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This paper deals with the existence and uniqueness of solutions for a class of infinite-
horizon systems derived from optimal control. An existence and uniqueness theorem is
proved for such Hamiltonian systems under some natural assumptions.

1. Introduction

We begin with a simple example to introduce the background of the considered problem.
Let U be a bounded closed subset of R™ and let functions f : R” X R™ X [a,0) — R",
L:R" X R™X [a,0) — R be differentiable with respect to the first variable. Consider an
optimal control system of the form

Minimize J[u(-)] = JmL(x(t),u(t),t)dt (1.1)

over all admissible controls u(-) € L?([a,); U), where the trajectories x : [a,0) — R”"
are differentiable on [g, o) and satisfy the dynamic system

x(t) = f(x(t),u(t),t), x(a) = xo. (1.2)

From control theory, the well-known Pontryagin maximum principle, an important nec-
essary optimality condition, is usually applied to get optimal controls for this system. By
doing this, the following infinite-horizon Hamiltonian system is derived:

oH (x(t), p(t),1)

x(t) = ap ,
x(a) = xo,
—0H (x(1), p(t),t) (1.3)
Pl = e
x(')ELz([a)OO);[Rn)) p(-)ELZ([a,oo);[Rn),
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Here, H(x, p,t) = AL(x,i1,t) + (p, f (x,1,t)) is the Hamiltonian function for (1.1)-(1.2),
(-,-) stands for inner product in R”, @ is an optimal control, and x(t) is the optimal
trajectory corresponding to the optimal control .

The existence and uniqueness of solutions for system (1.3) is a very interesting ques-
tion; if solutions to (1.3) are unique, then the optimal control for system (1.1)-(1.2) can
be solved analytically or numerically through (1.3). When we consider the generalization
of (1.3) in infinite-dimensional spaces, the following Hamiltonian system is obtained:

x(t) = A(t)x(t) + F(x(t), p(t),1),

x(a) = xo,
) (1.4)
p(t) = —A* () p(t) + G(x(1), p(1), 1),
x(')ELz([aaoo);X)> P(')ELz([a,OO);X):

where both x(¢) and p(t) take values in a Hilbert space X for a < t < co. It is always as-
sumed that F,G: X X X X [a,00) — X are nonlinear operators, that A(t) is a closed oper-
ator for each t € [a, ), and that A*(¢) is the adjoint operator of A(?).

The following system is called a linear Hamiltonian system, which is a special case of
(1.4),

x(t) = A()x(t) + B(t) p(t) + (1),
x(a) = X0

pt) = —A* () p(t) + C(t)x(t) + y (1),
x(+) € L*([a,0);X), p(+) € L*([a,);X),

(1.5)

where ¢(-), y(+) € L?([a,%);X), and B(t), C(t) are selfadjoint linear operators from X to
X forall t € [a, ).

In [2], Lions has discussed the existence and uniqueness of solutions for system (1.5)
and gave an existence and uniqueness result. In [1], Hu and Peng considered the existence
and uniqueness of solutions for a class of nonlinear forward-backward stochastic differ-
ential equations similar to (1.3) but on finite horizon, they provided an existence and
uniqueness theorem for (1.3). Peng and Shi in [3] dealt with the existence and unique-
ness of solutions for (1.3) using the techniques developed in [1]. In this paper, we consider
the existence and uniqueness of solutions for infinite-dimensional system (1.4).

Throughout the paper, the following basic assumptions hold.

(I) There exists a real number L > 0 such that

|[F (x1, p1,t) = F (2, p2, ) || < L{| |1 = x2| |+ [[p1 = pal]),
|G (x1, p1,1) = G(x2, p2, 1) || < L([Jx1 = xa| [+ [| p1 = p2ll)

for all x;, p1,2x2, p2 € X and t € [a, c0).
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(IT) There exists a real number « > 0 such that

(F(x1,p1,t) — F(x2, p2,£), p1 — p2) + (G(x1, p1,t) — G(x2, p2>t), %1 — x2)

(1.7)
< —a(||x1 — x|+ p1 = p2ll)

for all x, p1,%2,p» € X and t € [a, ).

