
DOUBLE-COSET ENUMERATION ALGORITHM FOR
SYMMETRICALLY GENERATED GROUPS

MOHAMED SAYED

Received 25 March 2004 and in revised form 13 January 2005

A double-coset enumeration algorithm for groups generated by symmetric sets of invo-
lutions together with its computer implementation is described.

1. Introduction

The Todd-Coxeter algorithm described in [13] remains a primary reference for coset enu-
meration programs. It may be viewed as a means of constructing permutation represen-
tations of finitely presented groups. A number of effective computer programs for single-
coset enumeration have been described, see, for example, [2, 7, 8].

Enumerating double cosets, rather than single cosets, gives substantial reduction in
total cosets defined which leads to minimizing the storage (and time) needed. In [8, 9]
Linton has developed two double-coset enumeration programs. The process in the earlier
one, which is a corrected version of the algorithm proposed in [3], is viewed as a direct
generalization of the ordinary single-coset enumeration. The later one is related to the
present algorithm but with different calculations.

In this paper, we present a double-coset enumeration algorithm which is specially de-
veloped for groups symmetrically generated by involutions. Several finite groups, includ-
ing all nonabelian finite simple groups, can be generated by symmetric sets of involu-
tions, see, for example, [6, 10, 11]. The algorithm has been implemented as a Magma
[1] program and this implementation has been used with success to check symmetric
presentations for many finite simple groups.

2. Involutory symmetric generators of groups

Let G be a group and let T = {t0, t1, . . . , tn−1} be a set of elements of order m in G. Defining
Ti = 〈ti〉 and T = {T0,T1, . . . ,Tn−1} allows us to define N =�G(T), the set normalizer in
G of T . We say that T is a symmetric generating set for G if the following two conditions
hold:

(i) G= 〈T〉, and
(ii) N permutes T transitively.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:5 (2005) 699–715
DOI: 10.1155/IJMMS.2005.699

http://dx.doi.org/10.1155/S016117120540349X

700 Double-coset enumeration algorithm

We call N the control subgroup. Conditions (i) and (ii) imply that G is a homomorphic
image of the progenitor

m∗n : N , (2.1)

where m∗n represents a free product of n copies of the cyclic group Cm and N is a group
of automorphisms of m∗n which permutes the n cyclic subgroups by conjugation, see
[5, 10].

Since in this paper we are only concerned with involutory symmetric generators we
restrict our attention to the case m= 2 (while N will simply act by conjugation as permu-
tations of the n involutory symmetric generators).

Theorem 2.1. All nonabelian finite simple groups can arise as finite homomorphic images
of progenitors of the form 2∗n : N .

Proof. Let H be a maximal subgroup of a finite simple group G. Suppose that 1 �= t∈ G,
t2 = 1. Under the subgroup H , tG, the conjugacy class of t in G, splits into orbits as

tG =�1∪̇�2∪̇···∪̇�r . (2.2)

Without loss of generality, we may assume that �1 = {t0, t1, . . . , tn−1} is not a subset of H .
It is clear that

�G
(〈

�1
〉)≥ 〈H ,�1

〉=G, (2.3)

since H is maximal in G and �1 is not a subset of H . Therefore,

1 �= 〈�1
〉
�G, (2.4)

and, since G is simple, we have

〈
�1
〉=G. (2.5)

Moreover, if π ∈ H and tπi = ti (i = 0,1, . . . ,n− 1), then π ∈ �(G) and so π = 1, that is,
H permutes the elements of �1 faithfully (and transitively). Now, let 2∗n denote a free
product of n copies of the cyclic group C2 with involutory generators t0, t1, . . . , tn−1 and let
N ∼=H consist of all automorphisms of 2∗n which permute the ti as H permutes the ti:

π−1tiπ = tπi = tπ(i) for π ∈N. (2.6)

Then, clearly G is a homomorphic image of 2∗n : N , a split extension of 2∗n by the per-
mutation automorphisms N . �

Since the progenitor is a semidirect product (of 〈T〉 with N), it follows that in any
homomorphic image G, we may use the equation

tiπ = πtπi = πtπ(i), (2.7)

or iπ = πiπ as we will more commonly write (see below), to gather the elements of N
over to the left. Each element of the progenitor can be represented as πw, where π ∈ N

Mohamed Sayed 701

and w is a word in the symmetric generators. Indeed, this (symmetric) representation is
unique provided w is simplified so those adjacent symmetric generators are distinct. Thus
any additional relator by which we must factor the progenitor to obtain G must have the
form

πw
(
t0, t1, . . . , tn−1

)
, (2.8)

where π ∈ N and w is a word in T . Another consequence of this is that a relation of the
form (πti)n = 1 for some π ∈N in a permutation progenitor becomes

πn = titπ(i) ··· tπn−1(i). (2.9)

In the next section we describe how a factor group

2∗n : N
π1w1,π2w2, . . . ,πsws

(2.10)

may be identified.

