diffeomorphism ¢, reduce the proof to the case of f on Q. Con-
sider the differential form w := FOWC =2)71d{ on Q\ {z}, then dw = —({ — 2) " (3f/
00)d{ A d{. Let s € Z be such that inf¢eaq [{ — z| = |7|*. Take the change of variables
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{ = z+Exp(n), hence ({ — z)7'd{ = du; also take I > s, then from Corollary 2.3 and Sec-
tions 2.2.5 and 2.2.6 it follows that

(1) 0\BK(@),zxHP"dW = 3o P"W — 3 B(K(a) 2 |xH P" W,

since fi(z+Exp(n)) =:y(n) € sCH" V(w,,Y) and from y € sC"D(we,Y) it follows
that y(x,y) € pxCO"(wex,Y) and y(x,y) € p,CO"(w,),Y) for each € = ¢€; and for
each x, y, where z = (x, ), Wex = Mx(We), wey = my(we), M : K® aK - K, and 7, : K&
aK — aK are projections, Y is a Banach space over L such that K(«) C L. The differential
form w can be written as w = f({)dLog({ — z). From Log(xz) = Log(x) + Log(z) for each
x,z € Cj it follows that directed going by the oriented loop d.B(K(«),0, |7|') changes
a branch ,Log of Log on 1 in the following manner: ,+; Log(x) — ,Log(x) =: § # 0 for
each s € Z. In view of Section 2.2.6 there exists hml_.oo 3. BK()zzrihP"w =: Cy(a) f (2). Fi-
nally oP"(({ —2)~ laf(( Ad() = —qP"(({—2)"Yaf(C )/00)d{ A d{), where, for short,
we write f = f({) = f({,0).

In view of formulas (2.2), (2.3) and the non-Archimedean Taylor formula for C"-
functions (see [22, Theorem 29.4]),

3.B(K(@)z P [({ = 2) 1] = 3.8K(@)z 1 1n P [dLog({ — 2)] + € (n') (2.12)

such that there exists a constant 0 < b < oo for which |e(n})| < b|n|! for each I € N. On
the other hand, due to the Taylor formula for C'-functions and formulas (2.2), (2.3),

3B(K(@)z x )P [dLog({ — 2)] = 8+ 1 ('), (2.13)

where lim;_., (') = 0. Therefore, C,(«) = C(a) = § # 0. O

COROLLARY 2.5. Let suppositions of Theorem 2.4 be satisfied for each z € M encompassed
by oM, then df(z)/0z = 0 for each z € M encompassed by oM if and only if

f(2)=ClauP"{ f(O)(C —2)~"d(} (2.14)
for each z € M encompassed by oM.

Proof. If 3f/d{ = 0 on M, then the second term in (2.10) is equal to zero, which gives
(2.14). Conversely, let (2.14) be satisfied for each z € M encompassed by oM. Since
(02/9zZ) = 0, 9z/0z = 0, then 9(({ —z)!)/9z = 0, consequently, 0 f (z)/9Z = O

COROLLARY 2.6. Let suppositions of Theorem 2.4 be satisfied for each z € M encompassed
by OM and df(z)/9z = 0 for each z € M encompassed by OM, then f is locally z-analytic in
a neighborhood of each point { in M encompassed by oM.

Proof. Using the mapping ¢ we can consider Q) instead of M. Let z € Q and B(K &
aK,z,R) € Q such that 0 < R < inf{|z — y| : y € 0Q}. Consider x € B(K @ aK,z,R/p),
then

(-0"=(-2z+z-0)"=((~2)" IZ K(a), (2.15)

((Z

where { € B(K® aK,z,R). Applying Formula (2.14) we get
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(1)
f(x)=C 9P (¢ —x)7! f(O)dC)

. 2.16
=C' > (x—2)58P"[(( -2 f(O)d(] e
=0

for each x € B(K® oK, z,R/p), since
(ii)

n —I-1 ijl—s
o8P [(( =277 f(Odl]| < ”f”C”*l(aL-B,K(oc))j)szrgﬁ?;_l <W) (2.17)

and the series is uniformly converging on B(K @ aK,z,R/p), where B = B(K @ aK,z,R),
K& oK C K(w), hence f(x) is locally x-analytic. O

Definition 2.7. Let Q) be as in Section 2.2.3. Two paths y, : B(K,0,1) — Qand y; : B(K,0,1)
— Q) with common ends 4(0) = y1(0) = a, yo(8) = y1(B) = b are called affine homotopic
in Q if there exists a continuous mapping y(x, y) : B(K,0,1)> — Q such that

(1) p(0,y) = yo(¥), y(B,y) = y1(y) for each y € B(K,0,1),

(ii) p(x,0) = a, y(x,B) = b for each x € B(K,0, 1),

(iii) there exists a sequence {y,(x, y) : n € N} of continuous mappings, y, : B(K,0, 1)?
— Q), such that each y, is locally affine and {y, : n} converges uniformly to y on
B(K,0,1)%, where y,,(x, y) = (1 — x/B)yn(0, y) + xy.(B, y)/p for each x € B(K,0,1),
yn(0, y) and y,(f3, y) are locally affine (see Section 2.2.4). In particular, for a = b
this produces the definition of affine homotopic loops. Q is called (or M) affine
homotopic to a point if Q) (resp., dM) is affine homotopic to a point z in Q (resp.,
z in M; see Section 2.2.5).

TaEOREM 2.8. Let conditions of Theorem 2.4 be satisfied for each z € M and let M be affine
homotopic to a point, where 0 f (z,2)/0Z = 0 for each z € M encompassed by OM. Then

wP"fdC] =, P"[fd(] (2.18)

for each two paths yy and y, which are affine homotopic in M.

Proof. Using the diffeomorphism ¢ we can consider Q) instead of M. For each € > 0 there
exists a finite partition of a suitable subset ()¢ into finite union of parallelepipeds of
diameter less than € in the proof of Theorem 2.2, where Q. C {z € Q:d(z,0Q) < €},
A(Ues0 Qe) = Q. In view of Corollary 2.5, 0 = f(2)(z — {)I,—¢ = C(a) e P"[ f({)d(] for
each such parallelepiped &. Therefore, there exists a sequence {y;: 1} of affine homo-
topy such that y;(0, y) and y;(f3, y) are contained in the union g ¢ for each €; = 7|},
I e N. Since ,(0,5)P"[ fd{] = y,5,%)P"[ fd(] for each I and taking ! tending to infinity we
get (2.18) due to continuity of the operator P". O
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CoOROLLARY 2.9. Let f satisfy conditions of Corollary 2.6 with O = B(K® aK,z,R). Then
(1)

— s : ijsfl
el =ier mas (I >||co<a[B,Y)s;(f))

Oyt —1 R]_s: (G+1)! (2.19)
= 1C e | max (7o)
Proof. From
. i ;
RO -x7" = ;05! (i) (=1 IO = %), (2.20)
[1+1 — (4| < R on 9.B, and Section 2.1, inequality (i) follows. ]

Remark 2.10. The field K is locally compact, then T, is not contained in K, where T, is
a group of all g"-roots b of the unity: b’ = 1, = g", n € N, q is the prime number, since
dimgq, Qqu = oo for Q, C K, and K would be nonlocally compact whenever T, C K,
which is impossible by the supposition on K. Therefore, there exists min{s € N: b9 €
K, b ¢ K,where b # 1 is the g -root of the unity}. Hence there exists { € K such that
(V4 ¢ K. In particular, it is true for q = 2. Therefore, each local field K has a quadratic
extension K(«) such that « & K. In the particular case K = Q there exists the finite field
Fp, := R/P (see Section 2.2.1). Then F \ {0} is the multiplicative group consisting of p — 1
elements. If p = 4n+ 1, where 1 < n € N, then Q,, contains i = (—1)2.

Lemma 2.11. If f is locally z-analytic on M, where M is a locally compact C'°" -manifold
satisfying conditions of Sections 2.2.5 and 2.2.6, ' (M) = Q c K(a), dimxkM = 2,2 <r €
N, then df(z,2)/0z = 0 on M.

Proof. Using the diffeomorphism ¢ we can consider Q) instead of M. Since for each z € Q
there exists 0 < R < oo such that B:= B(K® aK,z,R) C Qand f(z,2) = > ({ —2)* fy on
B, where f; € Y, then there exist 0 f/0z and 0 f/0z = 0 on B. Since z € Q is arbitrary and
such balls form the covering of Q, then df/dz = 0 on Q. O

Remark 2.12. Let n > 1, then (d/dz)qP" =1:C" '(Q,L) — C*"'(Q,L). But P*d/dz + I
on C"(Q,L), where P"d/dz : C"(Q,L) — C*"(Q,L). If pC"(Q,L) is dense in C"(Q},L), then
P"d/dz will have the continuous extension I on C"(Q,L), since P"d/dz is the continuous
operator from C” into C" and P"(d/dz)|,c; = I. Therefore, pC"({,L) is not dense in
C"(Q,L). On the other hand, C'(Q,L) = pC}(Q,L) ® N', where N' := {f € C' : f' =0}
is the closed L-linear subspace in C! (see [21, Theorem 5.1, Corollary 5.5]).

THEOREM 2.13. Let f be a function on M over K satisfying the conditions in Sections 2.2.5
and 2.2.6, let y be a loop in M satisfying the conditions in Section 2.2.4, and let y be affine
homotopic to a point in M, dimgM =2, ¢ 1(M) = Q c K(a), 2 < r € N, f satisfying con-
dition (2.11) for each z € M, and df (z,2)/0Z = 0 on M, then ,P" f = 0.
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Proof. Let V be asubmanifold in M such that 0V = y. In view of Theorem 2.8 ,P"[ fd(] =
v P"[fd(], where y and y are affine homotopic and 0 < diam(y,) < €. In view of conti-
nuity of the operator P” there exists lime .o, P"[ fd(] = 0. O

THEOREM 2.14. If f satisfies condition (2.11), a manifold M over K satisfies the condi-
tions in Sections 2.2.5 and 2.2.6, and M is affine homotopic to a point, dimgM =2, 2 <
r €N, and ,P"f =0 for each loop y in M satisfying the conditions in Section 2.2.4, then
0f(2,2)/9Z = 0 for each z € M encompassed by oM.

Proof. Using the diffeomorphism ¢ we can consider Q instead of M. Choose a marked
point z in M. Let # be a path joining points zy and z and satisfying the conditions in
Section 2.2.4. From ,P" f = 0 it follows that ,P" f does not depend on # besides points
zo = 1(0) and z = n(f3), since each two points in Q) can be joined by an affine path, hence
it is possible to put F(z) := ,(0)=z0()=zP" f such that F is a function on Q. In view of
formulas in Section 2.2.6(i)—(iv),

(i) 0F(z)/0z = f(2).
In view of Theorem 2.4,

(ii) 0 =, P"(f({)d{) = =C'uP"((3f ({,$)/a0)d{ A dC)

for ea_ch submanifold V in M with the loop y = dV, dimg V = 2. Since V is arbitrary,
then df(z,2) = 0 at each point z € M encompassed by oM. O

CoROLLARY 2.15. Let conditions of Theorem 2.14 be satisfied, then f has an antiderivative
F such that F' = f on M.

LEmMA 2.16. Let Q) be a clopen compact subset in K™, then for each y € Q) there exists a ball
B suchthat y € BC Q, pC*(Q,Y)|p = pC*(B,Y), and sC*(Q,Y)|p = sC5(B,Y) for each &,
where pC*(Q,Y)|p = {glp:g € pC (Q,Y)} and sC(Q,Y)|p = {glp: g €sC(Q,Y)}, ¥
is a Banach space over L, & = (t,n),0<n € Z,0<t€Z, 1 <nfor pCh 1< t for sCE.

Proof. Let o be an approximation of the unity in U. In view of Section 2.1, it is sufficient
to consider the case m = 1. Choose R = p**'/? for sufficiently large s € N such that 0 €
B := B(K,0,R). If x € B(K, y,R), then o;(x) = 0;(y) due to formula (iii) in Section 2.1.
From formula (ii) in Section 2.1, it follows that o;(x) = g;(y) for each I < s. Moreover,
01(x) =:x; € B for each [ > s, since p**! < R < p* and the valuation group I'x := {Iglx : 0 #
q € K} of K is discrete, since K is locally compact. Therefore,

() [P f(0)] = [8P" f(x)] = 2725 Sico £ (o) (Kaeer — ) *1/[( +1)1]

for each f € C4(U,Y), where x; = yk 1s fixed, and the term on the right-hand side of (i)
is independent of x € B, that is, constant on B. Hence g € pCH(U,Y) if and only if glp €
pC8(B,Y). From (2.3) and Xoxs = xB = xalg, the statement of this lemma follows. O

Definition 2.17. Let a manifold M satisty Theorem 2.4, f € Clan-1D(M,Y), 0 < qel,
1 <n e N, Y isaBanach space over L, K(«) C L. Then put in the sense of distributions

mP"(gf"):=-uP"(g'f) (2.21)



S. V. Ludkovsky 277
for each g € ;C"=1 (M, Y*) with
supp(g) C M:={zeM:zis encompassed by oM}, (2.22)

where M — K(a)N (see Theorem 2.1), Y* is the topologically dual space of all L-linear
continuous functionals 8 : Y — L, the valuation group I'L of L is discrete.

THEOREM 2.18. Let a manifold M satisfy Theorem 2.4 and let f satisfy Theorem 2.4 for each
z € M, then the function

(1) u(2) := 2Co(a) TanP" [f(O)(§ = 2)7'dC] = Ca(@) ' i P [ ()¢ —2)7'dC A dE]
is a solution of the equation

(2) du(z)/0z = f(z)
in the sense of distributions for each z € M encompassed by oM.