2. Lemmas
Two lemmas are given in this section. They are essential to prove the main theorem.
LemwMma 2.1. Consider the Hamiltonian system

x(t) = A(t)x(t) + Fg(x, p,t) + (1),

x(a) = xo,
p(t) = —A*()p(t) + Gp(x, p, t) + y (1),
x(+) € L*([a,0);X), p(+) € L*([a,»);X),

(2.1)

where ¢(+),y(+) € L*([a,); X). The functions Fg and Gg are defined as

Fg(x, p,t) := —(1 = Bap + BF(x, p,t),

G, put) = —(1 — Bax + BG(x, p ). (22)

Assume that (2.1) has a unique solution for some real number f = By = 0 and any ¢(t), y(t).
There exists a real number § >0, which is independent of o, such that (2.1) has a unique
solution for any ¢(t), y(t), and 5 € [Bo, o + 1.

Proof. For any given ¢(-),v(-),x(+), p(+) € L*([a,%);X) and & > 0, construct the follow-
ing Hamiltonian system:

X(t) = A()X(E) + Fay (X, Py t) + Fao (%, py £) — Fpy (3, o) + 9(£),

X(a) = X0,
P(t) =—A* (t)P(l’) + GﬁO(X,P,t) + G/30+6(x;p,t) - Gﬁo (x’P)t) + 1//(1’), (23)
X(+) € L*([a,);X), P(+) € [*([a,0);X).
Note that
Fgy+s (x, pyt) — Fg, (x, p, 1)
=—(1-Bo—8)ap+ (Bo+08)F(x,p,t) + (1 Bo)ap — BoF(x, p,1t)

=adp+6F(x,p,t),

(2.4)

Gﬁo-{-a(x,p) t) — G[;O (x,p,t)
=—(1-o—8)ax+ (Bo+38)G(x,p,t)+ (1 — fo)ax — PoG(x, p,t)
= adx+0G(x, p,t).
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The assumption of Lemma 2.1 implies that (2.3) has a unique solution for each pair
(x(+),p(+)) € L*([a,0); X) X L*([a, ); X). Therefore, the mapping J,

L*([a,00);X) x L*([a,00);X) — L*([a,0);X) x L*([a,0); X), (2.5)
given by
J(x(+),p(+)) == (X(-),P(+)) (2.6)
is well defined.
Let J(x1(+), p1(+)) = (X1 (+),P1(+)) and J(x2(+), p2(+)) = (Xa(+),P2(+)). Since X;(-) —

X5(+) € L*([a,0);X) and P(-) — Py(+) € L*([a,»); X), there exists a sequence of real
numbers a<t; <t < --- <t <--- such that fy — o as k — o0 and

Xy (t) = Xa(t) — 0, Pi(tx) —Pr(tx) — 0, as k— oo (2.7)

Note that

d
a(xl(l‘) = X,(1),P1(t) = Py(1))
= (Fﬁo (Xl,Pl,t) _Fﬁo (Xz,Pz,t) +0(8(P1 —pz) +8(F(x1,p1,t) —F(Xz,pz,t)),Pl —P2>
+ (G/go (Xl,Pl,t) — Gﬁo (Xz,Pz,t) +OC(S(X1 —Xz) +8(G(X1,p1,t) — G(XZ,pz,t)),Xl —X2>

=L+
(2.8)

Since

Fpg, (X1,Py,t) — Fg, (Xa,Pa,t) = —a(1 = Bo) (P1 — P2) + Bo(F (X1, Py, t) — F(X3,Pa,t))
(2.9)
implies that

T = —a(1—Bo)||Py = Ps||* + Bo(F(X1,P1,t) — F(Xy,Pa1), P — P,)

(2.10)
+ad{p1 — p2,P1 — P2) + 8(F(x1, p1,t) — F(x2, p2,t),P1 — P2),

similarly,

Gg, (X1,P1,t) — G, (X2, P2, t) = —a(1 = Bo) (X1 — X2) + Bo (G (X1, P1,t) — G(X2,Pa,t))
(2.11)

implies that

12 = —06(1 —/3())||X1 —X2||2 +ﬁ0<G(X1,P1,t) — G(Xz,Pz,t),Xl —Xz>

(2.12)
+0£(S<.X1 —x2, X3 —X2> +5(G(X1,P1,f) - G(xz,Pz,f)>X1 _X2>-
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It follows from the estimates for I}, I, and the assumption (I) that

L+L < —a|X = X[ +]|P1 - Pa||)
+ad(|[p1 = pall [Py = Pa|[ + [|x1 — x2 [ | X1 = Xal])
+0||F(x1, p1,t) — F(x2, p2, 1) ||||P1 — P2 ]|