3. Double-coset enumeration algorithm

If NxN is a double-coset of N in G, we have

NxN =NπwN =NwN , (3.1)

where x = πw ∈G, with π ∈N , and w is a word in the symmetric generators. We denote
this double-coset by [w], for example, [01] denotes the double-cosetNt0t1N . The double-
coset NeN =N , where e is the identity element, is denoted by [∗].

We will allow i to stand for the coset Nti, i j for the coset Ntit j , and so on. We will also
let i stand for the symmetric generator ti when there is no danger of confusion. Thus we
write, for instance, i j ∼ k to mean Ntit j =Ntk and i j = k to mean tit j = tk.

We define the subgroups Ni, Nij , Nijk, . . . (for i, j, and k distinct) as follows:

Ni =�N
(〈
ti
〉)

,

Nij =�N
(〈
ti, t j

〉)
,

Nijk =�N
(〈
ti, t j , tk

〉)
,

(3.2)

or, more generally,

Ni1i2···im =�N
(〈
ti1 , ti2 , . . . , tim

〉)
, (3.3)

for i1, i2, . . . , im distinct.
Let g be an element of G. Then we define the coset stabilizing subgroup (of Ng in N) by

N (g) = {π ∈N |Ngπ =Ng
}
. (3.4)

Clearly Nw ≤N (w) for w, a word in the symmetric generators.

702 Double-coset enumeration algorithm

It is sometimes useful to have the notation of a length of a coset. The fact that for π ∈N
we have

Nw
(
ti
)
π =Nπ−1w

(
ti
)
π =Nw

(
tπi
)=Nw′

(
ti
)

(3.5)

shows that all N cosets have a representative in 〈T0∪T1∪···∪Tn−1〉. We are in a posi-
tion to define the length L(Nw)= L(w) of a coset Nw. Firstly, we have L(N) = 0. If Nw
has length n and t ∈ T , then Nwt has length at most n+ 1 and has length precisely n+ 1
if it does not have (or has not been proved to have) length at most n. We specify that all
cosets of length n+ 1 have the form Nwt where L(Nw)= n and t ∈ T .

If Nw1 and Nw2 are cosets in NwN , then we have that L(w1)= L(w2), that is, all cosets
of NwN have the same length. Thus, we can precisely compute the number of (right)
cosets in NwN by using the simple but important following lemma.

Lemma 3.1. The number of cosets in the double-coset [w]=NwN is |N|/|N (w)|.
Proof. For π1,π2 ∈N ,

Nwπ1 �=Nwπ2 ⇐⇒Nwπ1π
−1
2 �=Nw⇐⇒ π1π

−1
2 �∈N (w)

⇐⇒N (w)π1π
−1
2 �=N (w) ⇐⇒N (w)π1 �=N (w)π2.

(3.6)

Thus, Nwπ1 and Nwπ2 are distinct cosets in NwN if and only if N (w)π1 and N (w)π2 are
distinct cosets of N (w) in N . �

This last lemma makes double-coset enumeration over N to obtain the index of N
in G a practical proposition. In order to obtain the index of N in G, we will find all
double cosets [w] and work out how many (single) cosets each of them contains. We
will know that we have completed the double-coset enumeration when the set of right
cosets obtained is closed under right multiplication. Moreover, the completion test is
best performed by obtaining the orbits of N (w) on the symmetric generators. We need
only identify, for each [w], the double-coset to which Nwti belongs for one symmetric
generator ti from each orbit.

It is easy to see that if N (w) is a transitive subgroup of N , then Nw does not extend to a
longer coset. Indeed, if the ti are involutions and N (w) is a transitive subgroup of N , then
all the cosets Nwti are shorter than Nw except when Nw =N , see [6, 10, 11].

With the observations of this section, we are in a position to carry out simple double-
coset enumeration.

Example 3.2. Consider the group

G∼= 2∗4 : S4

(2,3)= [t0t1
]2 , (3.7)

which means that the progenitor 2∗4 : S4 is quotiented out by the relation (2,3)= [t0t1]2.
The double cosets of length up to 3 are

[∗],[0],[01],[010],[012]. (3.8)

