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A new representation of remainder of Lagrange interpolating polynomial is derived. Er-
ror inequalities of Ostrowski-Grüss type for the Lagrange interpolating polynomial are
established. Some similar inequalities are also obtained.

1. Introduction

Many error inequalities in polynomial interpolation can be found in [1, 7]. These er-
ror bounds for interpolating polynomials are usually expressed by means of the norms
‖ · ‖p, 1≤ p ≤∞. Some new error inequalities (for corrected interpolating polynomials)
are given in [10, 11]. The last mentioned inequalities are similar to error inequalities ob-
tained in recent years in numerical integration and they are known in the literature as
inequalities of Ostrowski (or Ostrowski-like, Ostrowski-Grüss) type. For example, in [9]
we can find inequalities of Ostrowski-Grüss type for the well-known Simpson’s quadra-
ture rule,
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)]∣∣∣∣≤ Cn

(
Γn− γn

)
hn+1, (1.1)

where xi = x0 + ih, for h > 0, i= 1,2, γn, Γn are real numbers such that γn ≤ f (n)(t)≤ Γn,
for all t ∈ [x0,x2], and Cn are constants, n∈ {1,2,3}.

The inequalities of Ostrowski type can be also found in [2, 3, 4, 5, 6, 12]. In some of the
mentioned papers, we can find estimations for errors of quadrature formulas which are
expressed by means of the differences Γk − γk, S− γk, Γk − S, where Γk, γk are real numbers
such that γk ≤ f (k)(t) ≤ Γk, t ∈ [a,b] (k is a positive integer while [a,b] is an interval
of integration) and S = [ f (k−1)(b)− f (k−1)(a)]/(b− a). It is shown that the estimations
expressed in such a way can be much better than the estimations expressed by means of
the norms ‖ f (k)‖p, 1≤ p ≤∞.

As we know there is a close relationship between interpolation polynomials and quad-
rature rules. Thus, it is a natural try to establish similar error inequalities in polynomial
interpolation.
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We first establish general error inequalities, expressed by means of ‖ f (k)−Pm‖, where
Pm is any polynomial of degree m and then we obtain inequalities of the above mentioned
types. For that purpose, we derive a new representation of remainder of the interpolating
polynomial. This is done in Section 2. In Section 3, we obtain the error inequalities of the
above-mentioned types. In Section 4, we give some results for derivatives.

Finally, we emphasize that the usual error inequalities in polynomial interpolation
(for the Lagrange interpolating polynomial Ln(x)) are given by means of the (n + 1)th
derivative while in this paper we can find these error inequalities expressed by means of
the kth derivative for k = 1,2, . . . ,n.

2. Representation of remainder

Let D = {a = x0 < x1 < ··· < xn = b} be a given subdivision of the interval [a,b] and let
f : [a,b]→R be a given function. The Lagrange interpolation polynomial is given by

Ln(x)=
n∑
i=0

pni(x) f
(
xi
)
, (2.1)

where

pni(x)=
(
x− x0

)···(x− xi−1
)(
x− xi+1

)···(x− xn
)

(
xi− x0

)···(xi− xi−1
)(
xi− xi+1

)···(xi− xn
) , (2.2)

for i= 0, 1, . . . ,n. We have the Cauchy relations [7, pages 160-161],

n∑
i=0

pni(x)= 1, (2.3)

n∑
i=0

pni(x)
(
x− xi

) j = 0, j = 1,2, . . . ,n. (2.4)

Let D̄ = {x0 = a < x1 < ··· < xn = b} be a given uniform subdivision of the interval
[a,b], that is, xi = x0 + ih, h= (b− a)/n, i= 0,1,2, . . . ,n. Then the Lagrange interpolating
polynomial is given by

Ln(x)= Ln
(
x0 + th

)= (−1)n
t(t− 1)···(t−n)

n!

n∑
i=0

(−1)i
(
n

i

)
f
(
xi
)

t− i
, (2.5)

where t /∈ {0,1,2, . . . ,n}, 0 < t < n.