Proof. The space pC'4™(M,Y) is dense in C@"~V(M,Y). Indeed, for each § >0 and
for each continuous function f o ¢ on Q or a continuous partial difference quotient
Wy = Dif o (p(x;h?sl,..., ;?,S'“;Cl,...,(q) on a domain containing Q4™ x B(K,0,1)? with
O0<t<(n-1)mO0<s;<mnforeach j=1,..,mt=s+--+sp, x,x+(jhj €O, hje
Vv, (j € B(K,0,1), V is a neighbourhood of 0 in K™, Q+ V C Q (see [15, 16]), m :=
dimg M, there exists a finite partition of Q4*! into a disjoint union of balls B ; such that
on each B; the variation var(w,) := SUp, e, [wg(x) — wq(y)| < 8, since M is compact
and for each covering of M by such balls there exists a finite subcovering. Therefore,
in Cl"~D(Q,Y) the subspace 24"~V (Q,Y) of all Cl#"~D(Q,Y)-functions f such that
W(n—1)m corresponding to f is locally constant on the diagonal AQU=Vm+l .= {(yy,...,

VYin-1yme1) € QUM gy = = Y(n-1)ym+1} is dense. Since the operator oP" is contin-
uous, then QP”(Z n=1)(Q),Y)) is dense in C(q" Y (Q,Y) and s D(M,Y) := {f €
sCOtbn=U(M,Y): f = yj+mPrg VI=1,....m, y €Y, g € 2@ D(M,Y)} 1sdense1n

SCW“’"‘U(M, Y). From E@brD(M,Y) c ClatbrD(M,Y) ¢ pC@n(M,Y) C
Cle"=D(M,Y) it follows that sC@*1"~D(M,Y) is dense in C'¢"~1V(M,Y). In particular,
take L such that K(a) C L. Since pCO"(M,Y*) C {g' : g € SCP""D(M,Y*)} C
COn=1(M,Y*), the family of functionals {yP"(g'f):g € sC""D(M,Y*)} separates
points of C@"~D(M,Y), since Y* separates points of Y for discrete I'y (see [28, Theorem
4.15]). In view of (2.21), it is sufficient to prove this theorem for f o ¢(z+Exp(y)) =
v(n) € pCO (wey, Y) N pCO"(we,y,Y) for each € = €, where w(z) := w := { € K(a) :
z+Exp(n) € O}, z € Q,we = 0\ Log(B(K(),2,€)), € = €, We x = Mx(We), e,y := 7y (we).
Using the diffeomorphism ¢ we can consider Q instead of M. Choose a clopen ball
B:= B(K® K(a),z0,R) C Q containing a point zo € Q and its characteristic function
x := xs- Then (fy)1 € pCO"(b,,Y) N pCOM(b,,Y) for suitable 0 < R < oo, where b :=
{n € K(a) : zo + Exp(n) € B}, by := m,(b), b, := m,(b) (see Lemma 2.16). Using the affine
mapping z — (z — z9) we can consider 0 instead of zy. Then B is the additive group. We can
take R > 0 sufficiently small such that each point of B is encompassed by 0Q. Therefore,

(3) u = uy +uy, where )
(4) ui(z) := C'Zo0P"[ f({)({ = 2)71d{] = C 1o P [x(O) f (O = 2)"1d{ A dl],
(5) ua(2) := =C P [(1 = x(O) f(O(( —2)"'d{ Adl].
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From (5) it follows that du,(z)/0zZ = 0 on B. From (4) it follows that

ur(2) = C'2oaP" [ f(O(¢ —2)"d(]

o L (2.23)
—C P [({+2) f({+2){1d({+2) Ad({+2)]

for each z € B, since B+ B = B C Q). Since d.B encompasses z and

0P [ () —2)7'dl] = Dz — ) asP " [ (O - y)1d(] (2.24)
=0

for each z € B with |z — y| < R due to formula (ii) in the proof of Corollary 2.6 for this
antiderivative, then

(6) o{a.8P" [ f({)({ —2)"1d(]}/9z = 0. In view of formulas (2.1)—(2.4) and Section
2.2.5,

ou; _ n -
g(z)—C LaaP" [ f(O(C—2)7d(] (2.25)

— C P ([0 [x((+2) f((+2)]0 Ad(C+2)]},
consequently,

W (2) = CoaP" [ FO -2l

—C ' aP"{[9: (x() f(0)) AdLI(C—2)7 ")

(2.26)

In view of Theorem 2.4 we get the statement of this theorem, since B and y are arbitrary
forming covering of each point z € Q encompassed by 0€). O

Definition 2.19. Let M be a manifold over K satisfying Theorem 2.4.If f € C(¢"~D(M,Y)
and for each loop y in M, , P" f = 0, then f is called (g, n)-antiderivationally holomorphic
on M, where Y is a Banach space over L, K(a) C L. If f € C@"(M,Y) and éf(z) =0 for
each z € M, then f is called derivationally (g, 7n)-holomorphic.

THEOREM 2.20. Let Q be a clopen compact subset in (K ® aK)™. Consider the following
conditions.

(i) f satisfies (2.11) and 5f(z) = 0 for each z € Q with z; encompassed by 0Q); for each
j=1...,m, where Q; = m;(Q), 7;({) = j for each { = ({1...,{m), {; € K@ aK.
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(ii) f is (0,n)-antiderivationally holomorphic on
Q:={z € Q:z; is encompassed by 9Q; ¥ j = 1,...,m}. (2.27)

(iii) f € C*"=D(Q,Y) and for each polydisc B =By X - - - X B, C Q, B = B(K(a),z,j,
Rj) foreach j = 1,...,m, f(z) is given by the antiderivative
(1) f(2)=Cla)"ap,P" -+ - o5, P*[ ()1 =21) "+ (G —zm) HdG A==+ A dC]
for each z € B with z; encompassed by 0B; for each j.
(iv) f is locally z-analytic, that is,
(2) f(2) = Srar(z — OF in some neighborhood of { € O, ar €Y, k=(ki,....kn),
0<kjeZz:= ek r= (2 zm), zj € K(a).
(v) feC*(Q,Y).
(vi) f € CO"=D(Q,Y) and for every polydisc B as in (iii) and each multiorder k as in
(iv) derivatives are given by
(3) 8 f(2) = KIC(®) ™ap, P+ a5, P'LFO (G — 20) 5w+ (G — 2) o1y
A AdGy].
(vii) The coefficients in formula (2) are determined by the equation
(4) ax = 3 f(2)/k\.
(viii) The power series (2) converges uniformly in each polydisk B C Q with sufficiently
small b := max(Ry,...,Ru,1).

Then from (i) properties (ii), (iii), (iv), (v), (vi), (vii), and (viii) follow. Properties (iii)
and (vi) are equivalent. From (iii) properties (iv), (v), (vii), and (viii) follow. In the subspace

{f S C(O)n_l)(Q7 Y):f(Zh-..,Zl—l,Zl+EXP(}7),ZZ+1,.--,Zm)

(2.28)

=:y(n) sCI D (w,Y) foreachl=1,...,m and each € = €l
where w; := wi(z) := {n € K(a) : (z1,...,21-1,21 + Exp(9),21415...,2m) € Q}, wie 1= wp\
Log(B(K(«),z1,€)), z € Q, Y is a Banach space over L such that K(a) C L, properties (i),
(i1), (iii), and (iv) are equivalent.

Proof. From (i), (iv) follows due to repeated application of Corollary 2.6. From (i), (iii)
follows due to repeated application of Corollary 2.5. Other statements follow from Theo-
rems 2.13 and 2.14, Lemma 2.11, and formulas (2.16) and (2.17), since from formula (3)
it follows that

(5) 108 £ (2)/K!| < |C(@)| =™ supyeq 1L f () maxg[B11 -k /(14 &)!] < oo,

where I = (l,...,1n), 0 <l € Z, [ <n for each j=1,....m, |[l| =L+ -+ + 1y, &:=
(1,...,1)ez™ b ::_max(Rl,...,Rm). The series (2) with ai given by (4) converges uni-
formly in B, when limy |ax|V¥1b < 1. O

COROLLARY 2.21. Spaces C'*(Q,K(a)) of locally analytic functions f : Q — K(«) and the
space C1@™-4(Q) K(«)) of all derivationally (q,n)-holomorphic functions are rings. If f is
derivationally (q,n)-holomorphic and f + 0 on Q, then 1/f is derivationally (q,n)-
holomorphic on Q.
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COROLLARY 2.22. If f satisfies (2.11) and there exists { € Q) encompassed by 9Q such that
% £({) = 0 for each k, then there exists a polydisc B Q) (see Theorem 2.20) such that f = 0
on B.

Proof. In view of Theorem 2.20 there exists a polydisc B where Theorem 2.20(iv)(2) and
(vii)(4) are accomplished. |

Remark 2.23. yP"z*|b # (b**! — ak*1)/(k + 1) for each a # b € U, where k > 0. In view of
[22, Corollary 54.2, Theorem 54.4] and [1] the spaces C*(Q,K(«)) n Cl@m4M (Q, K(a)),
Cl(Q,K(a)) N pC@" (Q,K(a)),

{f € C*(Q,K()) : f is (g,n)-antiderivationally holomorphic} (2.29)

are infinite-dimensional over K(«), since the condition of the local analyticity means that
the expansion coefficients a(m, f) of the function f in the Amice polynomial basis Q,,
are such that limy, - . a(m, f)/P,,(1i(m)) = 0, where P,, are definite polynomials (see [17,
formulas 2.6(i)—(iii) ]).

THEOREM 2.24. Let Q and f be as in Theorem 2.20(i). If { is zero of f such that f does not
coincide with 0 on each neighborhood of {, then there exists n € N such that

f(2) =(z-0)"g(2), (2.30)
where g is analytic and ¢ # 0 on some neighborhood of z.

Proof. In view of Theorem 2.20 there exists a neighborhood V of { such that f has a
decomposition into converging series Theorem 2.20(iv)(2). If ax = 0 for each k, then
flv = 0. Therefore, there exists a minimal k denoted by I such that

f@)=> a(z-0F, (2.31)
k=1
putting
g(2) = D> aru(z = OF. (2.32)
k=0
Since a; # 0, there exists a neighborhood { € W C V such that g|w # 0. O

THEOREM 2.25. Let Q and two functions fi and f, satisfy Theorem 2.20(i) such that f(z)
= fo(z) for each z € E, where E C Q and E contains a limit point { € E'. Then there exists a
clopen subset W in Q such that { € W and filw = falw.

Proof. Put f := fi — f», then f satisfies Theorem 2.20(i) and f({) = 0. In view of Theorem
2.24 flw = 0 for some clopen W in Q, where { € W. O

THEOREM 2.26. Let f satisfy (2.11) and let it be derivationally (0,n)-holomorphic on Q) :=
{ze (Ko aK)":R; < |z—&| <Ry}, where 0 < Ry < R, < o0, Ry and R, € Tx. Then

fl2)=> ar(z— &) (2.33)
k
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for each z € Q with R, > |z| > Ry, where

Ak = C@) ™o, P" 0 PG = E) T (G = &) T A(QOAG A - A d)
(2.34)

foreachk € 7™, Ry <R< Ry, Bry:={z1€ Ko aK: |z1— &| <R}, k = (ki,....km), ki € Z,
I=1,....,m.

Proof. Let m(z) =z for each z=(z1,...,2m) € (K®aK)", where zy e K® aK. Then 7;,(Q) =
{z1e Ko aK: Ry < |z1— &l < R,}. To prove the theorem consider f by each variable z;.
That is, consider z = z; and m = 1. Let R3 and R4 be such that R; < R3 < R4 < R, and
ze€ W CQ,where W={zeKoaK:R; < |z—&| <Ry}. In view of Theorems 2.8 and
2.20(iv), (vi),

f(2) = C@awP"[f()({ —2)~"d(]
= C(0) 9,8, P"[ f(O(C = 2)7'dl] = Clo) ™ o,5, P" [ f(O)(C — 2) L],

since W is the union Wy U Wy, dimg(W; N W) = 1, where W, and W, satisfy Theorems
2.8 and 2.20. The part of the path y;, in W; N W, joining d.Bg, with d.Bg, and forming
two paths y; and y, affine homotopic to points in W, and W», y; C Wy, y, C Ws, such
that y;, goes twice in two opposite directions, gives (2.35). For each { € d.Bg, we have
(z=&)(( =& <1, hence ({ —2)7' = 31 o(z — &)F({ — &)1 and inevitably

(2.35)

a8, PO =2)7'dl] = > ar(z— E)F, (2.36)
k=0

where ar = C(a) 3,8, P"[ f({)({ = &)+ 1d{] for each 0 < k € Z.

If { € OcBg,, then [(( —&)(z—&) ! <land ((—2) ' =-32,({-OF Uz - &K,
hence due to continuity of P" — C(a) '35, P*[ f({)({ — 2)7'd(] = 3l a-x(z - &)k,
where a_i = C(a) "o, P"[ f ({)({ = §)¥'d(] for each k = 1. In view of Theorem 2.8 we
get (2.34). O

Definitions 2.27. A point z € A(K @ aK) is called an isolated critical point of a function
f if there exists a set BIK® aK,z,R) \ {z} for z # A, and {{ e K& aK: R < [{| < 0} for
z = A, on which f is (g, n)-antiderivationally holomorphic. An isolated critical point z of
the function f is called removable if there exists a limit lim¢_., f({) =g € Y; itis called a
pole if there exists limg_, || f ({) || = oo; it is called an essentially critical point if there exists
neither finite nor infinite limit point, when { tends to z.

TaEOREM 2.28. Let f satisfy Theorem 2.20(i) on Q\ {z}. A point z € K ® aK is removable
if and only if decomposition (2.33) does not contain the main part

FO=> al -2k (2.37)
k=0

THEOREM 2.29. Let f satisfy Theorem 2.20(i) on Q. \ {z}. An isolated critical point z €
K @ oK is a pole if and only if the main part of the series (2.33) contains only a finite and
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positive number of nonzero terms

[

Q)= Z (=25, N>o. (2.38)

TaeoreM 2.30. Let f satisfy Theorem 2.20(i) for Y = K(a) on Q\ {z}. An isolated critical
point z of f is essentially critical if and only if the main part of the series (2.33) in a neighbor-
hood of z contains an infinite family {ar # 0: k < 0}. If z is an essentially critical point of f,
r =2, that is, K(a) = K® aK, then for each § € AK(«) there exists a sequence {z, :n € N},
limy,—« 2, = z such that lim, .« f(z,) = &.

The proof of the previous three theorems is analogous to the classical case (see, e.g.,
(23, Section I1.7], [24]) due to Theorems 2.20 and 2.26.