Mohamed Sayed 703

Next, we observe that N =N(2,3)=Nt0t1t0t1, which we write as ∗∼ 0101 in our nota-
tion. By postmultiplying both sides by t1, we deduce that Nt1 =Nt0t1t0, that is, 010∼ 1.
Furthermore, postmultiplying both sides by t0 yields Nt1t0 = Nt0t1 which is 01 ∼ 10.
We have thus shown the double-coset equality [010] = [1] = [0]. Also, we have shown
that Nt1t0 = N(t0t1)(0,1) = Nt0t1 and thus that (0,1) ∈ N (01). Since we also have N (01) ≥
N01 = 〈(2,3)〉, we have that N (01) ≥ 〈(0,1),(2,3)〉. Also N (∗) =N = 〈(0,1,2,3),(2,3)〉 and
N (0) ≥ N0 = 〈(1,2,3),(2,3)〉. Thus, we find that the double cosets [∗], [0], and [01]
contain at most 1, 4, and 6 cosets, respectively. We have now shown that any length-
3 coset is in [012]. However, we have that 102∼ 012= 01212 · 21= 0(0,3)21∼ 321. But
t3t2t1 = (t1t0t2)(0,2,1,3) and so N (012) =N (102) ≥ 〈(0,1),(0,2,1,3)〉 ∼=D8, and thus [012] has
at most 3 cosets. Moreover, N (012) is a transitive subgroup of N , so cosets in this double-
coset extend no further and we have completed the coset enumeration.

Thus, |G : N| ≤ 14, so |G| ≤ 336= |PGL2(7)|, and the (relatively) easy task of finding
generators for PGL2(7), see [4], satisfying the required relations completes the identifica-
tion of G with PGL2(7). The correspondence between the 14 cosets and the 7 points and
the 7 lines of the projective plane of order 2 is given in [11]. The Cayley diagram of G
over N is given below:

��
��

��
��

��
��

��
��

[∗] [0] [01] [012]

1 4 6 3
4 1 3 2 2 4

(3.9)

where each circle is labeled with a double-coset [w], with the number in the circle being
the number of cosets in this double-coset. The numbers around the circles indicate the
number of symmetric generators i such that [wi] is a particular double-coset [w′].

4. Implementation

In this implementation we try to codify the technique that has been developed for hand
working. A more detailed description and improvements are provided. Given a control
subgroup N (of a group G) as permutations on n letters together with some relations,
in which elements of N are written in terms of n (involutory) symmetric generators (of
G), the program performs a double-coset enumeration for G over N . The program also
returns what is essentially a Cayley graph of the action of G on the cosets of N . Each
element of G is represented by a permutation of N followed by a word in the symmetric
generators. The procedures for multiplying and inverting elements represented in this
manner are also described. Indeed, the program allows the user readily to pass between
the symmetric representation of an element of G and its action on the cosets of N . If the
index |G : N| is finite, the procedure does finish and succeed in finding the permutation
representation of the group G. The proof is almost identical to that of Suzuki [12, pages
178–180].

704 Double-coset enumeration algorithm

4.1. Data structure. The control subgroupN is defined as a permutation group of degree
n. The two sequences

π = [π1,π2, . . . ,πm
]
, w = [w1,w2, . . . ,wm

]
, (4.1)

where πi ∈ N and wi are words in the symmetric generators, represent the left- and the
right-hand side of the problem relations. Also, ss and sg are defined as two sequences
whose terms are the double-coset representative words and the coset stabilizing sub-
groups, respectively.

4.2. The algorithm design. The system contains a set of routines (procedures) such as
dcoset, eqper, reduce, main, names, x2per, t2per, sym2per, per2sym, mult, and invert. In the
remainder of this paper, we give a detailed description and an outline of some difficulties
which arise with the implementation.

4.2.1. dcoset procedure. The procedure identifies, for each [w], the double-coset to which
Nwti belongs for one of the symmetric generators ti from each orbit of the coset stabiliz-
ing subgroup N (w). Also, it produces

N (w)i =�N (w)

(
ti
)
, (4.2)

a single-point stabilizer in N (w).

dcoset 1. Repeat 2 for each element ss[i] (in the double-coset representative sequence ss)
which has the maximal length.

dcoset 2. Identify the orbits of the coset stabilizing subgroup sg[i]. For each orbit which
does not contain the last element of ss[i], establish a new double-coset representative,
ss[j], as ss[j] = Append(ss[i],orbit representative), define sg[j], the single-point stabi-
lizer in sg[i] by the same orbit representative.

4.2.2. eqper procedure. When the relations have been applied to a double-coset, permu-
tations of the control subgroup N which fix that coset can be added as new generators to
the corresponding coset stabilizing subgroup. In order to examine each double-coset [w],
each relation must be studied to establish whether a part of it is equivalent to this coset
and so we can easily deduce a permutation of N which fixes that coset.

Given any two sequences (each represents a word in the symmetric generators)

e1 =
[
a1,a2, . . . ,ar

]
, e2 =

[
b1,b2, . . . ,br

]
, ai,bi ∈ {1,2, . . . ,n}; (4.3)

the procedure checks the equivalence (e
p
2 = e1, for some p ∈ N) between them. If they

are equivalent, it determines the permutation p of N such that e
p
2 = e1.