Lemma 2.1. Let Pm(t) be an arbitrary polynomial of degree ≤m and let pni(x) be defined
by (2.2). Then

n∑
i=0

pni(x)
∫ x

xi
Pm(t)

(
t− xi

)k
dt = 0, (2.6)

for 0≤ k+m≤ n− 1 and x ∈ [a,b].
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Proof. Let x be a given real number. Then we have

Pm(t)=
m∑
j=0

cj(x− t) j , (2.7)

for some coefficients cj = cj(x), j = 0,1,2, . . . ,m. (This is a consequence of the Taylor
formula.) Thus,

n∑
i=0

pni(x)
∫ x

xi
Pm(t)

(
t− xi

)k
dt =

m∑
j=0

cj

n∑
i=0

pni(x)
∫ x

xi
(x− t) j

(
t− xi

)k
dt. (2.8)

Let β(·,·) and Γ(·) denote the beta and gamma functions, respectively. We now calculate

∫ x

xi
(x− t) j

(
t− xi

)k
dt =

∫ x−xi

0

(
x− xi−u

) j
ukdu

= (x− xi
) j ∫ x−xi

0

(
1− u

x− xi

) j

ukdu

= (x− xi
) j+k+1

∫ 1

0
(1− v) jvkdv

= β
(
j + 1,k+ 1

)(
x− xi

) j+k+1

= Γ(k+ 1)Γ( j + 1)
Γ(k+ j + 2)

(
x− xi

) j+k+1

= k! j!
(k+ j + 1)!

(
x− xi

) j+k+1
.

(2.9)

From (2.8) and (2.9) it follows that

n∑
i=0

pni(x)
∫ x

xi
Pm(t)

(
t− xi

)k
dt =

m∑
j=0

cj
k! j!

(k+ j + 1)!

n∑
i=0

pni(x)
(
x− xi

) j+k+1
. (2.10)

From (2.10) and (2.4) we conclude that (2.6) holds. �

Theorem 2.2. Let f ∈ Cn+1(a,b) and let the assumptions of Lemma 2.1 hold. Then

f (x)= Ln(x) +Rk,m(x), (2.11)

where Ln(x) is given by (2.1) and

Rk,m(x)= (−1)k

k!

n∑
i=0

pni(x)
∫ x

xi

[
f (k+1)(t)−Pm(t)

](
t− xi

)k
dt. (2.12)

Proof. We have

Rk,m(x)= (−1)k

k!

n∑
i=0

pni(x)
∫ x

xi
f (k+1)(t)

(
t− xi

)k
dt− (−1)k

k!

n∑
i=0

pni(x)
∫ x

xi
Pm(t)

(
t− xi

)k
dt.

(2.13)
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From (2.13) and (2.6) it follows that

Rk,m(x)= Rk(x)= (−1)k

k!

n∑
i=0

pni(x)
∫ x

xi
f (k+1)(t)

(
t− xi

)k
dt. (2.14)

For k = 0 we have

R0(x)=
n∑
i=0

pni(x)
∫ x

xi
f ′(t)dt

=
n∑
i=0

pni(x)
[
f (x)− f

(
xi
)]= f (x)−Ln(x),

(2.15)

since (2.3) holds.
We now suppose that k ≥ 1. Integrating by parts, we obtain

(−1)k

k!

∫ x

xi
f (k+1)(t)

(
t− xi

)k
dt = (−1)k

k!
f (k)(x)

(
x− xi

)k
+

(−1)k−1

(k− 1)!

∫ x

xi
f (k)(t)

(
t− xi

)k−1
dt.

(2.16)

In a similar way we get

(−1)k−1

(k− 1)!

∫ x

xi
f (k)(t)

(
t− xi

)k−1
dt

= (−1)k−1

(k− 1)!
f (k−1)(x)

(
x− xi

)k−1 (−1)k−2

(k− 2)!

∫ x

xi
f (k−1)(t)

(
t− xi

)k−2
dt.

(2.17)

Continuing in this way, we get

(−1)k

k!