Definition 2.31. Let f € Clam(Q,Y)and B:= B(K® aK,z,R) C Q,0<R< o0, fis(q,n)-
antiderivationally holomorphic on B\ {z}, then

(i) res. f := C(a) 'a.8P"[ f({)d(]
is called the residue of f, where Y is a Banach space over L such that K(«) C L.
THEOREM 2.32. Let f satisfy Theorem 2.20(i) on Q \ U;_, {zi} such that 9Q does not contain
critical points z1 of f and all of them are encompassed by 0Q), v € N. Then

QPn f(()dﬂ Zz,eQ reszlf

where resy f is mdependent of n and R in Definition 2.31,

(ii) res;, f = a—y, ax is as in (2.33).
Proof. In view of Theorems 2.4 and 2.8, C(«a) = C,(«) is independent of n and res;, f is
independent of n and R. From (2.34), (ii) follows. O

Definition 2.33. Let f € Cl%"(Q,Y) and let A € Q C A(K® aK) be the isolated critical
point of f. Put

resy f 1= —C(a) '35P"[ f()dC]. (2.39)

THEOREM 2.34. Let f satisfy Theorem 2.20(i) on (K oK) \ U[_,{z}, then

(i) resa f + > res, f = 0.
Proof. Take a ball Bg := B(K® aK,0,R) of sufficiently large 0 < Ry < R < oo such that it
contains all {z;:1=1,...,v}, Q = A(K® aK), and x(Q) C K® aK (see Section 2.2.4). In
view of Theorem 2.32,

(ii) 0:BrP"[f({)d(] = 3], res, f
and it is independent of R for each R > Ry, R < o0. In accordance with Definition 2.33 and
Theorem 2.8,

(iii) a8, P"[f()d(] = —resa f.
Therefore, from (ii) and (iii), (i) follows. O

Definitions 2.35. Let f € C'9™(Q,K(«)) and let f be (g,n)-antiderivationally holomor-
phic on B(K® aK,z,R) \ {z}, where Q C K@ aK, f(z) # 0. Then res, f'(z)/f(z) is called
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the logarithmic residue of f at the point z. We count each zero and pole of f a number
of times equal to its order.

A function f is called (q,n)-antiderivationally meromorphic if it is (g, n)-antideriva-
tionally holomorphic on Q beside a set of poles.

THEOREM 2.36. Let f be (q,n)-antiderivationally meromorphic on Q and let Log( f) satisfy
Theorem 2.20(i) on Q \ U;_, {zi}, where z, is the pole of f for each ] = 1,...,v, all zeros and
poles of f are encompassed by 0Q), Y = K(«). Then

N —P=C(a) 50P"[dLog (f({))], (2.40)

where N and P denote total numbers of zeros and poles in Q.

Proof. Since Q) is compact, then N and P are finite. In view of Theorem 2.26,

v u
C(a) " 3aP"[dLog (f({))] = 2. res; Log(f) + D" resg Log(f), (2.41)
I=1 I=1
where z; is the pole of f and & is the zero of f for each I. On the other hand,
f'(2)
f@)

(z-&) "
$(2) (2.42)

= [k(z-8)" ")+ (z-8)"¢'(2)]

1 [k¢(2) + (2= &) ¢/ (2)]
¢(2) ’

where f(z) = (z — &)k¢(z), k = k; is the order of zero &, and ¢(z) # 0 in a neighborhood
of &. Therefore,

=(z-&)

resg, Log(f) = ki, res; Log(f) = —si, (2.43)

where s is the order of pole z;. Hence, from (2.41), (2.43), (2.40) follows. O

TaEOREM 2.37. Let Q be a clopen compact subset in B(K® aK)™, y,R), 0 < R < pV/1-P),
Suppose

(@) fi(z15-. 211,21 EXP(1)5 21415 > Zm) 1= W1 (1) s @1 = Y belongs to sCUP" D (wye, Y)
foreach j,l=1,...,mandeachz = (zi,...,2m) € Q, wherew; = {n € K(&) : (z1,...,z1-1,21 +
Exp(n),zis15...,2m) € Q}, wie = w; \ Log(B(K(«),z1,€)), € = €, 0 < € for each k € N,
limi_w€r=0,0<q€Z 1<neN,andY isa Banach space over L such that K(«) C L.
Assume that

1) 0f;/0Z = df1/9Zj for each j,l = 1,...,m
Then there exists u € C'@"=D(Q, K(a)) such that
(2) du(2)/0z; = fi(2) for each j = 1,...,m and each z € Q (see Theorem 2.20).

Proof. Define

() u(z) = Cl@™ XL Zjaa, P [fi(z15-52j-1,0241502m) (( = 2) 71l —
Cla) YaP"[ fi({ 225 s2m)({ —z1) 1 A d(].
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Hence

gé aa; P" [f] 215 ,Zj—1a(>Zj+1,-~;Zm)(c_zf)ildc] (2.44)
1y

+C(a) ' 2 P"[ (xa i) (21 = 5205 s2m) 1~ d(Z0 = 17) Ad(z1 = 1) ],

where 17:=2; — ( and we can take U = B(K, 0, R) such that U2+ U? = U? and U? is the addi-

tive group, Q;:={E€ U?: (zy,.. Zj-1,8:2Zj115...,2m) € Q}. Therefore, u € Clan-1(Q,Y).
Then
au -1 n -1
% C(a)" aq,P [fj(zl,...,zj,l,{,zjﬂ,...,zm)((—zj) d(]
! 5 L (2.45)
- @ 0P| (1002 (@22 z) ) (G- 21) " ndt
j
In view of condition (1), formula (6) in the proof of Theorem 2.18, and
fl(z) (X) aQJ I:f] (Zl, 7zj71)(>zj+l>---)zm)(C_Zj)ild(]
. of; s (2.46)
- C(a) "2 P" [Xoj (a_(‘({)zb---)zm)) ((—z1) dln d(]
(see Theorem 2.4), (2) follows. O

3. Antiderivational representations of functions and differential forms

3.1. Remark and notation. Let Q be a clopen compact subset in (K ® aK)™. Put

w(z,¢) = 2 (1) (G = zj) 7l Ay [(E(C—2)) 71 de&i (= 2) A (§(0 - 2)) 7!
xde&1({ — z)] for each z # { € Q?, where («')/ # o for each j=1,...,q9'; t =
L...,gym=<q <m(a),r<q<m(a) (see Sections 2.1 and 2.2.6); there are con-
stants 0 < €1 < €; < o such that

(2) €117 *[¢| < [Log(é(0))| < ;|| SI(I and £({) # 0 for each { € Q -z, £(0) = 1,
where z € Q, ¢({) € Cl9" (Q - 2,C,), Log(£({)) € (K® aK)™ for each { € Q —z;
here the embeddings used are: (K ® aK)" < (K(«))" — K(a,a") = Cp;s

(3) & is such that dew(z,{) =0 0on Q\ {z};

(4) s:=s({) := —ordg(aa)({) for each { € Q -z, z; # {; for each j, a’ is the root
of 1 in C, such that K(a)™ is embedded into K(a, ') = (K(a))(«'), |z|k(aa) =
|77]~°rdk@a (@) 77 is the same as in Section 2.1;

(5) limj—w 3.B((Keakym 2 2h P [W(2,{)] =t @m # 0. If f is a 1-form of class C'®"~1, we
define

6) (B4 f)(2) := gtaP"[ f({) Aw(z,{)] for each z € Q) encompassed by Q.

If f € CO"D(Q,Y), we define
(7) (Bho, /)(2) := gt ccanP" [ f ({)w(z,()] for each z € Q encompassed by 0Q), where Y
is a Banach space over L such that K(«) C L.
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TurOREM 3.1. Let Q be a clopen compact subset in B(K® aK)™, y,R), 0 < R < pV/(1-P),
Bp, Bh, given by Section 3.1, f € C0*1=D(Q,Y). Then
(1) f(2) = (Bjof)(2) — (B(”)éf)(z)foreachz =(Z1,...52m) € Q (see Theorem 2.20) such
that

) (fw)(zl)---azlflyzl + EXP(”)>ZI+IP-~>ZWL) = &](1’]) € SC(q+1’n_1)(‘W,G)L(AK(“)) Y))
foreachl=1,...,m and each € = €;, where

wr:={neKa): (z1,....,z1-1, 21+ Exp(1), 21415-. ., Zm) € Q}, (3.1)

wie := w1\ Log(B(K(a),z1,€)), 0< €j foreach j €N, limj . €;=0,0<qe€Z, 1<
n € N (see Section 2.2.6).

Proof. Fix z € Q. In the particular case &({ — Z) = Exp(n~5({ — Z)) properties (2), (3)
in Section 3.1 are satisfied and g, = C(a)m (20()”’ I due to formulas (2.2) and (2.3),
Section 2.2.4, and Theorem 2.4, since dZ A dz = 2adx A dy and yP"[dx] |b=b—a for
eacha,b € U,wherez=x+ay, x,y € U C K. Therefore, the family of such £ and w satis-
fying conditions (1)—(5) in Section 3.1 is nonvoid. In view of (3) in Section 3.1, d;w(z,()
=0o0n Q\ {z}, hence d(f({)w(z,()) 8f(() Aw(z,{) on Q\ {z}, since o f ({) A w(z,()
=0 on Q\ {z}. From Corollary 2.3 it follows that there exists § > 0 such that for each
0< € <3, € €Ik, there is the inclusion B(€) := B((K® aK)™,z,€) C Q and the following
equality is satisfied:

e P [ F(Ow(z,0)] = aaP" [ f(Ow(z,0)] — P[0 () Aw(z,()] (3.2)

for each z € Q and satisfying Section 2.2.4(i~iii), where Q(€) := {eQ:|{-2zl=¢}.In
the particular case, £({ — 2) = Exp(n*({ — 2)) due to Section 2.2.4:

ceae P f(Ow(z,{)]

= 2" s e P [ Z —1)"N(—7) ld(j/\l#j(dfl/\d(l)]

m
= 7 2m=Ds Q)M l(z ~ 1) B((Keak)m 12 0) 5

xP" {(jeacB(KeaaK,zj,e)Pn [f(() (i —zj) 71d(j]
A14j(dxar1 A dxap) }) ,

where z' = (z1,...,2j-1,Zj415+-»Zm)> X21-1,%2 € U, 21 = %311 + axy for each [ = 1,...,m
Therefore, there exists

limseape P"Lf(Ow(z,0] = f(2)gm (3.4)
due to (2) and (5) in Section 3.1, since there exists C = const >0, C < o0, such that

|B(6)Pﬂ[(f(() —f(Z))W(Z,()] | =< C€||f(() _f(Z)HC(o,n—l)(B(E))y) (3.5)
foreach0 < e < 4. g
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CoROLLARY 3.2. Let Q and f be as in Theorem 3.1 and let f be derivationally (q,n)-
holomorphic on Q, then

f(z) = (Bl f)(z) foreachze & (3.6)

(see Theorem 2.20).

Remark 3.3. For m = 1 formula (1) in Section 3.1 and (2.10) are equivalent; they are
the non-Archimedean analogs of the Martinelli-Bochner and Cauchy-Green formulas,
respectively (cf. the classical complex case in [8]).

3.2. Definitions and notations. Consider a clopen compact Q C (K& aK)™ and a C(@"1)-
function v: Q X (0Q)% - (K& aK)", v = (V1,...,Vm), 0< 8 <0, v=v(z,0), z€ Q, { €
(0Q)%, V€ := {z € X : d(z,'¥) < €} for a topological space X with a metric d and a subset
Y cX,d(z,¥):=infieyd(z,x),0<€,0< g€ Z,1<neN. Suppose

¢(s) := — ordk(aw) V(2,0), 5= —ordk(au)({ —2) (3.7)

such that
(1) lim_.oo §(s) = oo
for each z € Q and { € (9Q)°. Put

;)f(wz,m

where A € B(K,0,1). Impose the condition
(2) A devi(2,0) ATy d{; # 0and 1"(2,(,A) # 0

foreachz € Q, { € (0Q)?, and A € B(K,0,1). Let also
(3)

+AHE—@)

3.8
3 (3.8)

o= (1-

Y(z,0) = > (=) —25) 7 dG Ak [E(v(2,0)) T de (v(z,0) )
j=1 .

A E(L-2) " de& (- 2)].

If f € CO"D(9Q,Y), we set
(4) (L35 )(2) := g5, tcaaP" [ f (O (2, ()]
for each z € Q), where Y is a Banach space over L such that K(«) C L. Put also
(5) V(Z;(,A) = 2;”:1(_1)'”-1((] - Zj)ild(j /\k#j [(WV(ZJ()A))il(éZ,( + d,\)r/,t(z,(,/\) A
(§({ = 2))"1dc&(( —2)]
for each z € Q, { € (3Q)%, A € B(K,0,1). If f is a C(*"~1-1-form on 0Q, put
(6) (R5Lf)(2) := g, teannex o) P [ f(O) A y(z,(,0)]
for each z € Q. Suppose that v is such that
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(7) dry(z,¢) = 0 for each { # z. In particular, if v(z,() = { -z, then
Lyof =Biaf>  Ryaf =0, (3.10)

since y is the (m,m)-form by &, O) forv(z, () =C—z.

THEOREM 3.4. Let Q be a clopen compact subset in (K & aK)™ and let v(z,(), Ly, and R%))
be given by Section 3.2, f € Cl4*"=D(Q,Y). Then

(1) f(2)=(L55f)(z) — (RE50f)(z) — (BAIf)(z) foreach z € Q (see Theorem 2.20) such
that

(2) (f)’)(zl:-n,zl—bzl + EXP(”I)aZHl,--me) =: 1/71(77) S Sc(q+1’n_1)(wl,€>L(AK(“)7 Y))
foreachl=1,...,m, € = €;, where

wr:= wi(z) == {n € K(&) : (z1,..., 211,21 + Exp(1), 21115, Zm) € QF, (3.11)
we := wy \ Log (B(K(a),z1,€)), 0<e€; €Tk, ’

foreach j €N, limj.w€;=0,0<q€7Z 1<n¢&N (see Section 2.2.6).