We know that

N ≥Nb1 ≥Nb1b2 ≥ ··· ≥Nb1b2···br . (4.4)

Assume that

n1 =
∣∣N : Nb1

∣∣, ni =
∣∣Nb1···bi−1 : Nb1···bi∣∣, i∈ {2,3, . . . ,r}. (4.5)

Mohamed Sayed 705

Consequently, there exist transeversals

{
τ1, . . . ,τn1

}
,
{
σ1, . . . ,σn2

}
,
{
ρ1, . . . ,ρn3

}
, . . . ,

{
φ1, . . . ,φnr

}
(4.6)

such that

N =Nb1τ1∪̇Nb1τ2∪̇···∪̇Nb1τn1 ,

Nb1 =Nb1b2σ1∪̇Nb1b2σ2∪̇···∪̇Nb1b2σn2 ,

Nb1b2 =Nb1b2b3ρ1∪̇Nb1b2b3ρ2∪̇···∪̇Nb1b2b3ρn3 ,

...

Nb1···br−1 =Nb1···br φ1∪̇Nb1···br φ2∪̇···∪̇Nb1···br φnr .

(4.7)

Now, if e
p
2 = e1, p ∈N , then we can find the permutation p = φ′ ···ρ′σ ′τ′, where

τ′ ∈ {τ1, . . . ,τn1},σ ′ ∈ {σ1, . . . ,σn2},ρ′ ∈ {ρ1, . . . ,ρn3}, . . . ,φ′ ∈ {φ1, . . . ,φnr}, (4.8)

as follows. Since σ ′,ρ′, . . . ,φ′ fix b1, the equation bP1 = a1 can be reduced to bτ
′

1 = a1. Also,
the permutations ρ′, . . . ,φ′ fix b2, so the equation bP2 = a2 can be reduced to bσ

′τ′
2 = a2.

Similarly, we have b
ρ′σ ′τ′
3 = a3, . . . ,b

φ′···ρ′σ ′τ′
r = ar . Thus, we can easily identify (in a recur-

sive manner) the permutations τ′,σ ′,ρ′, . . . ,φ′ and consequently p.

eqper 1. Set p as the identity element of Sn.

eqper 2. For i∈ {1,2, . . . ,r} do
If i= 1, then trans= Transversal(N ,Nb1),
else trans= Transversal(Nb1b2···bi−1 ,Nb1b2···bi).

If there exists a permutation trans[j] such that a
(p−1·trans[j]−1)
i = bi, then set p =

trans[j] · p,
otherwise e1 is not equivalent to e2, leave the loop and return with a proper
prompt.

4.2.3. Reduce procedure. Any word w in the symmetric generators is put by the procedure
into its canonically shortest form. No other representations of group elements are used;
words in the symmetric generators are simply shortened by application of the relations
(and their conjugates under N). The relation

wi = πi, (4.9)

where wi = ti1 ti2 ··· tir and πi ∈N , can be written as

ti1 ti2 ··· tik = πitir tir−1 ··· tik+1 , (4.10)

where k is equal to r/2 or (r + 1)/2 according to whether r is even or odd, respectively.

706 Double-coset enumeration algorithm

The procedure checks if a part of any given word in the symmetric generators of length
equal to k is equivalent to ti1 ti2 ··· tik , the left-hand side of one of the previous relations
using the eqper procedure, if so, the procedure replaces this part by tir tir−1 ··· tik+1 after
permuting by p−1 (a permutation obtained from the eqper procedure) and moves the
permutation πp−1

over to the left of the whole word.

Reduce 1. For any sequence in the symmetric generators, set the pointer at the first letter.

Reduce 2. Check if the first k elements starting from the pointer position are equivalent
to the left-hand side of the given relation, replace them by the right-hand side of the same
relation after permuting by p−1, and conjugate the preceding elements by the permuta-

tion π
p−1

i .

Reduce 3. Shift the pointer one position and go to 2.
Moreover, in order to put the word w in the canonically shortest form, we may need

to insert the identity element t2
i in a particular position (in this word). Assume that w =

[x1,x2, . . . ,xk−1, y1, y2, . . . , yk−1], length(wi)= 2k− 2. The procedure checks if there exists
an element s from the symmetric generators such that either sy1y2 ··· yk−1 ∼ ti1 ti2 ··· tik
or x1x2 ···xk−1s ∼ ti1 ti2 ··· tik (or both). If so, the procedure replaces any of these two
words (or both) by the right-hand side of the relation after permuting by a suitable per-
mutation of N .

4.2.4. Main processing. In this section, we show how the program generates the double
cosets and give an efficient method for handling the collapses. It is useful to note that the
principle of termination will always be reached for any symmetric presentation of a finite
group.