∫ x

xi
f (k+1)(t)

(
t− xi

)k
dt =

k∑
j=1

(−1) j

j!
f ( j)(x)

(
x− xi

) j
+
∫ x

xi
f ′(t)dt

= f (x)− f
(
xi
)

+
k∑
j=1

(−1) j

j!
f ( j)(x)

(
x− xi

) j
.

(2.18)

From (2.14) and (2.18) it follows that

Rk(x)=
n∑
i=0

pni(x)

[
f (x)− f

(
xi
)

+
k∑
j=1

(−1) j

j!
f ( j)(x)

(
x− xi

) j]

= f (x)−Ln(x) +
k∑
j=1

(−1) j

j!
f ( j)(x)

n∑
i=0

pni(x)
(
x− xi

) j
= f (x)−Ln(x), k = 1,2, . . . ,n,

(2.19)

since (2.3) and (2.4) hold. From (2.14), (2.15), and (2.19) we see that (2.11) holds. �
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3. Error inequalities

We now introduce the notations

ωn(x)= (x− x0
)(
x− x1

)···(x− xn
)
, (3.1)

Ck(x)=
n∑
i=0

∣∣x− xi
∣∣k∣∣xi− x0

∣∣···∣∣xi− xi−1
∣∣∣∣xi− xi+1

∣∣···∣∣xi− xn
∣∣ , (3.2)

Bk(x)=
n∑
i=0

(
Ski− γk+1

)∣∣x− xi
∣∣k∣∣xi− x0

∣∣···∣∣xi− xi−1
∣∣∣∣xi− xi+1

∣∣···∣∣xi− xn
∣∣ , (3.3)

Dk(x)=
n∑
i=0

(
Γk+1− Ski

)∣∣x− xi
∣∣k∣∣xi− x0

∣∣···∣∣xi− xi−1
∣∣∣∣xi− xi+1

∣∣···∣∣xi− xn
∣∣ , (3.4)

where Ski = [ f (k)(x)− f (k)(xi)]/(x − xi), i = 0,1, . . . ,n, and γk+1, Γk+1 are real numbers
such that γk+1 ≤ f (k+1)(t)≤ Γk+1, t ∈ [a,b], k = 0,1, . . . ,n− 1.

Let g ∈ C(a,b). As we know among all algebraic polynomials of degree≤m there exists
the only polynomial P∗m(t) having the property that

∥∥g −P∗m
∥∥∞ ≤ ∥∥g −Pm

∥∥∞, (3.5)

where Pm ∈Πm is an arbitrary polynomial of degree ≤m. We define

Em(g)= ∥∥g −P∗m
∥∥= inf

Pm∈Πm

∥∥g −Pm
∥∥∞. (3.6)

Theorem 3.1. Under the assumptions of Theorem 2.2,

∣∣ f (x)−Ln(x)
∣∣≤ Em

(
f (k+1)

)
(k+ 1)!

Ck(x)
∣∣ωn(x)

∣∣, (3.7)

where Ck(·) and Em(·) are defined by (3.2) and (3.6), respectively.

Proof. Let Pm(t)= P∗m(t), where P∗m(t) is defined by (3.6) for the function g(t)= f (k+1)(t).
We have

∣∣Rk,m(x)
∣∣=

∣∣∣∣∣ (−1)k

k!

n∑
i=0

pni(x)
∫ x

xi

[
f (k+1)(t)−P∗m(t)

](
t− xi

)k
dt

∣∣∣∣∣
≤
∥∥ f (k+1)−P∗m

∥∥∞
(k+ 1)!

Ck(x)
∣∣ωn(x)

∣∣
= Em

(
f (k+1)

)
(k+ 1)!

Ck(x)
∣∣ωn(x)

∣∣,

(3.8)

since

∣∣∣∣
∫ x

xi

(
t− xi

)k
dt
∣∣∣∣=

∣∣x− xi
∣∣k+1

k+ 1
. (3.9)

�
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Remark 3.2. The above estimate has only theoretical importance, since it is difficult to
find the polynomial P∗. In fact, we can find P∗ only for some special cases of functions.
However, we can use the estimate to obtain some practical estimations—see Theorem 3.3.