Proof. The use of Theorem 3.1 reduces the proof to that of the formula
(3) (R5391)(2) = (Ly f)(2) = (B3 f)(2)
for each z € Q) and satisfying condition (2). In view of (2) in Section 3.1 and (7) in

Section 3.2 we have d¢ 1 y(z, (,A) = 0,since dga[dea(”)] =0. Therefore, dea [ £ ()y(z,(,A)]
= (df({)) Ay(z,(,A), since (f) Ay = 0. From (3) and (5) in Section 3.2 it follows that

)/(Z, (al) |/\=O = 1/’(%();

Y@M g = D~ —2;) ¢ (3.12)

j=1

Akt [ (B0 =2) e (( - 2) A (EC—2) debi( - 2)].
Mention that A = P"1[}, hence A € »C@" (B(K,0,1),K). Then for degree reasons
ceaaP"[ fyh=g] = tcaaP"[ fw], (3.13)
where w is given by (1) in Section 3.1, dimg Q = 2m, dimg 0Q = 2m — 1. Then

G ccooresP {dea [ f(Oy(z, M)}
= g ceaonesP" {0 f (O) Ay(z, (M)} (3.14)
= (R5091)(2)

foreachz € (N), where B := B(K,0,1). On the other hand,

3((0Q) x B) = (=1)*"1((3Q) x {B} — (9Q) x {0})

= —(0Q) X {B} +(0Q) x {0}. (3.15)
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In view of Corollary 2.3,

@xsP"{deal fyl} = —aaP" [ fw] +aaP" [ fy], (3.16)
hence formula (3) is accomplished. O

COROLLARY 3.5. Let f be as in Theorem 3.4 and of = 0 on Q, then
f2) = (L35 f)(2) (3.17)

for each z € Q) (see Theorem 2.20) and satisfying Theorem 3.4(2).

3.3. Definitions and remarks. Let Q) be a clopen compact subset in (K @ aK)™, and con-
sider the following differential form:

(1)

W(2,0) = > (=1 —2) 7'l A (8 —2) " 0¢.8( - 2)
st (3.18)

A E(C-2) " A& - 2)).

Let M be a compact manifold over Kand let ¢ : Q — M — (K(«))N be a sCl4*1-1-
diffeomorphism (see Section 2.2.5). Then the diffeomorphism ¢4 w of the differ-
ential form w is the differential form on M. Consider these differential forms on
M also and denote them by the same notation, since {¢((;) : j} are coordinates
in M. Therefore, Theorems 3.1, 3.4 and Corollaries 3.2, 3.5 are true for M, also
because of Theorem 2.2 and Corollary 2.3, where M:= ¢! (Q) (see Section 2.2.5
and Theorem 2.20). If f is a C*"~ 1 differential form on M, then we define

(2) By f)(2) := gt eemP [ f({) AW(z,{)] for each z € M encompassed by oM. If f
is a C(0"~1_differential form on M, then we define

(3) (B3 f)(2) := qplecomP" [ f({) A W(z,{)] for each z € M encompassed by oM.
Write w as

(4) w(z,() = Z;“:Bl Y:(z,({), where Y, is of bidegree (0,¢) in z and of bidegree (m,m —
t—1) in {. Decompose f as follows:

(5) f = 2irs=deg(f) fits)» Where fu) is the (I,s)-form on M. Then fi;5)({) ALy ;=0
for each [ > 0, hence Bjj; f = B} f(0.deg(f))- On the other hand,

FOAY(2,0) =0 if deg(f)>q+1,

temP"[f(O) AYi(2,{)] =0 when deg(f)<q+1, (3.19)

by the definition of the antiderivation. Therefore,
(6) By f = cemP"[ fio,deg( 1) (€) A Yeeg(r)-1(2,0)] for 1 < deg(f) < m,
(7) B}y f = 0 for deg(f) = 0 or deg(f) > m, similarly,
(8) Biy f = ccomP™ [ fio,deg(1)({) A Yaeg(f)(2,¢)] for 0 < deg(f) <m—1,
(9) By, f =0 for deg(f) = m,
hence By, f is of bidegree (0,deg(f) — 1); P4, f is of bidegree (0,deg( f)). Using the no-
tation of Section 3.2, define
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(10)

(1) —2)) G Aksj [(E(2,0)) 0k (v(2,0))
1 (3.20)

A EL-2) de& (- 2)],

‘/N/(Z:() =

M=

J

(1) §(2,6,4) = ST (= DI = 2) 71l Ak [ (2.600) 7 0z + d)n? (2,6,0) A
(E(0—2) 71 ( = 2)].

If f € C""V(oM, L(AK(a),Y)), put

(12) (L)) = gl geamP" L () A T &0, o

(13) (Ryy )(2) := g ceompesP [ f({) A P(2,(,A)] for each z € M := ¢~ 1(Q) (see
Section 2.2.5 and Theorem 2.20). There exists the decomposition

(14) y(z,(,A) = Z:Z)l Y!(z,{,A), where Y} (z,{,A) is of bidegree (0,t) in z and f is of
bidegree (m,m —t—1) in ({,A). Let f be a bounded differential form on oM, f =
Zf(l,s): then Rgchf = RS}CIf(Q,deg(f)) and f(() AY{(z,(,A) =0 if deg(f) >t+1 by
the definition of P", (¢t yyeamxsP"[ f({) AY{(2,{,A)] = 0if deg(f) < t+1, hence

(15) Rs&f = (eaM,/\eBPn[f(O,deg(f))(() A Yseg(f)fl(Z»CJ)] ifl < deg(f) =m,

(16) Ry, f =0 if deg(f) = 0 or deg(f) > m. Similarly,

(17) ¥(z,() = Z:Z)l Y!(z,(), where Y} (z,{) is of bidegree (0,¢) in z and of bidegree
(m,m—t—1)in {, hence

(18) Ling f = ceamrP" [ flodeg(£) A Yieg(p) (2 0) ] if deg(f) =m—1,

(19) Ly f = 0if deg(f) = m. If v(z,{) = { — Z, then LY, f = B\, f-

THEOREM 3.6. Let M be a compact manifold over K and let B}, and BE,, be given by
Section 3.3. Suppose that f is the Cl4*1"=D_(0,t)-form, 0 < t < m. Then

(1) (-1)'f(2) = (Bh f)(=2) - (B}Qéf)(z) + (éB}Qf)(z)for each z € M such that

2) (f A W) o ¢zise.zi1,20 + Exp(n),zictse.nzm) =1 Yi(y) € sClObn=D(wy,
L(A(K(«)),Y)) for each | = 1,...,m and each € = €;, where w;:= {n € K(a) :
(z15...>z21-1,21 H ExXp(1), 21415 .. Zm) € O, wpe 1= wp \ Log(B(K(a),z,€)), 0 < €; for
eachjEN,limj.o€;=0,0<g€Z,1<neN,

Proof. Using the diffeomorphism ¢ it is possible to reduce the case to Q C (K& aK)™. If
q = 0, then by (7) in Section 3.3 B, f = 0 and f = Bl f — Bf,df Theorem 3.1(1). Since
(2) is satisfied, v and £ € C14"), then B, f and B4df are in sC") (wyc, L(A(K(®)),Y))
foreachl=1,...,m, € = €;. From the definition of Bj; it follows that

sup||®* (B&Of) (zhi™ ..., h&" 5 (i, .., 8) — D (BROS) (yshT™ s S5 (s G ] ctam
< Cillfllcam

1— ﬂ—25m | ,
(3.21)

where s =5({ ~2), U=+ - -+, 0 <ty <n, hence (B};0f) € C@(M,L(AK()),Y)).
Analogously, B3, f and Bj, f are in C@"(M,L(A(K(a)),Y)). It remains to prove that in
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the sense of distributions,
(0Bjf)(2) = (=1)' f(2) — (B f) (2) + (Bjy0f ) (2) (3.22)

for each z € Q) and satisfying condition (2). This means that for each sC4*"~D_form v,
supp(v) C Q, the following equality is satisfied:
(3) (=D)'aP"[Bof Aov] = (=1)'aP"[f Av] —oP"[Bjo f Av]+aP"[B3(0f) Av]. In
view of formulas (6) and (8) in Section 3.3 B}, f and B{,df are of bidegree (0,¢)
and Bp f is of bidegree (0, — 1), we can assume that v is of bidegree (m,m — t).
Then (3) takes the form
(4)

(=1 caeaP"[ £ () A #(2,0) A dv(2)]
= (=1)";caP"[ f(2) A¥(2)]
— e@xaP" [ f(Q) AW(z,0) Av(2)]
+ e P"[0f () A W(z,0) Av(2)].

(3.23)

Put
(5) 0(z,0) := X7 (=1)"N(; = 2)"Ndl; — dzj) ey [E(C — 2)) 71008 (C — 2)
A (E(0—2))7109¢,.&({ — 2)], then from (1) and (3) in Section 3.1, and d;, = d¢ +
d, it follows that
(6) dg,zg(z,f) =0 for { # z, since 9({; —z;) = 0, d; =0.

Then all monomials in 5(2, {) — w(z,{) contain at least one of the differentials dzi,...,dz,.
v(z) of bidegree (m, m — t) contains the factor dz; A - - - A dz,,, hence from (5), (6) it fol-
lows that
(7) de2(W(2,0) A ¥(2)) = dzt(0(2,0) A¥(2) = (=1)"710(2,0) A d¥(z) = —1W(2,{) A
0v(z) for { # z, since w(z,() contains the factor d{; A - - - A d{,,. Hence (7) im-
plies
(8) dz¢(f(Q) AW(2,0) A(2)) = (Of () AW(2,C) Av(2) = (=1) f({) A W(2,{) A 0¥(2)
for { # z. Then
(9) 0(QAxQ\U(e)) N [(KeaK)™ xsupp(v)] = ((9Q) x Q) U (Q x 9Q) —U(e)) N
[(K & aK)™ x supp(v)], where U(e) := {({,z) € (K& aK)" x (K& aK)": |{ —
z| <€},0<€<e€p,0< €< ,is fixed. In view of Corollary 2.3 and formulas (8),
9),
(10) @ayxavax@)P"[f(() A W(z,0) A v(2)] = au@P"[f(() A W(z,0) A ¥(z2)] =
\ueP"[(Of () AW(2,0) Av(2)] — (=1) a2 \ue)P"[f({) AW(2,0) A dv(2)].
For B, := {{ € (K@ aK)™ : |{| < €}, there exists 0B; such that T(dB; X (K® aK)™") =
oU(€), where T((,z) := (z+(,2), T: (K® aK)" X (K® aK)" — (K ® aK)>". The differ-
ential form v(z) contains the factor dz; A - - - A dz,,,, hence w(z,{) A v(z) = w(z,{) A v(2)
and T*(f({) A w(z,0) A¥(2)) = Zm:tﬁ(zﬁ-f)d(i%f)“ Aw(z,{) A v(z), where T* is
the pullback operator on differential forms (see Section 2.2.5). The degree of w(z,()
is 2m — 1 and 2m — 1 = dimK(dB; ), consequently, d(Z + OM A w(z, Ol B2 )x (Koak)m =
dz™" A w(z,0) 080 ) (Koak)m-
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Therefore, taking R >0 such that QO ¢ B(K@aK)™,0,R) =: Bg : yue)P"[ () Aw(z,{)]

= (= D'ee P [ Z 1=t ter10uien P [ fi(z + §) A w(z,()]dz" A v(2)], since dzM A w(z,()
= (=D'w(z,)dz" for |I| = t, Q+Q C Bgr + Br = Bg, where supp(f) C Q (see Lemma
2.16). In view of Theorem 3.1,

cer1@uenP" [ filz+ ) Aw(z,0)] = fi(2) + cerr0uenP" {[ filz+ ) — fi(2)] Aw(z,0)}
(3.24)

for |I| = t, which tends to f;(z) when € tends to zero, since supp(f) is bounded, where
“1(dU(€)) = (0B ) X (K® aK)™, and inevitably

limauo P"[£() A #(2,0) A%(2)] = (=D'aP"[£(2) A ¥(2)]. (3.25)
O

THEOREM 3.7. Let M be a compact manifold and let L}y, Ry, By be given by Section 3.3.
Suppose f is the C{9"-(0,t)-differential form, 0 < t < m. Then
—1)!f(z) = (L5 ) (2) — (R0 f + Baof)(2) + 0(Ryyy f + By f) () for each z € M
such that

) (f A y) ° ‘p(zl;-~~aZl—1aZl+EXP(’7)>ZI+1: 1Zm) = V/l(’/]) ESC (q+Ln=1) (le)L(AK( )
Y)) foreach | = 1,...,m and each € = €, where

w:=1{neK(a): (z1,...,z1-1, 21+ Exp(1), Z1115 .. ., Zm) € Q},

wie = wy \ Log (B(K(a),z1,€)), € >0 foreach jeN, (3.26)

lime; =0, 0<geZ 1<neN.

j—oo
Proof. 1fv(z,{) =~z then L}, = B, Ry\; = 0, and Theorem 3.7(1) reduces to Theorem
3.6(1).If t = 0, then by (7) and (16) in Section 3.3 B}, f =0 and R}y, f = 0, hence Theorem
3.7(1) reduces to Theo;ern_3.4(l). Assume 1 <t < m. In view of Section 3.3 and Theorem
3.6, Ly f, Royof, Biof, oRYy; f, and 0By f are in C'@™ (M, L(AK(a),Y)). Using the dif-
feomorphism ¢, consider Q) instead of M. In view of Theorem 3.6(1) it remains to prove
(3) A(RES f)(2) = (Big f)(2) = (L¥5 ) (2) + (RS9 f)(z) for each z € ) and satisfying
condition (2). Consider the differential form

(4)

(=17 —2) " G Mgy [ (2 0N) ™ doani(z,.00)

K=

'M§

Il
—_

j (3.27)

AEQ -2) g - 2)].