Input and initialization. Let N ≤ Sn be a permutation group of cardinality n. The prob-
lem relations are given as wi = πi, i∈ {1,2, . . . ,m}, where wi are words in the symmetric
generators and πi ∈N . The relations are sorted in ascending order according to the length
of wi, the variable level is set equal to |L(w1)/2 + 1|, the double-coset representative words
up to length equal to, level are obtained, and the corresponding stabilizing subgroups are
defined.

Reduction. The same double-coset will often have many names and the purpose of the
procedure is to find these coincidences by using the relations wi = πi. For every element
sw (in the symmetric generators) in the ss sequence and every additional relation wi = πi,
call the reduce procedure. Having obtained a new word of length less than the length of
sw; the procedure deletes the double-coset of representative word sw and records that
sw is equivalent to this new word. If a new word of length equal to the length of sw and
equivalent to sw is obtained, then the procedure adds a permutation—which sw should
be conjugated by to obtain this new word—to the coset stabilizing subgroup in the sg
sequence.

Collapses. It was mentioned before that it is convenient to have some way of recording, in
a sequence, all the new relations that were obtained during the reduction step. From time
to time we pack the sequences of double-coset representative elements and coset stabi-
lizing subgroups, reclaiming the space that was occupied by the redundant elements and

Mohamed Sayed 707

this might lead to the collapse of part of or the entire double-coset diagram. Rather than
starting collapses at the end of each level or delaying them to the end of the processing,
they may be initiated at specific levels. The process of determining when the collapses
should be started is demonstrated as follows: suppose wi = πi, i ∈ {1,2, . . . ,m}, are the
problem relations such that length(wi) = 2ki + 1 or 2ki. During the processing, the suit-
able levels to check the collapses are ki.

Collapse 1. Set level1= level.

Collapse 2. If new relations have been defined during level1 which is equal to n, say, try
to reduce again the double cosets of length equal to n− 1 using these relations, together
with the problem relations, otherwise go to 4.

Collapse 3. Set level1= n− 1 and go to 2.

Collapse 4. Call the dcoset procedure l times, where l = level− level1, starting from level1
and modify ss and sg sequences according to the new data.

Termination. The double-coset enumeration is complete when the set of right cosets ob-
tained is closed under right multiplication. Since N is a finitely generated subgroup of
countable index in a finitely presented group G, the point of termination will always be
reached.

Termination 1. Set l = length(ss).

Termination 2. Call the dcoset procedure. If l = length(ss), then call the output process,
else call the reduction process.

Output. The information contained in the double-coset representatives and the coset
stabilizing subgroups sequences may be portrayed graphically in the form called a Cay-
ley diagram. Unfortunately this is not suitable to be produced using the current Magma
programming language. It is, however, possible to display the output in a tabular form.
The use of this algorithm makes it possible to show the following: double-coset labels to-
gether with their representative words, orbit representatives and the number of elements
in each orbit, right multiplication images, coset stabilizing subgroups and their orders,
the number of cosets in each double-coset, and the order of the group G.

4.2.5. Names procedure. When the control subgroup N is large, but the number of the
cosets of N in G is small, the action of the elements of G on these cosets can be easily
obtained. This procedure builds cst, a sequence of length equal to the number of the
cosets of N , whose terms represent words in the symmetric generators. These words form
a complete set of coset representatives for N in G. The first element of the cst sequence is
the empty word followed by n= |N : N (i)| words of length one, and so forth.

Names 1. Set cst= [·].

Names 2. Construct two sequences, the first one contains an empty word and the second
one contains words of the form [i], i= 1,2, . . . ,Degree(N). Append them to the sequence
of sequences cst.

708 Double-coset enumeration algorithm

Names 3. For each double-coset representative word ss[i] of length l > 1, apply the ele-
ments of the right transversal of sg[i] in N to this coset to obtain a sequence of all cosets
of length l. Append this sequence to cst.

4.2.6. x2per procedure. As mentioned earlier, each element of the group G can be rep-
resented by a permutation on n letters; n is the cardinality of the permutation group N ,
followed by a word in the n involutory symmetric generators. Given a permutation x ∈N ,
the procedure constructs a permutation, xp, say, which gives the action of x on the cosets
of N in G.

x2per 1. Initialize xs as a sequence of integers of length equal to the number of the cosets
of N .

x2per 2. For each i, j such that length(cst[i]) = length(cst[j]), if (cst[i])x = cst[j], then
set xs[i]= j.

x2per 3. Convert the sequence of integers xs to xp, a permutation on the cosets of N .