Theorem 3.3. Let the assumptions of Theorem 2.2 hold. If γk+1, Γk+1 are real numbers such
that γk+1 ≤ f (k+1)(t)≤ Γk+1, t ∈ [a,b], k = 0,1, . . . ,n− 1, then

∣∣ f (x)−Ln(x)
∣∣≤ Γk+1− γk+1

2(k+ 1)!
Ck(x)

∣∣ωn(x)
∣∣, (3.10)

where ωn and Ck(·) are defined by (3.1) and (3.2), respectively. Also

∣∣ f (x)−Ln(x)
∣∣≤

∣∣ωn(x)
∣∣

k!
Bk(x),

∣∣ f (x)−Ln(x)
∣∣≤

∣∣ωn(x)
∣∣

k!
Dk(x),

(3.11)

where Bk(·) and Dk(·) are defined by (3.3) and (3.4), respectively.

Proof. We set Pm(t)= (Γk+1 + γk+1)/2 in (2.12). Then we have

∣∣ f (x)−Ln(x)
∣∣= ∣∣Rk(x)

∣∣≤ 1
k!

n∑
i=0

∣∣pni(x)
∣∣∥∥∥∥ f (k+1)− Γk+1 + γk+1

2

∥∥∥∥
∞

∣∣∣∣
∫ x

xi

(
t− xi

)k
dt
∣∣∣∣.

(3.12)

We also have

∥∥∥∥ f (k+1)− Γk+1 + γk+1

2

∥∥∥∥
∞
≤ Γk+1− γk+1

2
,

∣∣∣∣
∫ x

xi

(
t− xi

)k
dt
∣∣∣∣=

∣∣x− xi
∣∣k+1

k+ 1
.

(3.13)

From the above three relations we get

∣∣ f (x)−Ln(x)
∣∣≤ Γk+1− γk+1

2(k+ 1)!

n∑
i=0

∣∣pni(x)
∣∣∣∣x− xi

∣∣k+1

= Γk+1− γk+1

2(k+ 1)!
Ck(x)

∣∣ωn(x)
∣∣.

(3.14)

The first inequality is proved.
We now set Pm(t)= γk+1 in (2.12). Then we have

∣∣ f (x)−Ln(x)
∣∣= ∣∣Rk(x)

∣∣≤ 1
k!

n∑
i=0

∣∣pni(x)
∣∣∣∣∣∣
∫ x

xi

[
f (k+1)(t)− γk+1

](
t− xi

)k
dt
∣∣∣∣. (3.15)
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We also have∣∣∣∣
∫ x

xi

[
f (k+1)(t)− γk+1

](
t− xi

)k
dt
∣∣∣∣≤ ∣∣x− xi

∣∣k∣∣ f (k)(x)− f (k)(xi)− γk+1
(
x− xi

)∣∣
= ∣∣x− xi

∣∣k+1(
Ski− γk+1

)
.

(3.16)

Thus,

∣∣ f (x)−Ln(x)
∣∣≤ 1

k!

n∑
i=0

∣∣pni(x)
∣∣∣∣x− xi

∣∣k+1(
Ski− γk+1

)

=
∣∣ωn(x)

∣∣
k!

Bk(x).

(3.17)

The second inequality is proved. In a similar way we prove that the third inequality holds.
�

Lemma 3.4. Let D = {x0 = a < x1 < ··· < xn = b} be a given uniform subdivision of the
interval [a,b], that is, xi = x0 + ih, h= (b− a)/n, i= 0,1,2, . . . ,n. If x ∈ (xj−1,xj), for some
j ∈ {1,2, . . . ,n}, then

∣∣ωn(x)
∣∣≤ j!(n− j + 1)!hn+1, (3.18)

Ck(x)≤ 2n

n!

{
1
2

[
n+ 1 + |n− 2 j + 1|]}k

hk−n, (3.19)

Ck(x)
∣∣ωn(x)

∣∣≤ αjnk
n− j + 1

n

2n(b− a)k+1(
n
j

) , (3.20)

where

αjnk =
[

1
2n

(
n+ 1 + |2 j−n− 1|)]k. (3.21)

This lemma is proved in [10].