In accordance with Sections 3.1 and 3.2, £ and v are of class of smoothness C(@") hence
x and y belong to C@"(W,L(AK(«),Y)) for suitable clopen W C Q x (K ® aK)" x
B(K,0,1) such that Q x (0Q) x B(K,0,1) C W, { # z. Condition (7) in Section 3.2 is sat-
isfied for £({ — 2) = Exp(n=5({ — £)) and v(z,{) such that £(v(z,)) = Exp(m~#9v(z,()),
where gz(s) is given by Section 3.2 and satisfies formula (3.7) and condition (2) of
Theorem 3.1. Therefore, the family of such differential forms y and w is nonvoid. In
view of conditions in (3) Section 3.1 and in (7) Section 3.2, in the sense of distributions,
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(5) dzeax = 0on W, thatis, ;eqP"[(d,¢1x) A v] = 0 for each v as above. From d¢x = 0
and (5) it follows that (éz( +d) +9.)(x) = 0, together with d;(y) = 0, implies
(6) (00 +d)(P) +0:(P) + (00 +dr+0.) (k=) =00n W, { # 2,
since (x — y) contains a factor d,7} and d,(x —y) = 0. The monomials in (x — ) with
respect to dz;, dzj, d(j, d¢; i» and dA and, consequently, in (éz,( +dy+9;)(y — ) contain
at least one of the differentials dzy,...,dz,, as a factor. The same is true for d,(y). The
monomials in (54 +d))(¥) do not contain any of the differentials dz;. Hence from (6) it
follows that (9; +d)) () = —0,y. Then
7)4(,A(f/\)7)=(a(+d,\)(f/\y (af /\y+ tf/\ a(-f—d,\y— af /\y—
d.(f A y). Applying Corollary 2.3 and formula (7) to the differential form f Ay
on (0Q) X B, where B:= B(K 0,1), gives
(8) (te@q)xBP" (af — Oz¢neeaxsP'lf A Fl = GoxioP'lf A Pl -
@) PLf A Y]
On the other hand, Y -0 = v, Yl1-g = W, and formula (8) is equivalent to formula (3)
due to formulas (3), (12), and (13) in Section 3.3. O

CoroOLLARY 3.8. Let M and f be as in Theorem 3.7 and 0v/0Z =0 on M. Fort = 1,...,m,
put

(1) ¢ .7( 1)f (RaM+BX4). Then

(2) f(z) = o(T7 f)(2) + (T7419f )(2)
for each z € M and satisfying Theorem 3.7(2). If of =0, then u= T'f is a solution of
0 = f(z) foreach z € M and [ satisfying Theorem 3.7(2).

Proof. In view of formula (18) in Section 3.3, L3y, f = amP"[ f A Y/]. Since 0v(z,{)/0z =
0, the monomials in Y} of bidegree (0,¢) in z vanish if ¢ > 1. Therefore, LaMf 0and (2)
follows from Theorem 3.7(1). Then from (2) it follows that du(z = f(z)if af( f(z) =0 for
each z € M and satisfying Theorem 3.7(2), where u = T} f. O

Definition 3.9. Let M be a manifold over K satisfying 2.4 with (g + 1, n)-antiderivationally
holomorphic sCl*1"~1_transition maps ¢; o (/5]_1 between charts (U;, ¢;) and (U}, ¢;) for
each Ui U; # @ and let GL(N,K(«)) be the group of invertible N x N-matrices with
entries in K(«).

(1) A (g + 1,n)-antiderivationally holomorphic vector bundle over K(«) of K(«) di-
mension N over M is a sCl*bn=D_yector bundle over M with the characteristic fiber
(K(a))N and with (q + 1,n)-antiderivationally holomorphic atlas of local trivializations of
B, thatis, with a family {U;, h;} such that {U;} is a (cl)open covering of M, for each j, h; is
a sC*bn=D-bundle isomorphism from B|y, onto U; x (K(a))V; the corresponding tran-
sition mappings g; ; : U; N U; — GL(N,K(«)) defined by (z,g;(2)v) = h; o h]-_l(z,v), z €
UinUj,v € (K(a))N are (q+ 1,n)-antiderivationally holomorphic sC4*1"~1) -mappings.
Equipped with the atlas {B] U h;}, the bundle B gets the structure of the sC (@ln=1) _ (g4
1,n)-antiderivationally holomorph1c manifold.

(2) A sClat=D_bundle homomorphism between sC4*1"~D — (g + 1,n)-antideriva-
tionally holomorphic vector bundles B; and B, is called sC4*1"=1 — (g + 1,n)-antideri-
vationally holomorphic if it is sC*"~1 — (g + 1,n)-antiderivationally holomorphic
as amap between the sC4*1"~1) — (g + 1,n)-antiderivationally holomorphic manifolds
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B; and B,. A ¢Clattn-1) _ (g + 1,n)-antiderivationally holomorphic section of a
K(a)sCa*1m=1) — (g + 1,n)-antiderivationally holomorphic vector bundle is defined sim-
ilarly.

(3) A sClatbn=1) — (g + 1,n)-antiderivationally holomorphic vector bundle over M
is called sC@*1"=D — (g + 1,n)-antiderivationally holomorphically trivial if there exists
aCatbn=l —(g+1,n)-antiderivationally holomorphic bundle isomorphism from B onto
M x (K(a))N. Bis called sC4+1"~1) — (g + 1,n)-antiderivationally holomorphically trivial
overa (cl)open set U C M if B|y is sC4"1"~1 — (g + 1,n)-antiderivationally holomorphi-
cally trivial. A sCl@*1#=1 — (g + 1,n)-antiderivationally holomorphic trivialization of B
(over U) isa sC4*1"=1) — (g + 1,n)-antiderivationally holomorphic bundle isomorphism
from B onto M x (K(a))N (B|y onto U x (K(a))N).

(4) A K(«)-valued differential form of degree r over M can be defined as a section of
the vector bundle A" T* (M)k(a), where T* (X )k(q) is the K(«) cotangent bundle of M over
scalars b € K(a) (see [19]). A differential form of degree r with values in a sC(a+17~1 —
(g + 1,n)-antiderivationally holomorphic bundle (or a B-valued differential form) over
M is a section of the bundle A"(T* (M)k(a)) ®Kk(a) B-

If {U;: j €]} isa(cl)open covering of M such that B is sCl4"11~1) — (g + 1,n)-antideri-
vationally holomorphically trivial over each U; and {g;;:i,j € J} is the corresponding
system of transition functions, then a differential form with values in M can be iden-
tified with a system {f;} of N-tuplets of differential forms on U; such that f; = g;; f;
over U; N Uj for each i,j € J. A differential form f with values in B is called a (0,1)-
form, sC@*1*=1 — (0,t)-form, and so forth if for each (cl)open subset U C M, where
B is sCl4*1n=1 — (g + 1,n)-antiderivationally holomorphically trivial, the corresponding
N-tuple of differential forms on U consists of (0,¢)-forms, sClatln=1) _ (0 t)-forms, and
so forth. Each (s, t)-form with values in a sC@*"~1 — (g + 1,n)-antiderivationally holo-
morphic vector bundle can be identified with some (0, t)-forms with values in some other
n-antiderivationally holomorphic vector bundle.

Definition 3.10. Let M be a Cl4*1"~D — (g + 1,n)-antiderivationally holomorphic mani-
fold, let B be a C4*1"1) — (g + 1,n)-antiderivationally holomorphic vector bundle over
M, and let {U;: j € J} be a (cl)open covering of M, where ] is a set. A derivationally
(q +1,n — 1)-holomorphic Cousin data in M means a system {f;;: i,j € J} of deriva-
tionally (g + 1,1 — 1)-holomorphic sections f;; : Uy N U; — B such that f; ; + fjx = fix in
U;n Uj N Uy for each i, j,k € J. The corresponding Cousin problem consists in finding a
system { fj : j €]} of derivationally (g + 1,n — 1)-holomorphic sections fj :Uj — B such
that f;j = fi— fj in Uin Uj for each i, j € J.

THEOREM 3.11. Let M be a sC4t1"=1 — (g + 1,n)-antiderivationally holomorphic manifold
and let B be a CY9™"=1 — (g + 1,n)-antiderivationally holomorphic vector bundle over M.
Consider two conditions:

(1) each derivationally (q +2,n — 1)-holomorphic Cousin pro_blem in B has a solution;
(2) each B-valued SC(q”_’”‘l) —(0,1)-form on M such that df =0 on M has a section
u: M — B such that ou = f on M.

i Then from (1), (2) follows. From (2) it follows that (1) in the class u € C\9*2"~D and
du € sCa*n=V s (q+1,n — 1)-antiderivationally holomorphic.
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Proof. (1)=(2). First, that f is a sC@*"~_form means that there exists a refinement
{U; : k} of {U;} consisting of clopen U, such that g(Uy) is bounded in (K(a))" and
flu, € sClattn=l), where At' (M) = {(Uy,gk) : k}. Choose At' (M) such that [ [N],; = M.
Denote {Uj : k} by {Uj:j €]} also such that 0U;,, satisfies the condition of Theorem 2.37
up to the C4*n~D_diffeomorphism. Then Theorem 2.37 on each U; gives a solution u;
such that (u; — u;) are derivationally (g + 2,n — 1)-holomorphic on U;n U; and form
derivationally (g + 2,7 — 1)-holomorphic Cousin data in B. According to (1) there exists
a derivationally (g + 2,n — 1)-holomorphic section h; : U; — B such that u; — u; = h; — h;
in U; N U;. Set u:= u; — h; in U; for each j € J.

(2)=(1) in the class u € Cl4*2"~D and ou € sC@*1"~V is (q+ 1,n — 1)-antiderivation-
ally holomorphic. Characteristic functions of clopen compact subsets belong to C®. It is
possible to take a refinement At (M) of At(M) such that its charts satisfy Lemma 2.16,
that is, gr(U}) are balls satisfying Lemma 2.16. Choose At' (M) such that [y LN],Q = M. De-
note it also by At(M). Since M is metrizable, it has an atlas consisting of clopen compact
charts, hence M has a C*-partition of unity, yx := yu,. For eachiand j, fi ; is ¢Clatln=1) _
(q + 1,n — 1)-antiderivationally holomorphic, hence yif; is also by Lemma 2.16
sClathn=1) _ (g +1,n — 1)-antiderivationally holomorphic for suitable refinement {U; :
j €7}, since xk fr,j = fijl (Uindom(fij)> O(Xk fi,j) = 0. Set 0 := — 2k Xk fx,j in Uj, hence by
Theorem 2.20 there exists a C(4*>"~V-solution of the Cousin problem: f;; := > yk(fix +
fej)=0;—0;inUinUj; 00; = 901' in U; N Uj. Hence by (2) there exists a section u: M —
B such that ou = 96, in U;. The setting h; = 6; — u in U; provides (1). O

Remark 3.12. Theorem 3.4(1), Theorem 3.6(1), and Theorem 3.7(1) are the non-Archi-
medean analogs of the Leray, Koppelman, and Koppelman-Leray formulas, respectively.

3.4. Notes and definitions. The local field K is the disjoint union of balls B(K,z;,R) for
a given 0 < R < oo, where z; € K for each j € N. Therefore, the antiderivation operators
,P" on B;j := B(K,zj,R) induce the antiderivation operator gk P" on K such that

(D) x(P"[fD(y) = X2 (6, P [ x5, D ()

on C@"D(K,L), where KC L C Cp, L is a complete field relative to its uniformity. Then

pC@(KLY) := P (CeD(KLY)) @Y,
SC(q+1,n—1)(Kl’Y) = {g c C(q+1,n71)(Kl, Y) :g(xl,...,Xz) Epy C(q+1,n—1)(Kl’Y)
for each j = 1,...,1},
P CT D (KLY) := Py (CO V(KL Y)) @ Y,

]

(3.28)

where C@"~D(KLY) and pC@" (KL, Y) are supplied with the inductive limit topologies
induced by the embeddings C'¢"~V(B(K,z,R’),Y) — C@"" V(KL Y), 0 < R’ < o0, where
wP" =P} - - -xP}, x1,...,x € K, Y is a Banach space over L such that K C L (see also
[17,20]).

Therefore, in the standard way we get the definition of a locally compact manifold M
over K of class pC'@" or sCl4*1:n=1, that is, transition mappings of charts ¢;; € pCl4")
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or ¢;; € sCltln=1) where Vj is clopen in M, ¢;(V;) is clopen in K,1<leN,I=
dimg M (see Section 2.2.5). Using charts and pC@" (Kl,K™) or Cl*L=D (KL, K™), we
get the uniform space pC'4™ (M,N) or sCl4*1"=D(M,N) of all mappings g: M — N of
class pC@" or sCa+Ln=1 respectively, where M is the pC'%"-manifold or sC+-"—1-
manifold on K! and N is the pC(@"-manifold or sC4*""~!-manifold on K™, respec-
tively, that is, yjogo ¢>j_1 is of class pC'@" or sC4*1#=1 for each i and j such that its
domain is nonempty, where At(M) = {(V},¢;) : j}, At(N) = {(W},y;) : j}. The unifor-
mity in pC‘@" (KL, K™) or Cla*17~D(K!,K™) induces the uniformity in pC4" (M,N) or
sCltbn=D(M,N), respectively (see [17, Remark 2.4]).

For a locally compact manifold M over K of class pC(@" or sC@+1n=1) let Dif P(4™ (M)
or Dif S@*17=D (M) denote a family of all diffeomorphisms f : M — M, f(M) = M, (f —
id) € pC, and (f~1 —id) € pC# or (f —id) € sCa 1=V and (f~1 — id) € gCla+1n=D),
respectively, where id(z) = z for each z € M, M — KN, pC@" (M, M) = pC@" (M,KN),
sCtbr=D(M, M) — sC@*br=D(M,KN) such that ( f —id) is correctly defined, N € N.

TuEOREM 3.13. (1) The uniform spaces Dif P9 (M) and Dif S4*1"=D (M) are the topo-
logical groups foreach0 <qe€ Z,1 <neN.

(2) They have embeddings as clopen subsets into pC'4™ (M, M) and into sC 4"~V (M,
M), respectively.

(3) The uniform spaces pC@"(M,N), sC@*'"=D(M,N), DifP@" (M), and
Dif St =1 (M) are complete and separable.

(4) The groups Dif P4 (M) and Dif S4+1"=D (M) are ultrametrizable when M is com-
pact.

(5) The uniform spaces Dif P\@") (M) and Dif S9*1"=D (M) have the infinite-dimensional
manifold structures over K.

Proof. First, prove that compositions of diffeomorphisms preserve classes pC‘¢™ (M, M)
and sCltb"=D(M, M), respectively. For this consider two difffomorphisms v,¢ €
Dif P4 (U™) or Dif S+~ (U™) simultaneously. A diffeomorphism ¢ is called the
simplest diffeomorphism if it has the coordinate form

xj=¢;j(y1,....ym) = y; foreachj=1,.. ., k-1Lk+1,..,m,

5= 91 Jn) = B (oo Yo ), 329
where xj,y; € U, x = (x1,...,Xm), m = dimg M. Suppose that the marked number k is
for ¢ and [ is for y. To prove ¢ o y € Dif P@"(U™) or Dif S4*b+=D(U™) it is suffi-
cient to verify that {¢x(y1,..., V- 1L VIV 15- o> Ym)s Vit 15-- -5 Ym) — Yk} s in pCl@m (U™ K)
or sC@tln=D(Um™ K) correspondingly.