4.2.7. t2per procedure. This procedure gives the action of the symmetric generators on
the cosets of N in G. In general ti in its action on the cosets of N has the form

(∗, i)(j, ji)···(jk, jki)···(jkl, jkli)··· , for i, j, k, l distinct. (4.11)

In practice our symmetric presentation is given in terms of a set of generators of N
together with one of the symmetric generators. So, if the action of one of the symmetric
generators, ti, on the cosets of N is known, we can obtain the action of the others on the
cosets of N by permuting this symmetric generator by NN (the control subgroup N in
its action on the cosets of N).

t2per 1. Initialize ts as a sequence of integers of length equal to the number of the cosets
of N .

t2per 2. For each i, j such that length(cst[i])= length(cst[j]) + 1, if (cst[i]cat1)= cst[j],
then set ts[i]= j and ts[j]= i.

t2per 3. Convert the sequence of integers ts into tp[1], a permutation on the cosets of N .

t2per 4. Construct tp[i], i= 2,3, . . . ,n by permuting tp[1] by NN .

4.2.8. sym2per procedure. This procedure converts a symmetrically represented element
x of G into a permutation acting on the cosets of N in G. Let x = πw, where π ∈ N and
w = [i, j,k, . . .], a word in the symmetric generators. Then p = x2per(π) · tp[i] · tp[j] ·
tp[k] . . ., where p is a permutation acting on the cosets of N .

4.2.9. per2sym procedure. The procedure converts a permutation p (acting on the cosets
of N) of G into its symmetric representation. The image of one under p gives the coset
representative for Np as a word w in the symmetric generators. Multiplication of p by the
symmetric generators in w, in reverse order, yields a permutation which can be identified
with an element of N by its action on cosets of length one.

Mohamed Sayed 709

per2sym 1. Assume p = πw, obtain w as w = cst[1p].

per2sym 2. Obtain π as a permutation on the cosets of N , using the equation π = pw−1.

per2sym 3. Identify the action of π on the cosets of length one as π = [j|(1tp[i])π =
(1tp[j]), for all i, j ∈ {1,2, . . . ,n}].

Finally write π as a permutation of Sn.

4.2.10. mult procedure. Suppose that πw and σu are two symmetrically represented ele-
ments in G. We have that πw · σu= πσwσu= ρv, where π,σ ,ρ ∈N and w, u, v are words
in the symmetric generators. Elements represented as above are transformed into per-
mutations on the cosets of N and the procedure performs the multiplication operation
before it transforms the result back into the symmetric representation.

mult 1. Multiply wσ and u after converting them into permutations on the cosets of N
using the t2per procedure and store the result in a temporary variable called temp.

mult 2. Transform temp to its symmetric representation ρ′v using the per2sym proce-
dure.

mult 3. Identify ρ as ρ = πσρ′.
On the other hand, the procedure reduce can be used to put the word wσu in its canon-

ically shortest form.

4.2.11. Invert procedure. The procedure gives the inverse of any symmetrically repre-
sented element πw in the group G. We have

(πw)−1 =w−1π−1 = π−1πw−1π−1 = π−1(w−1)π−1 = π′w′, (4.12)

where π′w′ is a symmetrically represented element of G.

5. Examples

In order to illustrate the process, we consider the following small but interesting exam-
ples.

Example 5.1.

G∼= 2∗4 : S4

(3,4)= (t1t2
)2
∼=
〈
N ,T |N ∼= S4

∼= 〈x, y〉, tπi = tπ(i), (3,4)= (t1t2
)2
〉

,

x : (1,2,3,4), y : (3,4).

(5.1)

The input consists of the control subgroup N ∼= S4 acting on {1,2,3,4}, together with the
two sequences π = [(3,4)] and w = [[1,2,1,2]]. The program, therefore, has found all
the double cosets (see the manual double-coset enumeration in Section 3) as shown in
Table 5.1.

710 Double-coset enumeration algorithm

Table 5.1. Result of the double-coset enumeration of PGL2(7) over S4.

Double-coset
label

Coset repre-
sentative
word

Orbit repre-
sentative
(number)

Right mult
image

Coset stabilizing
subgroup (order)

Number of
single cosets

1 [∗] 1 (4) 2 〈(1,2,3,4),(3,4)〉 1

(24)

2 [1] 1 (1) 1 〈(2,4),(3,4)〉 4

2 (3) 3 (6)

3 [12] 1 (2) 2 〈(1,2),(3,4)〉 6

3 (2) 4 (4)

4 [123] 1 (4) 3 〈(1,2),(1,4)(2,3)〉 3

(8)

The list of the 14 single cosets together with their equivalent names is [[[]], [[1], [2],
[3], [4]], [[[12], [21]], [[23], [32]], [[34], [43]], [[24], [42]], [[14], [41]], [[13], [31]]],
[[[123], [213], [432], [342], [124], [214], [431], [341]], [[143], [413], [234], [324], [142],
[421], [231], [321]], [[132], [312], [423], [243], [134], [314], [421], [241]]]]. The action
of the element x = (1,2,3,4) on single cosets is given by

xp = (2,3,4,5)(6,7,8,10)(9,11)(12,13). (5.2)

Also, the action of our 4 symmetric generators is given as follows:

t1 : (1,2)(3,6)(4,11)(5,10)(7,13)(8,12)(9,14),

t2 : (1,3)(2,6)(4,7)(5,9)(8,12)(10,13)(11,14),

t3 : (1,4)(2,11)(3,7)(5,8)(6,12)(9,14)(10,13),

t4 : (1,5)(2,10)(3,9)(4,8)(6,12)(7,13)(11,14).