Remark 3.5. Note that

αjnk ≤ 1 (3.22)

and αjnk = 1 if and only if j = 1 or j = n. If we choose x ∈ [xj ,xj+1], j = 0,1, . . . ,n− 1,
then we get the factor ( j + 1)/n instead of the factor (n− j + 1)/n in (3.20).

Theorem 3.6. Under the assumptions of Lemma 3.4 and Theorem 3.3,

∣∣ f (x)−Ln(x)
∣∣≤ Γk+1− γk+1

(k+ 1)!
αjnk

n− j + 1
n

2n−1(b− a)k+1(
n
j

) . (3.23)

Proof. The proof follows immediately from Theorem 3.3 and Lemma 3.4. �



3842 Inequalities in polynomial interpolation

4. Results for derivatives

Lemma 4.1. Let 1≤ j ≤ n− 1 and j + 1≤ r ≤ n. Then

n∑
i=0

p
( j)
ni (x)

(
x− xi

)r = 0. (4.1)

Proof. We have (see (2.4))

A(x)=
n∑
i=0

pni(x)
(
x− xi

)r = 0, for 1≤ r ≤ n. (4.2)

Thus,

A′(x)=
n∑
i=0

p′ni(x)
(
x− xi

)r
+ r

n∑
i=0

pni(x)
(
x− xi

)r−1 = 0, (4.3)

if 1≤ r ≤ n. If n≥ r− 1≥ 1, that is, n+ 1≥ r ≥ 2, then

r
n∑
i=0

pni(x)
(
x− xi

)r−1 = 0. (4.4)

From (4.3) and (4.4) we get

n∑
i=0

p′ni(x)
(
x− xi

)r = 0, for 2≤ r ≤ n. (4.5)

(Note that {r : 1≤ r ≤ n}∩{r : 2≤ r ≤ n+ 1} = {r : 2≤ r ≤ n}. Here we use this fact and
similar facts without a special mentioning.)

We now suppose that

n∑
i=0

p
( j)
ni (x)

(
x− xi

)r = 0, (4.6)

for j = 1,2, . . . ,m, m< n− 1 and j + 1≤ r ≤ n. We wish to prove that

n∑
i=0

p(m+1)
ni (x)

(
x− xi

)r = 0, for m+ 2≤ r ≤ n. (4.7)

For that purpose, we first calculate

A(m)(x)=
n∑
i=0

[
pni(x)

(
x− xi

)r](m)

=
n∑
i=0

m∑
k=0

(
m

k

)
p(k)
ni (x)

r!
(r−m+ k)!

(
x− xi

)r−m+k

=
m∑
k=0

(
m

k

)
r!

(r−m+ k)!

n∑
i=0

p(k)
ni (x)

(
x− xi

)r−m+k
.

(4.8)
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We have

A(m)(x)= 0, for r ≥m+ 1, (4.9)

by the above assumption. Thus,

A(m+1)(x)= 0. (4.10)

On the other hand, we have

A(m+1)(x)= d

dx
A(m)(x)

=
m∑
k=0

(
m

k

)
r!

(r−m+ k)!

n∑
i=0

p(k+1)
ni (x)

(
x− xi

)r−m+k

+
m∑
k=0

(
m

k

)
r!

(r−m+ k− 1)!

n∑
i=0

p(k)
ni (x)

(
x− xi

)r−m+k−1

= 0.

(4.11)

We now rewrite the above relation in the form

n∑
i=0

p(m+1)
ni (x)

(
x− xi

)r
+

m−1∑
k=0

(
m

k

)
r!

(r−m+ k)!

n∑
i=0

p(k+1)
ni (x)

(
x− xi

)r−m+k

+
m∑
k=0

(
m

k

)
r!

(r−m+ k− 1)!

n∑
i=0

p(k)
ni (x)

(
x− xi

)r−m+k−1 = 0.