In C°(U™,K™) there exists the polynomial Amice base {Qux):ne Ng'} and it is also
the base in C'@" (U™ K™), where Ng := {j:0<jeZ} (see [1, 17]). The linear ordering
A in K induces the linear ordering A in K" and hence in U™ : x Ay if and only if x; =
Vis--sXjo1 = Yj-1, XjAyj, where 1 < j <m, y; €K, y = (y1,..., ym) (see Section 2.2.1).
Take, in particular, U = B(K,0,1). Then (§,...,[3) is the largest element in U™. Let Zg :=
{zeK:z= zfzozlm, 0<teZ, z€{0,0,...,0p1}}, then Zg is dense in B(K,0,1) and
is countable. There are decompositions
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(D) yi(y) = Zengm a(ny)Qu(y),

(i1) ¢r(y) = Zneny aln, ¢x)Qu(y),
where a(n,y;) and a(n,¢x) € K. In view of the conditions imposed on y; and ¢, and the
continuity of the K-linear operators y Py,

(iii) ¢k(}/) = {ZnEN()’" a(n,8¢k(y)/8yj)(UP;‘jQ,,(y) |%,0)} +¢k(}’1>~ Y=Y Yitlse e
Ym)

for each j = 1,...,m and analogously for y;, where y;, and y; € U. To show (¢x(y15...,
Ve=1Y1()s Yiatoe s Ym) — i) € sCATL=D(U™ K), it is sufficient to find hj: U™ — K
such that

(V) UPE i1 = =hjo+ Sk (oo Yk 15 V1Y), Ykatse s Yim) = Vi
for each j = 1,...,m, where hjy € K.

From (iii) and the continuity of the K-linear operator y P}, it follows that to resolve

(iv) it is sufficient to find a solution of the problem

V) uPE Rl = (WPLY" 1) - - - (Pl Y 15)0)
for each [ € N and each tk = (t’f,...,tfn) eNgL k=1,...,1, y' = yil .- -yf;,”. On the other
hand,

(Vi) uP"z" = Yoz jcn-t1hen  tE—1) - (t— j+ 1)227](2k+1 —z) /(G + 1),
wherez € U, t € N, j € Z. Moreover, (a/ayj)UP;J [ (canv(umxy) = I, hence (v) can be sim-

plified in the considered class of p,y, C(()q+1’n71)(U'",K)—functions acting on both sides of

(v) by (9/9y;). For each z € Zx there exists a solution ;h(y) of (v) for each y € U™ such
that y; Az, since the set {u € Zx : uAz} is finite. In view of (vi) and Section 2.1, this fam-
ily {:h(y) : z € Zx} can be chosen consistent, that is, ;4(y) = ,h(y) for each y such that
yjAmin(z,1). Therefore, there exists
(vii) h =lim, g h
such that (v) is satisfied for each y € U™, In particular, id € sC4*1"=D (M, M).
For the class pC¢" (U™, K) it is sufficient to find the solution of the problem
(viii) (ynP"h)(y) = (unP"y") - -+ (unP"y")
for each I € N and each t* NG, k=1,....L [t| ==t + - - - + t,, > 1. In view of (vi),
Section 2.1, and y»P" = uPy - uPy there exists a consistent family ./ satisfying (viii)
for each z € Z§ and each yAz such that ;h(y) = ,h(y) for each y Amin(z,#), where
n € 7%, since the set {u € Z¥ : uAz} is finite, (/9y1) - - - (0/0ym) umP" | (can-n(umxy) = I,
and the acting by (9/0y;) - - - (/0ym) on both sides of (viii) simplifies it in the class of
pCéq’n)(Um,K)—functions. Then
(ix) h = lim,_(g..p)-h is the solution of (viii). Therefore, (¢ o y(y) — y) and (¢ o
v~ (y) — y) belong to sC@*17=D or pC@", respectively. The proof above also
shows that if a bijective surjective y is in pC%" (M, M) or in sC4*1"=D(M, M),
then y~! is in pC" (M, M) or in sC\7*1"=1 (M, M), respectively, by solving the
equation of the type v(id(y) + g(y)) = —g(y) relative to the function v for known
g := ¥ —id. Hence using charts (\N/j,$j) of At(M) such that $j(\N/j) =BCU"+z;
with suitable z; € K™ for each j, Kt(M ) is the refinement of At(M), and B sat-
isfies Lemma 2.16 (or applying the above proof to B instead of U™), we get
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that (¢ o ¢ o y* o ¢~1(y) — y) belongs to pC@" or sC*1n=1) respectively, on
its domain for each / and j, where k = 1 or k = —1. Together with Lemma 2.16
it provides ¢ o y* € Dif P@" (M) or ¢ o y* € Dif S4*1=D (M) correspondingly
foreachk e {—1,1}.

If M is compact, then pC@"(M,Y) is normable for a Banach space Y over L, KCL
(see analogously [19, Lemma 2.1]). Let V = B(C4"~1V(M,Y),0,1), consider W := {f €
CUmD(M,Y) 1 f(x1,0.,Xm) € o, COH D (M, Y) N (P} (V) ®Y) for each j=1,...,m}.
In view of K-convexity of V the set W is absolutely K-convex (disked) and W is ab-
sorbing in C*1"~D(M,Y), since P} are continuous K-linear and V is absorbing in
C@"=D(M,Y). Then W is bounded in the weak topology in sC@*1*~1(M,Y). There-
fore, the Minkowski functional on sC*1"~1(M,Y) generated by W induces a norm in
sCltbn=(M,Y) (see [20, Exercise 6.204]). Each space p, C{7*1"~1(M,Y) is complete
(see, analogously, [19, Lemma 2.1]), since Y is complete.

Consider the K-linear space ¥ := p ., Cl*11=D (M, Y) n sCla+1n=D (M, Y) and topolo-
gies 7p j on p, CU"""D(M,Y) and 75 on sC*1""D(M,Y) induced by norms in these
spaces, then 7s|y; C 7p; for each j due to continuity of PY, (for M supplied with co-
ordinates x; due to pCl@"- or sC4*n~1_diffeomorphisms with Q as in Section 2.2.5)
and definition of 7, since ker(P,’C‘j) = {0}, and due to the open mapping [20, Theorem
(14.4.1)], there exists the continuous K-linear operator

(Pr) : (p G MY ), 1) — (COM DMLY, vy )s (330)

consequently,
- (gn-1)
(ng) : (\PJ‘)(),T5|\}IJ)0) (C qn (M, Y), | * ||C(’1v"*1)(M,Y)> (331)

is continuous, where W0 :=¥; N py, C(()qﬂ’"*l) (M,Y),¥;=¥;o®Y.Hence sClrbn=1(pf)
Y) is complete relative to the above norm.

For noncompact M using a refinement At'(M) consisting of compact charts (V},¢’)
and the strict inductive limits opr(q’”)(Ué=1 V]{, Y) or SC(W]’”‘U(U?:l V;, Y),leN, we
get that pC@"(M,Y) and sC*1"~1D(M,Y) are complete relative to their uniformities
(see [20, Theorems (12.1.6) and (12.1.8)]). In view of [20, Theorem (12.1.4)] these spaces
are separable.

Let (f —id) € pC@" (M, M) or (f —id) € sC@*"=D(M, M) such that M is compact
and max;, | f;; —id;; || < 1, where f;:=¢o f o gbj_l, dom(f; ;) =: Uyj, || * || is taken of
the space pC(‘i’”)(Uz,j,Km) or SC(q“’”’l)(UzJ,K”’). In view of the ultrametric inequality
fij is the isometry, since || f;; —idy; || = sup,, la(n, fi; — idl,j)|||Qn||) where || * || is the
norm in pC'%"(Uy;,K™) or in sC*1n-D(Uy;,K™), respectively, induced by the norm
in Cl"=D(U;;,K™) and the Minkowski functional as above. Then [|gi; © fi,;j — idg; [| <
max(|lgks o fij — fijll, |l fi,; —idy; ). Using partial difference quotients, P", and expansion
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coefficients in the Amice base, we get that max;; ||f1,;1 —idy; I < Cmaxy;l f1; —idy; |,
C = const > 0 is independent of f (see the proof of [17, Theorem 2.6]), consequently,
Dif P@@" (M) and Dif S+~ (M) are topological groups. For noncompact M having
At(M) with compact charts and using the strict inductive limit topology, we can take
an entourage of the diagonal in pC@" (M, M)? or in sC4"1"=D(M,M)? of the form {f :
I fij —idy; | < [7| for each [, j € A}, where A is a finite subset in N. In view of [18, Theo-
rem A.4] there exists the inverse mapping fl’;l, which is the local diffeomorphism, when
dom(fi,;) # @. Then f|w =id|w for W:= M\ Uje; V]f for each f € Dif P4" (M) and
Dif $@*b"=1(M) with W dependent on f, where supp(f) := cl({x € M : f(x) # x}) is
compact, and a finite subset A of N is such that supp(f) € Uje) V;. This implies that
f(M) = Mand f~'(M) = M, consequently, Dif P@") (M) and Dif $@*1"~1 (M) are neigh-
borhoods of id in pC@" (M, M) and in sC+b=D (M, M), respectively, left shifts in these
groups Lo f := g7 f imply that these groups are open in the spaces corresponding to
them. Since Dif P‘@" (M) and Dif S4*1"~D(M) are complete, they are clopen in
pC@" (M, M) and sC4*1"=D (M, M) respectively (see [5, Theorem 8.3.6]).

Finally, statements (4) and (5) follow from the proofs of [17, Theorems 2.4 and 3.6]
modified for the classes of smoothness considered here. |

3.5. Remark and definition. Let M and N be two locally compact C(%") -manifolds over
K and f € C'(M,N), dimgM =: my;, dimg N =: my. Denote € := €(f) :={z € M:
rang(d, f) < my} and this set is called the set of critical values of f. The nonnegative
Haar measure v on K" as the additive group induces the measure y on N with the help
of charts, since A#(N) has a disjoint refinement, where v is normalized by the condition
»(B(K™,0,1)) = 1.

Tueorem 3.14. Let f: M — N be a C'-mapping of a sC'0*>"=V_-manifold M into a
sC* =D _manifold N, where | > max(myr,my). Then u(f(€)) = 0 (see Section 3.5).

Proof. Using the charts of atlases it is sufficient to prove the theorem for f: U — K"¥,
where U is an open subset in K”¥. For my = 0 and my = 0 the statement is evident,
therefore, consider my; = 1 and my = 1. Put €;:= {y € U: f(j)(y) =0 for each j < i},
hence € > €, D €, O.... To finish the proof use the following two lemmas. O

LemMa 3.15. p(f(€\€,)) =0.

Proof. Consider n = 2, since for n = 1 there is only one partial derivative and from y € €
it follows that y € €,. Let y € € \ €, then there exists a nonzero partial derivative, for
example, df1(x)/dx; at the point x = y. There exists a mapping h: U — K™ such that
h(x) := (fi(x),x2,...,%Xm,) for which rang(dh(y)) = my. In view of [18, Theorem A.4]
the mapping A is the diffeomorphism of some open V' = V(y) C U onto a neighborhood
W 3 z:= h(y). The set €’ of critical points for g:= f o h™!': W — K™ coincides with
h(V N'€), thatis, g(€") = f(V Nn'€). Consider the family g* : ({t} x K™~ 1)n W — {t} X
K™ -1 where t € B(K,0,1). The point b is critical for g' if and only if it is critical for
g. In view of the induction hypothesis (g’ (€(g"))] = 0 in {t} x K™ 1 hence u(g(€’) N
({t} x K™~1)) = 0 for each t € B(K,0,1). From the Fubini theorem in L'(K™,u,R) it
follows that u(g(€')) = 0. O
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LEmMMA 3.16. u(f(€x)) = 0 for each k such that 1 < k <.

Proof. Take a covering of € by a countable number of balls of radius § >0, § < ), where
0o > 0 is sufficiently small. Take one of these balls to be B. From the definition of €, and
the Taylor formula (see [22, Theorem 29.4] and [18, Theorem A.5]) it follows that f(x +
h) = f(x)+ R(x,h), where [|[R(x,h)|| < bllh||*, x e €, x+heB, b < Il fllciugmyy <
for a compact clopen U in K™, Divide B into a disjoint union of g balls of radius §/¢,
q = p~". Let By be a ball of this partition such that B; > x. Then each y € B, has the form
y = x+h, where |h| < 8/q. Then f(B;) C B(K"™, f(x),b/q"*"), consequently, f(€x N B)
is contained in the union of g™~ balls B; having 3; u(B;) < g (b/g*+!)ms = bmv gk,
Then lim,_., b™ g~k = 0. O

Therefore, Lemmas 3.15 and 3.16 finish the proof of Theorem 3.14.
COROLLARY 3.17. Theset N\ f(€) is densein N, where f € C'(M,N) and | >max(myy, my).
CoroLLARY 3.18. If dimg M < dimg N, then u( f (M)) = 0.

Definitions 3.19. A C'-mapping f : M — N is called an immersion if rang(df |, : TxM —
Tt N) = my for each x € M. An immersion f : M — N is called an embedding if f is
bijective.

THEOREM 3.20. Let M be a compact sC4*"=V_ or pC\@" -manifold over a local field K,
dimg M = m < co. Then there exists a sC 4"V or pC@" -embedding v : M — K*"*! and
a sCatbn=l_ or pC@" -immersion 0 : M — K™, respectively. Each continuous mapping
f:M—XK>1or f: M — K*" can be approximated by T or 6 relative to the norm || * || co.

Proof. Let M — KN be the sC4*1"~1_ or pC(@"-embedding of Theorem 2.1. Consider
the bundle of all K straight lines in K. They compose the projective space KPY~!. Fix
the standard orthonormal (in the non-Archimedean sense) base {ej,...,ex} in K¥ and
projections on K-linear subspaces relative to this base P! (x) := Zeje L xje; for the K-linear
span L = spang{e;j:i € Ar}, Ap C {1,...,N}, where x = Z?lejej, xj € K for each j. In
this base consider the function (x,y) := Z?r:] xjyj. Letl € KPN-1, take a K-hyperplane
denoted by KN~! and given by the condition (x,[I]) = 0 for each x € K)~!, where 0 #
[1] € K¥ characterizes I. Take ||[[]]| = 1. Then the orthonormal base {qi,...,qn-1} in
Kf\]_l together with [I] =: gy composes the orthonormal base {qi,...,qn} in KV (see
also [28]). This provides the projection 7 : KN — KN~ relative to the orthonormal base
{q1>-..,qn}. The operator m is K-linear, hence m; € sClathn=1) "since P" is the K-linear
operator, UP)’}j/\ej b= Xb- a)ej foreachA € Kanda,be U, j=1,...,N.