(5.3)

The second example shows the ability of the process to perform harder reductions and
to handle collapses.

Example 5.2.

G∼= 2∗4 : S4[
(1,2)(3,4)t1

]5
,
[
(1,2,3)t1

]11 . (5.4)

The input consists of the control subgroup N ∼= S4 acting on the set {1,2,3,4}, to-
gether with the two sequences π = [(1,2)(3,4),(1,2,3)] and w = [[1,2,1,2,1],[2,1,3,2,
1,3,2,1,3,2,1]].

We now commence a double-coset enumeration of G over N . Using the dcoset proce-
dure, the program finds all double cosets of length up to level = 3. So the Cayley graph

Mohamed Sayed 711

has the following diagram:

��
��

��
��

��
�� ��

��

��
���

�
�

��

�
�

�
��[∗] [1] [12]

[123]

[121]1 4 12

24

12

4 1 3 1

2

1

(5.5)

Since

12121∼∗=⇒ 121∼ 12, (5.6)

then we have the double-coset equality [121]= [12]. So the Cayley diagram is reduced to

��
��

��
��

��
��

��
��

�
�

�
�

[∗] [1] [12] [123]

1 4 12 24
4 1 3 1 2

1

(5.7)

Then, the coset enumeration is extended to level four as

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
��

[∗] [1] [12] [123]

[1234]

[1232]

[1231]

1 4 12 24

24

24

24

4 1 3 1 2

1

1

1

1

1

(5.8)

712 Double-coset enumeration algorithm

The above Cayley diagram can be reduced by repeated use of the first relation. We have
that

1231= 121 · 131= 12(1,3)(2,4)13∼ (12)(1,3)(2,4)13∼ 3413=⇒ (1,3)(2,4)∈N (1231),

1232= 1(1,4)(2,3)23∼ 1(1,4)(2,3)23∼ 423∼ 123=⇒ [1232]= [123],
(5.9)

so the Cayley diagram becomes

��
��

��
��

��
��

��
�� ��

��

��
��

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
��[∗] [1] [12] [123]

[1234]

[1231]1 4 12 24

24

12

4 1 3 1 2

1 1

1
1

1

(5.10)

At this time the check for collapses fails and the Cayley diagram at the beginning of
level five has the following shape:

	

��

	

��

	

��

	

�� 	

��

	

��

	

��

	

��

	

��

	

��

�
�

�
�

�
�

�
�

�
�

��

�
�

��

�
�

�
��

�
�

�
��

�
�

�
��

[∗] [1] [12] [123]

[1234]

[1231]

[12312]

[12341]

[12342]

[12343]

1 4 12 24

24

12

24

24

24

24

4 1 3 1 2

1 1

1
1

1

2

1

2

1
1

1

(5.11)

Mohamed Sayed 713

Now

12341= 1231 · 141∼ 3413(1,4)(2,3)14∼ 214214

∼ 12412∼ 12312=⇒ [12341]= [12312],

12342= 1232 · 242

= 1(2,3)(1,4)23242∼ 423(1,3)(2,4)24

∼ 24124∼ 12312=⇒ [12342]= [12312],

12343= 12(1,2)(3,4)34∼ 2134∼ 1234=⇒ [12343]= [1234].

(5.12)

Applying the process again, level six has been reached which will cause a part of the
Cayley diagram to collapse to its final form. We have

123121= 123(1,2)(3,4)12∼ 21412

∼ 2(1,4)(2,3)142∼ 3142=⇒ [123121]= [1234],

123123∼ 21321∼ 12312=⇒ [123123]= [12312].