(4.12)

For r−m+ k− 1≥ k+ 1, that is, r ≥m+ 2, we have

n∑
i=0

p(k)
ni (x)

(
x− xi

)r−m+k−1 = 0 (4.13)

by the above assumption. We also have

n∑
i=0

p(k+1)
ni (x)

(
x− xi

)r−m+k = 0, (4.14)

if r−m+ k ≥ k+ 2, that is, r ≥m+ 2. Thus (4.7) holds. This completes the proof. �

Theorem 4.2. Let f ∈ Cn+1(a,b) and let Pr(t) be an arbitrary polynomial of degree ≤ r
and let 0≤ k ≤ n, 1≤m≤ k. Then

f (m)(x)= L(m)
n (x) +Ek,r(x), (4.15)

where

Ek,r(x)= (−1)k

k!

n∑
i=0

p(m)
ni (x)

∫ x

xi

[
f (k+1)(t)−Pr(t)

](
t− xi

)k
dt. (4.16)
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Proof. We define

vi(x)=
∫ x

xi

[
f (k+1)(t)−Pr(t)

](
t− xi

)k
dt

=
∫ x

xi
g(t)

(
t− xi

)k
dt,

(4.17)

where, obviously, g(t)= f (k+1)(t)−Pr(t). We denote

Rk,r(x)= f (x)−Ln(x)= (−1)k

k!

n∑
i=0

pni(x)vi(x), (4.18)

see Theorem 2.2. Then we have

R(m)
k,r (x)= (−1)k

k!

n∑
i=0

[
pni(x)vi(x)

](m)

= (−1)k

k!

n∑
i=0

m∑
j=0

(
m

j

)
p

( j)
ni (x)v

(m− j)
i (x)

= (−1)k

k!

n∑
i=0

p(m)
ni (x)vi(x) +

(−1)k

k!

n∑
i=0

m−1∑
j=0

(
m

j

)
p

( j)
ni (x)v

(m− j)
i (x).

(4.19)

We introduce the notation

B(x)= (−1)k

k!

n∑
i=0

m−1∑
j=0

(
m

j

)
p

( j)
ni (x)v

(m− j)
i (x) (4.20)

such that

R(m)
k,r (x)= (−1)k

k!

n∑
i=0

p(m)
ni (x)vi(x) +B(x). (4.21)

We now rewrite B(x) in the form

B(x)= (−1)k

k!

n∑
i=0

m−2∑
j=0

(
m

j

)
p

( j)
ni (x)v

(m− j)
i (x) +

(−1)k

k!
m

n∑
i=0

p(m−1)
ni (x)v′i (x). (4.22)

We have

v′i (x)= g(x)
(
x− xi

)k
(4.23)

such that

n∑
i=0

p(m−1)
ni (x)v′i (x)= g(x)

n∑
i=0

p(m−1)
ni (x)

(
x− xi

)k = 0, (4.24)

for k ≥m—see Lemma 4.1.
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We also have

v
(m− j)
i (x)=

m− j−1∑
l=0

(
m− j− 1

l

)
g(l)(x)

k!
(k−m+ j + l+ 1)!

(
x− xi

)k−m+ j+l+1
, (4.25)

for m≥ j + 2 such that

n∑
i=0

m−2∑
j=0

(
m

j

)
p

( j)
ni (x)v

(m− j)
i (x)=

m−2∑
j=0

(
m

j

)m− j−1∑
l=0

(
m− j− 1

l

)
k!

(k−m+ j + l+ 1)!

×
n∑
i=0

p
( j)
ni (x)

(
x− xi

)k−m+ j+l+1

= 0,

(4.26)

if k−m+ j + l+ 1≥ j + 1, that is, k ≥m, since l ≥ 0—see also Lemma 4.1. Hence, B(x)=
0 in all cases. Now from (4.21) it follows that

R(m)
k,r (x)= (−1)k

k!

n∑
i=0

p(m)
ni (x)vi(x)

= (−1)k

k!

n∑
i=0

p(m)
ni (x)

∫ x

xi

[
f (k+1)(t)−Pr(t)

](
t− xi

)k
dt.