To construct an immersion it is sufficient that each projection 7; : TxM — K} ! have
ker[d(m(x))] = {0} for each x € M. The set of all x € M for which ker[d(m(x))] # {0}
is called the set of forbidden directions of the first kind. The forbidden directions are
those and only those € KPN~! for which there exists x € M such that I' C T, M, where
I' = [I] +z, z € KN. The set of all forbidden directions of the first kind forms the C@"~1-
manifold Q of dimension (2m — 1) with points (x,1), x € M, [ € KPN~1, [I] € T.M, where
Ccl@m c Clatln= foreachn > 1, g > 0. Take g : Q — KPN~! given by g(x,[) := I. Then g is
of class C'¢"~D_ In view of Theorem 3.14 u(g(Q)) = 0if N — 1 > 2m — 1, that is, 2m < N.
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In particular, g(Q) is not contained in KPN~! and there exists Iy ¢ g(Q), consequently,
there exists 7, : M — KjY " Since sC4*1"~1) or pC@" respectively is dense in C(@"~1),
then there exists a mapping x such that x € sC@*1"~1 or x € pC@" is sufficiently close
to 7, relative to || * [|c1 correspondingly such that x o 8 is the immersion, since M is
compact. In view of Theorem 3.13 the composition « o 8 is of class sC@*1"~1 or pC")
correspondingly. This procedure can be prolonged, when 2m < N — k, where k is the
number of the steps of projection. Hence M can be immersed in K*™.

Consider now the forbidden directions of the second type I € KPY~!, for which there
exists x # y € M simultaneously belonging to I after suitable parallel translation [I] —
[1] +z, z € KN. The set of the forbidden directions of the second type forms the manifold
S:= M?\ A, where A := {(x,x) : x € M}. Consider v : S — KPN~!, where y(x, y) is the
straight K-line with the direction vector [x, y] in the orthonormal base. Then u(y(S)) =
0 in KPN~! if 2m + 1 < N. Then the closure cl(y(P)) coincides with y(P) U g(Q) in
KPN-1. Hence there exists lo & cl(y(P)). Then consider m;, : M — K ' Since sC@*1n~1)
or pC@" correspondingly is dense in C'¢"~1), then there exists a mapping « such that
Kk € sCla*bn=1 or x € pC@" is sufficiently close to 7, relative to || * ||c1 such that ko T
is the embedding, since M is compact. In view of Theorem 3.13 the composition x o T
is of class sC@t1n=1 or pC@" correspondingly. This procedure can be prolonged, when
2m+1 < N —k, where k is the number of the steps of projection. Hence M can be em-
bedded into K*"*1, O

Remark 3.21. Theorems 3.14 and 3.20 are non-Archimedean analogs of the Sard and
Whitney theorems. In Theorem 3.20 classes of smoothness globally on M are important.
Theorem 3.20 justifies the considered class of manifolds M in the theorems above about
antiderivational representations of functions.

3.6. Note and definition. The proof of Theorem 3.13 shows that the family of all diffeo-
morphisms of M of the class pC((%,s)) as defined slightly differently in [19] also forms the
topological group. Moreover, spaces pC((t,s), Q — Y):=P(L,s)[C((t,s—1), Q- Y)] @Y
and pC™**)(M,Y) are topologically K-linearly isomorphic, where I = [¢] + 1, [¢] is the in-
teger part of t, [t] < t,0 <t € R, although the antiderivation operators P(l,s) on a clopen
subset X’ = Qin B(K™,0,1) (see [15, Section 2.11] and [16]) and o P° above (see Sections
2.1 and 2.2.5) are different.

Define by induction spaces sC+0(Q,Y) := {f € CHOO(Q,Y) : f(x1y...,%m) €
UPﬁfl(é’lcf*(l‘l’o)(Q, Y)) @ Y foreach j = 1,...,m}, where [ € N, {C*10(Q,Y) :=
sCHL0(Q,Y), 3CH(Q,Y) := C5(Q,Y).

THEOREM 3.22. Let M be a \C\a+"=V_manifold over K with | = 2, then there exists a clopen
neighborhood TM of M in TM and an exponential 5C@*n=Y _mapping exp : TM — M of
TM on M.

Proof. As in the proof of [19, Theorem 2.4] it can be shown that the non-Archimedean
geodesic equation V¢ = 0 with initial conditions ¢(0) = xo, ¢(0) = yo, x0 € M, yo € Ty,M
has a unique ISC(‘J”’”’”—solution, ¢:B(K,0,1) — M. For a chart (U}, ¢;) containing x, put
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1//](17) = ¢j o c(b), then

1//](17) = ¢] (x()) + UPqulJr” ()’0 + qu+l+n—1f)’

(3.32)
vi(b) = yj(b;xo,0), b e B(K,0,1),

where f € ZS’ZC(‘F”"’“(B(K,O,1),K”’), consequently, the mapping V; x B(K™,0,6) >
(X0, y0) = ¥;(Bsx0, y0) is of class of smoothness LClatbn=1) " where 0 < 8, X = ¢j(xo) €
Vi €V, C¢;(Uj), Vi and V; are clopen, § and V) are sufficiently small, to satisfy the
inclusion y;(B;x0, yo) € V> for each (%, yo) € Vi x B(K™,0,0). See [19, Section 2.4] the
rest of the proof. O

THEOREM 3.23. Let QO = Oy X - - - X Q,y, be a polydisk in (K ® aK)™ and let

sCUtbn=U(Q K(a)) := { f € sCOTD(Q,K(a)) : 0f =001 Q}, (3.33)

then SC_(q“'”‘l)(Q,K(oc))|(~2 is the algebra over K, where Q:={zeQ: z; is encompassed
by 0Q;} foreach j = 1,...,m, z = (21,...,2Zm).

Proof. Evidently sC4*"~D(Q,K(«)) is the K-linear space, since é(Af) = Aéf for each
Ae€Kand d(f +g) = df +dg for each f,g € sC@*1"D(Q,K(a)). It remains to ver-
ify that fglg € sCU™"D(Q,K(a))|g for each f and g € sCl4*L"~1D(Q,K(a)), where
as in Lemma 2.16 sC4*"D(Q,K(a))|g = {hlg : h € sCat"=D(Q,K(a))}. In view of
Theorem 2.20(i), if f and g € sC@*"~D(Q,K(a)), then f and g are locally z-analytic on
0, consequently, fg is locally z-analytic on €3. In view of (2.34) or by direct computation,

(i) resg(z — &)/ = 0 for each —1 # j € Z and each & € ),

since resg h = 0 for each h having a decomposition of the form (2.33) with a_; = a_,(h)
= 0; indeed it is true for the particular h(f3) = h(0) for a loop y encompassing 0 and such
that h(x) := Exp[jLog(y(x))] and j € Z, x € B(K,0,1), which leads to the general case.

On the other hand, (fg)’ (z) also is locally z-analytic on Q. Therefore, y Pr(f9) (@)dz)]
= 0 and particularly

(i) y,P"[(9(f (2)g(2))/9z})dz;] = 0
for each loop y; in ); encompassed by an (see Theorem 2.13), where z = (z1,...,2m),
Q=01 X+ XQp, QjisaballinKeakK, z; € Ko aK for each j = 1,...,m. Then
9(y,P"[(9(f(2)g(2))/0z))dz;])  d(fg)(2)

g

(3.34)

E)zj aZj ’
)dzj] = (F ) (@215 (B2 erZm)
]

—(f9)(z15..,2j-1,9j(0),2j1 15, Zm).
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Moreover,
y].P”[hj(z)dzj]
= BPn[hJ (ZI)--~ ,Zj—l,)/j(())zj+1;---,Zm)d)’j(()],

()

= BPn[Vj (Zl,-~-,Zj—l))’j(();zjﬂ,---,Zm)d)’j(()])
gP" (3.35)
aa—( [hJ (Z],...,Zj—l,)/j(()azjﬂy---er)de(C)]

= h]- (Z],...,ijl,)/j((),Zj.'.l,...,Zm)y,(())
a% [V] (Zl,...,Zj—layj(C)’ZjJrl""’Zm)d)/j(()]

=vj(215..>2j-1,Y(0)sZjs15- - 2Zm) ¥ () y; € pC"(B,K(a)),

where v;(z) := d(fg)(2)/0zj, { € B:= B(K,0,1). Proceeding as in the proof of Theorem
3.13 with the help of (i), (ii), and formula (1) in Section 2.2.5 (see (iii)—(vii) in Theorem
3.13), find hj € Cl""V(Q,K(a)) such that h; is locally z-analytic and ,, P"[h;(zy,...,
Zj-1,j>Zjs15-..>2m)d(j] = (fg)(2) — (fg)(20) for each z € Q and each j = 1,...,m, where
y; is a path with y;(0) = z;o € (NZJ-, yi(B) = z; for each j = 1,...,m. This means that
(fg) € sCabn=D(Q,K(a))lg, since

0y, P"
ng (1) (21218215 n2m)
0y, P"
- m[hj(zbm)Zj—h(j,Zjﬂ,...,Zm)d(j], (3.36)
0,,P"
g} [hj(Zl)"-)zjfl)(jazj+17---)Zm)d(j] = (th(z)
Vi

(see formulas (i) and (ii) in Section 2.2.6) such that uPy, h; |§§,0 and UP;jh i Iﬁ)o as particu-
lar cases of y; along axes x; and y; give the desired result. O

COROLLARY 3.24. The space sCl4*1"D(Q,K(a)) lg; contains all locally z-analytic functions
on Q.

Proof. Mention that 1 € C(q’”’l)(Q,IS(oc)) and yPP1|Y =x - X0, uPtL15 = y—yo, ,P"1 =
yi(B) — yj(0) = z;j — zj 0, where y; C Q}, hence zj — zj € sClatln=1(0) K(a)) for each zj
and zj € (Nlj = ﬂj((N)j). It is possible to take y; contained in balls B such that B C Q;.
Therefore, ,P" SEoxm = Sk, ary, P"xp, € sCl=1(Q,K(ar)), where By are balls satis-
fying conditions of Lemma 2.16, a; € K(«), k € N. In view of Theorem 3.23 each poly-
nomial in z belongs to sC4*11=1(Q,K(a))| . Using expansions into series by z of locally
z-analytic functions and limits of sequences of polynomials in z and Lemma 2.16 leads to

the conclusion that each locally z-analytic function on Q belongs to sC4*1~1 (Q, K(«)) lgs-
a
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Note 3.25. From Corollary 3.24 it follows that a sC'¢*1"~D-manifold M is locally z-
analytic manifold and there exists a refinement At(M) = {(ﬁj,$j) : j} of At(M) such
that transition mappings (E o (Zj_l are z-analytic for each (N/'j N0 + @.1If f is z-analytic
on ), then f' is z-analytic on Q). Therefore, there exists a family Y of the cardinality
card(Y) = c:= card(R) of all functions f € sC@*"~D(Q,K(«)) and f is not z-analytic
on &, since a locally z-analytic function is not necessarily z-analytic. For example, take
h € Cl"=D(Q,K(«)) locally z-analytic on Q and nonanalytic on Q and put f(z) = ,P"h,
where y(0) = zp, () = z, Q is a polydisk (see Corollary 3.24). Indeed, each locally poly-
nomial in z nonpolynomial & : Q — K(«) and its iterated antiderivatives along paths
hi(z) .= ythk_l, k=1,...,n, hy := h, up to order n, fit this construction. For nonlocally
compact fields there is the theory of analytic elements [6].

CoROLLARY 3.26. Let L be a non-Archimedean field such that K(«) C L with a valuation
| - |1 extending that of K(a) and let L be complete relative to | - |1. Suppose Q is a clopen
compact subset in (K ® aK)™ and Y is a Banach space over L. Then f € sCl4*bn=1(Q, Y)lg
if and only if there exists an open subset W in L™ and a locally z-analytic function F on W,
z € W, such that W n (K& aK)™ D Q andFly = f.

Proof. The valuation group I'k(y) is discrete, hence Y as the K(«)-linear space has an or-
thonormal base {e; : j € A}, where A is a set (see [28, Chapter 5]). Therefore, F: W — Y
has the decomposition F(z) = > ; jenFj(z )e], where F; : W — K(a). Since F is locally z-
analytic, then f is locally z-analytic on Q) and in accordance with Corollary 3.24 fe
sC@tbn=1(Q,Y)| . Conversely, if f € sClatln=0(Q, Y)IQ, then by Theorem 2.20 f is lo-
cally z-analytic on (), consequently, for each ¢ € () there exists a ball B(K(«),{,R({))
with 0 < R({) < oo on which the power series 2.20(2) is uniformly convergent, that is,
limx o |ax[LR'¥" = 0, hence this series is uniformly convergent on B(L,{,R({)) also. Put
W = Ues B(L, G, R(0)). U

3.7. Definition and note. Let L, Q = Q(f), W = W(f) be satistying conditions of
Corollary 3.26 with m = 1. Let also T € L(Y) be a bounded L-linear operator on a Ba-
nach space Y over L with a nonvoid spectrum

o(T):={beL: (bl —T)isnot invertible in L(Y)} (3.37)

(see [28, Chapter 6]), where L(X,Y) is the Banach space of all bounded L-linear opera-
tors T: X — Y for Banach spaces X and Y over L, | Tl := sup_,cx | Tx[I/|lxl, L(Y) :=
L(Y,Y). Suppose, in addition, that for each z € W with dist(z,Q) < co there exist R >
dist(z,Q) and { € Q such that B(L,z,R) ¢ W and B(L,z,R) n Q) = B(K® aK,{,R) C Q.
Denote by (T) a family of all functions f with y; € sCl4"1"~V(w,L) (see Theorem
3.23), where W is a clopen neighborhood of 6(T), W = W(f), Q=W n (K& aK) # &,
0 < dist(9€2,0(T)) := inf,cyq dist(z,0(T)), dist(z,G) := infeglz— y| for GCLand z €
L0<geZ l<neN,ys(y):= f(z+Exp(n)), w:= w(z) := {n € K(a) : z+ Exp(n) €
O}, z€ O, we =w\Log(B(K(a),z,€)), € =€j, €;>0 for each j € N, lim;_. €; = 0, there
exists a locally z-analytic function ¥y on W such that ¥¢|5 = ys (see Corollary 3.26).
Put

(1) f(T) = Cla) 9o P"[ f(OR(G; THdC],
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where R((;T) = ({I — T)™! for { € p(T) := L\ 0(T) and the antiderivative is supposed
to be convergent in the strong operator topology sense, that is, 3o P"[ f({)R({;T)yd(]
converges for each y € Y. There are other definitions of spectral sets (see [28, Chapter
6]), but this one is used here.