+8]|G(x1, prot) — G(x2, pa ) || || X1 = X | (2.13)
< —a(||X1 = X"+ [Py = P
+82L+a) (|X1 = X[ + 1Py = Puo| P+ []x1 = x| P + |1 = p2 ).
Therefore,
45,0~ 30,21 (0) - Pa(0)
< —a(||Xi = X|F +]|P - Py (2.14)
+0(2L+a) ([[X, _X2||2+||P1 —P2||2+||x1 —X2||2+||P1 —PZHZ)-
Integrating between a and #;, we have
(X1 (tx) = Xa (), Pr(tx) — P2(tk)) — (X1(a) — Xz(a),P1(a) — P2(a))
= _“Jk(HXl — || +||Py — P,||*) dt + 8L+ ) 2.15)

[0 =Xl 1y = Bl P s =P+ 1 = ol .

Letting k — oo and noting that (2.7), we obtain

0 2 2 26L+ 8a i 2 2
L (X1 = Xa||” + [Py = P, | )dtﬁm . (Ilx1 = x| + [ pr = p2|[") dt.
(2.16)
Choose a small § (independent of fy) such that
20L + 0« 1
«—20L—da 2’ (2.17)

then J is a contractive mapping and hence has a unique fixed point. Thus, (2.3) becomes
x(t) = A()x(t) + Fg,+5(x, p, 1) + (1),
x(a) = xo
p(t) = =A% (0)p(t) + Gpyvs(x, ps 1) + (1),
x(-)ELZ([a,OO);X), p()€L2([a,OO),X)

(2.18)

This shows that system (2.1) has a unique solution on [a,c0) for 8 € [Bo,0 + 8]. The
proof is complete. U
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LEmMA 2.2. System (2.1) has a unique solution on [a, o) for § = 0, that is, the system

x(t) = A()x(t) — ap(t) + ¢(t),
x(0) = xo,
plt) = —A* () p(t) — ax(t) +y(1),
x(-) € L*([a,);X), p(+) € L*([a,);X),

(2.19)

has a unique solution on [a, o).

For the proof, see [2, Section 6.2, Chapter III].

3. Main theorem
THEOREM 3.1. System (1.4) has a unique solution under assumptions (I) and (I1I).

Proof. By Lemma 2.2, system (2.1) has a unique solution on [a, %) in the case $y = 0. It
follows from Lemma 2.1 that there exists a real number & > 0 such that (2.1) has a unique
solution on [a, ) for any f8 € [0,8] and ¢,y € L?([a,);X). Let By = § in Lemma 2.1.
Repeating this procedure implies that (2.1) has a unique solution on [a,®) for any § €
[8,28] and ¢, v € L*([a, ); X). After finitely many steps, one can show that system (2.1)
has a unique solution for § = 1. Therefore, it is proved that system (1.4) has a unique
solution on [a, c0) by letting S = 1, ¢(¢) = 0, and y(¢t) = 0. O

Remark 3.2. Consider system (1.5). Note that

<F(xl,Pl’t) _F(xZ)pZ)t)>p1 _P2> + <G(x1)Pl)t) - G(xZ)pZ)t))xl _x2>

= (B(t) (Pl - PZ):PI - P2> +(C(t) (x1 — x2),x1 — x2). (.1)

By Theorem 3.1, system (1.5) has a unique solution if it is assumed that both B(#) and
C(t) are uniformly negative definite on [a, o), that is, there exists a real number y > 0 such
that (B(f)x,x) < —yllx|I?> and (C(¢)x,x) < —yllx||> forall x € X, x # 0, and t € [a, ).
Remark 3.3. Consider the control system

x(t) = A(t)x(t) + Bu(t), x(a) = xo, (3.2)

with a quadratic cost functional

1)) = [ 14Qe05(00) + (R, 0t (3.3)

where u(t) and x(t) take values in Hilbert spaces U and X, where B € £[U, X], and where
Q e #[X,X] and R € Z[U, U] are selfadjoint operators.
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From optimal control theory, the following Hamiltonian system is derived:

%(t) = A(t)x(t) — BR'Bp(1),
x(a) = xo,
pt) =—-A*(t)p(t) — Qx(t),
x(-) € L*([a,0); X), p(-) € L*([a,);X).

(3.4)

This is a special case of system (1.5). Therefore, system (3.4) has a unique solution if
both BR™'B and Q are positive definite.
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