(4.27)

On the other hand, we have

[
f (x)−Ln(x)

](m) = f (m)(x)−L(m)
n (x). (4.28)

This completes the proof. �

Theorem 4.3. Under the assumptions of Theorem 4.2,

∣∣ f (m)(x)−L(m)
n (x)

∣∣≤ Er
(
f (k+1)

)
(k+ 1)!

n∑
i=0

∣∣p(m)
ni (x)

∣∣∣∣x− xi
∣∣k+1

, (4.29)

where Er(·) is defined by (3.6).

Proof. Let Pr(t)= P∗r (t), where P∗r (t) is defined by (3.6) for the function g(t)= f (k+1)(t).
We have

∣∣R(m)
k,r (x)

∣∣=
∣∣∣∣∣ (−1)k

k!

n∑
i=0

p(m)
ni (x)

∫ x

xi

[
f (k+1)(t)−P∗r (t)

](
t− xi

)k
dt

∣∣∣∣∣
≤
∥∥ f (k+1)(t)−P∗r (t)

∥∥∞
(k+ 1)!

n∑
i=0

∣∣p(m)
ni (x)

∣∣∣∣x− xi
∣∣k+1

= Er
(
f (k+1)

)
(k+ 1)!

n∑
i=0

∣∣p(m)
ni (x)

∣∣∣∣x− xi
∣∣k+1

,

(4.30)



3846 Inequalities in polynomial interpolation

since

∣∣∣∣
∫ x

xi

(
t− xi

)k
dt
∣∣∣∣=

∣∣x− xi
∣∣k+1

k+ 1
. (4.31)

�

Theorem 4.4. Under the assumptions of Theorem 3.3 and Lemma 4.1,

∣∣ f (m)(x)−L(m)
n (x)

∣∣≤ Γk+1− γk+1

2(k+ 1)!

n∑
i=0

∣∣p(m)
ni (x)

∣∣∣∣x− xi
∣∣k+1

,

∣∣ f (m)(x)−L(m)
n (x)

∣∣≤ 1
k!

n∑
i=0

(
Ski− γk+1

)∣∣p(m)
ni (x)

∣∣∣∣x− xi
∣∣k+1

,

∣∣ f (m)(x)−L(m)
n (x)

∣∣≤ 1
k!

n∑
i=0

(
Γk+1− Ski

)∣∣p(m)
ni (x)

∣∣∣∣x− xi
∣∣k+1

.

(4.32)

Proof. We choose Pr(t)= Γk+1 + γk+1/2 in Theorem 4.2. Then we get

∣∣ f (m)(x)−L(m)
n (x)

∣∣≤ 1
k!

n∑
i=0

∣∣p(m)
ni (x)

∣∣∣∣∣∣
∫ x

xi

[
f (k+1)(t)− Γk+1 + γk+1

2

](
t− xi

)k
dt
∣∣∣∣

≤ Γk+1− γk+1

2(k!)

n∑
i=0

∣∣p(m)
ni (x)

∣∣∣∣∣∣
∫ x

xi

(
t− xi

)k
dt
∣∣∣∣

= Γk+1− γk+1

2(k+ 1)!

n∑
i=0

∣∣p(m)
ni (x)

∣∣∣∣x− xi
∣∣k+1

.

(4.33)

If we choose Pr(t)= γk+1 in Theorem 4.2, then we get

∣∣ f (m)(x)−L(m)
n (x)

∣∣≤ 1
k!

n∑
i=0

∣∣p(m)
ni (x)

∣∣∣∣∣∣
∫ x

xi

[
f (k+1)(t)− γk+1

](
t− xi

)k
dt
∣∣∣∣

≤ 1
k!

n∑
i=0

(
Ski− γk+1

)∣∣p(m)
ni (x)

∣∣∣∣x− xi
∣∣k+1

,

(4.34)

since |∫ xxi[ f (k+1)(t)− γk+1]dt| = | f (k)(x)− f (k)(xi)− γk+1(x− xi)|.
In a similar way we prove that the third inequality holds. �
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