THEOREM 3.27. Let o(T) # @, o(T) C L, f g€ F(T), a,b €L (see Section 3.7). Then

(i) af +bg € F(T) and aF(T) + bg(T af+bg

(ii) fg € F(T) and f(T)g(T) = fg
(iii) if f(2) = D p_oakzk on W(f) such that W(f) D o(T), then f(T) = > gar Tk

Proof. Section 3.7 is correct, since xI — T is invertible in L(Y) for each x € p(T) := L\
o(T), hence r,(T) := SUPeq(T) |x| < | Tll, where p(T) is open in L and R(x; T is locally
x-analytic on p(T) (see [3, Chapter VII], [4], and [28, Chapter 6]).

(i) follows from Section 3.7 and Corollary 3.26.

(ii) In view of Corollary 3.26 and Theorem 3.23 fg € F(T), since W(f) n W(g) =
W(fg) > o(T). Without loss of generality take Q(f) encompassed by 0Q(g)
shrinking Q( f) a little if necessary such that W(f) D o(T), W(f) € W(g). Then

fF(T)g(T) = Ca)reanin) P"[f (OR(S T)A | xeanig P [g (k) R(x; T)dx]

3.38
= C(a) *ccan(e) P [¢cann P [ f (g (®) {R($ T)R(i; T) yd{ ] dxc]. (3:38)
On the other hand, R({; T)R(x; T) = (R((;T) — R(x; T))(x — {)~'. Therefore,
(1)
F(T)g(T) = Cla) *tean ) P" [ f (OR(E; T {xeaaig) P" [g(x) (k — {) " dx] }d{] (3.39)

— C(o) *reangP" [g(0)R( T) {¢ean P [ f (O (x — ()1 d{ ]} dx].

The second term on the right-hand side of (3.39) is zero, since 0Q( f) is encompassed by
0Q(g), k € 0Q(g), { € dQ(f) (see formulas 2.20(2), (3), (4)). Hence

f(Dg(T) = C(@) " teaninP"[ f(Og(ORGTIAL] = (fg)(T (3.40)

(iii) follows from Section 3.7 and formulas 2.20(2), (3), (4) applied to f({)R((;T)y
foreachy €Y. O

THEOREM 3.28. Let o(T) + @, o(T) C L, f € F(T) (see Section 3.7). Then f(o(T
o(f(T

TueoreM 3.29. Let o(T) + @, o(T) C L, f € F(T), g € F(f(T)) (see Section 3.7), and
h(z):=g(f(2)) foreachz € f~1[W(g)n f(W(f))]. Thenh € F(T) and h(T) = g(f(T)).

Proof. Theorem 3.28 follows from Theorem 3.27 analogously to [3, Theorems VII.3.10],
[4], and [9, 3.3.6]. The function f is locally z-analytic on W( f), g is locally z-analytic on
W (g), hence h is locally z-analytic on f~}[W(g) n f(W(f))]. In view of Theorem 3.28
o(f(T)) c f(W(f)) N W(g), hence h is defined on open W (h) such that W(h) > o(T).
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Without loss of generality take W(g) D f(W(f)). Put

S(i) = Cle) " rean( ) P"[RGT) (k- £(0)) ' dC], (3.41)

then in accordance with Theorems 3.27 and 2.8 (applied onto pieces of Q( f) affine ho-
motopic to points) (kI — T)S(k) = S(x) (kI — T) = I, consequently, S(x) = R(x; T'). There-
fore,

g(f(1)) = C(a) "o P"[g(¥)R (1 £ (T))dx]
= —C(@) 20 P" [aa() P g (WRG T) (k — £(0) ' d{}d] (3.42)
= C(a) M aanP [R(GT)g(f({))dl] = h(T). O

ProrosritioN 3.30. Let fi € F(T) for each k € N (see Section 3.7) and there exists a clopen
subset W in L such that o(T) C W C oy W(fn). If fx converges to f uniformly on W,
then f,(T) converges to f(T) uniformly on each totally bounded subset in Y.

Proof. There exists a sequence C(a) 190 P"[ fi(()R({; T)d(] in L(X,Y) in the topology of
pointwise convergence, where L(X,Y) denotes the Banach space of continuous L-linear
operators S: X — Y for two Banach spaces X and Y over L. In view of [20, Theorem
(11.6.3) and Example 11.202.(g)], this sequence converges to an L-linear operator on Y
uniformly on each totally bounded subset in Y. O

Definition 3.31. A point zy € 6(T) is called an isolated point of a spectrum o(T), if there
exists a neighborhood U of z; such that o(T) N U = {z,}, where U satisfies the same
conditions of Section 3.7 as W does. An isolated point zy € o(T) is called a pole of an
operator T or a pole of a spectrum, if a mapping R({;T) has a pole at zy. An order j(z)
of a pole z is an order of z; as a pole of R({; T).

TueoreM 3.32. Let f,g € F(T) (see Section 3.7). Then f(T) = g(T) if and only if f({) =
g({) on a clopen W such that o(T) \ Ujepa{zi} € W C L, where z1 € Q C K@ aK is a pole
foreach | € A, Ais a finite set, and (f — g) at z; has zero of order not less than j(z;) for each
I=1,...,k

Proof. Without loss of generality take g = 0 and let f =0 on W \ Ujca {z1}. Then due to
Theorem 2.8 (applied onto each piece affine homotopic to a point)

f(D)=C@)™" X anP" [ f(ORETHAC], (3.43)

leA

where B; := B(K® aK,z;,R;), 0 < R; < o0, and B; N o(T) = {z;} for each [ € A. Since
f(OR(LT) is regular on By, then by Theorem 2.32 f(T) = 0. Conversely, let f(T) =0,
then by Theorem 3.28 f(o(T)) = 0. The set o(T) N (K ® aK) is compact and it can be
covered by a finite union of balls B(K & aK, {j,R;), 0 < Rj < co. If B(K® oK, (j,R;) N o(T)
is infinite, then for each limit point x of the latter set there exists a clopen neighborhood
V, on which f|y, = 0 (see Theorem 2.25). Therefore, o(T) N ((K® aK) \ U, V) con-
sists of a finite number of isolated points {A;: 1= 1,...,k}, since O D (K& aK) na(T), Q
is compact. Let f # 0 on any neighborhood of ;. Since A; € ¢(T) and f(o(T)) = {0},
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then f has a zero of finite order j, hence gi(z) = (A — 2)//f () is locally z-analytic on a
neighborhood of A,. From the proof of Theorem 3.23 it follows that

() R(GT) = 35— @m(b = )™
on B(€) := B(K® aK,A,,€) for a sufficiently small 0 < € < o, where

(2) a-m = —Cla) ap@e) P*[(A1 = O™ 'R((; T)d(] = —(MI = T)"'h(T),
h(T) denotes a function equal to 1 on B(€) and zero on a neighborhood of A; for each I # 1
such that y(y) = h(z + Exp(n)) satisfies Section 3.7, which is possible due to Lemma 2.16
and Corollary 3.26, since Exp(#) is locally #-analytic. Then a_,,—y = —(MI = T)"h(T) =
0 for each m = j. O

3.8. Definition and note. A subset V of o(T) clopen in o(T) is called a spectral set if
it has a clopen neighborhood Wy satisfying the same conditions of Section 3.7 as W
and Wy N (o(T)\ V) = @. In accordance with Lemma 2.16 and Theorem 3.23 consider
f € %(T) such that f|y =1 and flsr)v = 0, which is possible due to Corollary 3.26,
since Exp() is locally #-analytic. Put E(V;T) := f(T). In view of Theorem 3.32 E(V;T)
depends on V, but not on a concrete choice of f from its definition. If V no(T) = &, put
E(V;T) =0.Write also E(z; T) := E({z}; T) for asingleton {z}. Anindex j = j(z) ofz€ L
is the smallest integer j such that (zI — T)/y = 0 for each y € Y with (z] — T)/*1y = 0.

TaeoreM 3.33. Let T, W, Q, K(«) be as in Corollary 3.26, Section 3.7. If zy is a pole of T
of order j, then zy € Q) has the index j. An isolated point zy € o(T) is a pole of order j if and
only if

(i) (20l = T)E(z0;T) = 0, (20 — T)7"'E(20;T) # 0.

Proof. In view of formulas (1), (2) in the proof of Theorem 3.32 z, is a pole of or-
der j if and only if (i) is satisfied, since a_,,—1 = —(20I — T)"E(20; T). The rest of the
proof is analogous to that of [3, Theorem VIL.3.18] and [4] due to Corollary 3.26 and
Theorem 3.23. O

In view of Theorem 3.27(ii)
E(V;T)E(V;T)=E(V;T) for each spectral set V, (3.44)

that is, E(V; T) is the projection operator on Y (see [28, Chapter 3]).

THEOREM 3.34. Let f € F(T) (see Section 3.7) and let V be a spectral set of f(T). Then
o(T) N f~1(V) is the spectral set of T and E(V; f (T)) = E(f "1{(V); T).

Proof. Let hy € F(T) such that hy(z) = 1 on a neighborhood V; of V, hy(z) =0 on a
neighborhood V; of a(f(T)) \ Vi, where Vi NV, = &, which is possible due to Theorem
3.23, Corollary 3.26, and Lemma 2.16, since Exp(#) is locally n-analytic. Then hy (f(T))
= E(V; f(T)). In view of Theorem 3.28 o(T) = f~Y(V) U f~Ha(f(T)) \ V), where
Y V)N f~Ya(f(T))\ V) = @. Since f is continuous, then f~}(V)and f~'(a(T)\ V)
are clopen in o(T). Therefore, o(T) N f~1(V) =:Y is the spectral set of T. Put ty(z) :=
hv(f(z)), then E(Y;T) = ty(T), since ty € &(T) due to Corollary 3.26. From Theorem
3.29 it follows that E(V; f(T)) = E(Y;T) = E(f~Y(V); T). |
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Remark 3.35. In the non-Archimedean case the Gelfand-Naimark theorem [4, Theorem
IX.3.7] and [3] is not true (see [28, Chapter 6]). Therefore, the existence of the projec-
tion operator E(V; T) for each spectral set V does not imply a spectral projection-valued
measure decomposition of T (see also [12]). Here we consider a particular class of op-
erators satisfying conditions of Section 3.7 for which the operator E(V;T) is defined for
each spectral set V, V .C o(T). Put Yy := E(V;T)Y. In view of Theorem 3.27(ii) and
Section 3.8 TYy C Yy, where Yy is the L-linear subspace in Y, since E(V;T) is L-linear,
denote Ty := Tly,.

THEOREM 3.36. Let V be a spectral set of o(T) # @ (see Section 3.7). Then o(Ty) = V. If
fe%F(T), then f € F(Ty) and f(Ty) = f(T)y. A point zo € V. N Q is the pole of T of
order j if and only if zy € Q is the pole of Ty of order j.

Proof. Take a marked point z € V and suppose z & o(Ty ). In view of Corollary 3.26 there
exists a function g € %F(T) such that g|y, = 0 on a neighborhood V; of V and g({) =
(z0 — {)~! for each { € V;, where V;isopeninL, VinV, = @, V, > ¢(T) \ V. In view of
Theorem 3.27(ii) g(T)(zl = T) = (zI = T)g(T) =1 —E(V;T). Then V C 6(Ty) as in [3,
Theorem VII.3.20] and [4].

Conversely, let z ¢ V. Consider h € %F(T) (see Section 3.7) such that h({)|y, = (z —
()~ and hly, = 0, where V; is chosen such that z ¢ V, V; is a neighborhood of V, V; is
as above. Then by Theorem 3.27(ii) h(T)(zI — T) = (zI — T)h(T) = E(V; T). Therefore,
h(T)y(zly — Tv) = (zIy — Ty)h(Ty) = Iy, since z & o(Ty), consequently, o(Ty) C V
andR(z; Ty) = R(z; T)y. Take f € &(T') and a neighborhood W of ¢(T') as in Section 3.7.
Then

f(T)y = Cla)'3aP"[ f(2)R(z; T)dz],,
= C(a) '9aP"[ f(2)R(z; Ty)dz] = f(Tv), (3.45)
E(z; T)E(V;T) =E(z;T) foreachzeV,

hence (zI — T)*E(z;T) = (zIy — Ty)¥E(z; T) for each k € N. In view of Theorem 3.33
zo € AN Visapole of T of order j if and only if it is a pole of Ty of order j. O

CoRroOLLARY 3.37. The mapping E — E(V;T) is the isomorphism of the algebra Y of all
clopen spectral subsets V of o(T') satisfying conditions of Section 3.7 on the Boolean algebra
{E(V;T):VeY}.

Proof. In view of Theorem 3.27 the mapping V — E(V;T) is the homomorphism. If
E(V;T) =0, then Yy =0 and (Ty) = &, hence V = o(Ty) = & by Theorem 3.36. If
V1, V, €Y, then evidently Wy, U Wy, and Wy, N Wy, (for Vi NV, # @) satisfy condi-
tions of Section 3.7 as W. Consider ¢(T) \ V for V € Y, then Wy N (o(T)\ V) = & (see
Corollary 3.24), hence W \ Wy satisfies conditions of Section 3.7 as W, since either each
two balls in L are disjoint or one of them is contained in another. Therefore, Y is the
Boolean algebra and hence {E(V;T) : V € Y} is the Boolean algebra. O

Note 3.38. In Sections 3.7-3.37 the generalization can be taken instead of Q) for a manifold
M which is sC4*b=D_diffeomorphic with Q.
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