(5.13)

The Cayley diagram takes the following shape:

	

��

	

��

	

��

	

�� 	

��

	

�� 	

��
�
�

�
�

�
�

�
� �

�
�
�

�
�

�
�

�
�

��

�
�

��

�
�

��

�
�

��

[∗] [1] [12] [123]

[1234]

[1231]

[12312]

1 4 12 24

24

12

24
4 1 3 1 2

1 1

1
1

1

2

1

2

2

1

2

1

1

(5.14)

Finally

1234= 12341 · 1∼ 124121∼ 124(1,2)(3,4)12∼ 21312

∼ 2(1,3)(2,4)132∼ 4132=⇒ (1,4,2)∈N (1234),
(5.15)

also

1231= 1234 · 41∼ (1234)(1,2,4)41∼ 243141∼ 243(1,4)(2,3)14∼ 31214

∼ 3(1,2)(3,4)124∼ 4124=⇒ (1,4,3,2)∈N (1231).
(5.16)

714 Double-coset enumeration algorithm

The Cayley diagram now terminates as

	

��

	

��

	

��

	

�� 	

��

	

��

�
�

�
�

�
�

�
�

�� ��
�

�
��

�
�

��
[∗] [1] [12] [123]

[1234]

[1231]1 4 12 24

8

6

4 1 3 1 2

1 1

1
1

1

4

3 1

(5.17)

We may readily construct our symmetric generators as permutations on 1 + 4 + 12 +
24 + 6 + 8= 55 letters and verify that they do indeed satisfy the relations we assumed. It is
easy to recognize the group G—in this case the projective general linear group PGL2(11)
of order 55× 24= 1320—and check that it does contain such a symmetric generating set.

6. Conclusion

The present double-coset enumeration algorithm is different from the existing coset enu-
meration techniques in the way it handles the elements of the group and for telling the
user more about the structure of the group. For instance, the operations of inversion
and multiplication can be performed manually (or mechanically) by means of short al-
gorithms. Also, it is helpful to define the group in terms of generators and relations in
the standard way; we can find a symmetric generating set for the group and from this
generating set we can determine the relations which we need to add to our progenitor
presentation.

It should be emphasized that the performance of our enumerator depends largely on
the defining set of additional relations. Although the enumerator seems to be slow, it
works well with πi j = i ji relations. The other factor which particularly affects the effi-
ciency of the implementation is that it is heavily Magma dependent. Our program is run
on a Sun Sparc Station 5 with CPU clock rate 110 MHz. For example, the groups G2(4) : 2
and Suz : 2 (see symmetric presentations in [11]) take about 0.2 second and 0.35 second
of CPU time, respectively. Single-coset enumerations of these groups (using the same
machine) take about 0.04 second and 0.11 second of CPU time, respectively. However,
the time required using our implementation for the example PGL2(11) shown above is
relatively high comparing with the time required using single-coset enumeration.

References

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J.
Symbolic Comput. 24 (1997), no. 3-4, 235–265.

[2] J. J. Cannon, L. A. Dimino, G. Havas, and J. M. Watson, Implementation and analysis of the
Todd-Coxeter algorithm, Math. Comp. 27 (1973), 463–490.

Mohamed Sayed 715

[3] J. H. Conway, An algorithm for double coset enumeration?, Computational Group Theory
(Durham, 1982) (M. D. Atkinson, ed.), Academic Press, London, 1984, pp. 33–37.

[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups,
Oxford University Press, Eynsham, 1985.

[5] R. T. Curtis, Symmetric presentations. I. Introduction, with particular reference to the Mathieu
groups M12 and M24, Groups, Combinatorics & Geometry (Durham, 1990), London Math.
Soc. Lecture Note Ser., vol. 165, Cambridge Press, Cambridge, 1992, pp. 380–396.

[6] R. T. Curtis and Z. Hasan, Symmetric representation of the elements of the Janko group J1, J.
Symbolic Comput. 22 (1996), no. 2, 201–214.

[7] J. Leech, Coset enumeration, Computational Group Theory (Durham, 1982) (M. D. Atkinson,
ed.), Academic Press, London, 1984, pp. 3–18.

[8] S. A. Linton, The maximal subgroups of the sporadic groups Th, Fi24 and Fi24′ and other Topics,
Ph.D. thesis, University of Cambridge, London, 1989.

[9] , Double coset enumeration, J. Symbolic Comput. 12 (1991), no. 4-5, 415–426.
[10] M. Sayed, Computational methods in symmetric generation of groups, Ph.D. thesis, University of

Birmingham, Birmingham, 1998.
[11] , Nested symmetric representation of elements of the Suzuki chain groups, Int. J. Math.

Math. Sci. 2003 (2003), no. 62, 3931–3948.
[12] M. Suzuki, Group Theory. I, Grundlehren der Mathematischen Wissenschaften, vol. 247,

Springer, Berlin, 1982.
[13] J. A. Todd and H. S. M. Coxeter, A practical method for enumerating cosets of a finite abstract

group, Proc. Edinb. Math. Soc. 5 (1936), 26–34.

Mohamed Sayed: Department of Mathematics and Computer Science, Faculty of Science, Kuwait
University, P.O. Box 5969, Safat 13060, Kuwait

E-mail address: msayed@mcs.sci.kuniv.edu.kw

mailto:msayed@mcs.sci.kuniv.edu.kw

