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This paper deals with the existence and uniqueness of solutions for a class of infinite-
horizon systems derived from optimal control. An existence and uniqueness theorem is
proved for such Hamiltonian systems under some natural assumptions.

1. Introduction

We begin with a simple example to introduce the background of the considered problem.
Let U be a bounded closed subset of Rm and let functions f : Rn ×Rm × [a,∞)→ Rn,
L : Rn×Rm× [a,∞)→ R be differentiable with respect to the first variable. Consider an
optimal control system of the form

Minimize J
[
u(·)]=

∫∞
a
L
(
x(t),u(t), t

)
dt (1.1)

over all admissible controls u(·) ∈ L2([a,∞);U), where the trajectories x : [a,∞)→ Rn

are differentiable on [a,∞) and satisfy the dynamic system

ẋ(t)= f
(
x(t),u(t), t

)
, x(a)= x0. (1.2)

From control theory, the well-known Pontryagin maximum principle, an important nec-
essary optimality condition, is usually applied to get optimal controls for this system. By
doing this, the following infinite-horizon Hamiltonian system is derived:

ẋ(t)= ∂H
(
x(t), p(t), t

)
∂p

,

x(a)= x0,

ṗ(t)= −∂H
(
x(t), p(t), t

)
∂x

,

x(·)∈ L2([a,∞);Rn
)
, p(·)∈ L2([a,∞);Rn

)
.

(1.3)
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838 Solvability of Hamiltonian systems

Here, H(x, p, t) = λL(x, ū, t) + 〈p, f (x, ū, t)〉 is the Hamiltonian function for (1.1)-(1.2),
〈·,·〉 stands for inner product in Rn, ū is an optimal control, and x(t) is the optimal
trajectory corresponding to the optimal control ū.

The existence and uniqueness of solutions for system (1.3) is a very interesting ques-
tion; if solutions to (1.3) are unique, then the optimal control for system (1.1)-(1.2) can
be solved analytically or numerically through (1.3). When we consider the generalization
of (1.3) in infinite-dimensional spaces, the following Hamiltonian system is obtained:

ẋ(t)=A(t)x(t) +F
(
x(t), p(t), t

)
,

x(a)= x0,

ṗ(t)=−A∗(t)p(t) +G
(
x(t), p(t), t

)
,

x(·)∈ L2([a,∞);X
)
, p(·)∈ L2([a,∞);X

)
,

(1.4)

where both x(t) and p(t) take values in a Hilbert space X for a ≤ t <∞. It is always as-
sumed that F,G : X ×X × [a,∞)→ X are nonlinear operators, that A(t) is a closed oper-
ator for each t ∈ [a,∞), and that A∗(t) is the adjoint operator of A(t).

The following system is called a linear Hamiltonian system, which is a special case of
(1.4),

ẋ(t)=A(t)x(t) +B(t)p(t) +ϕ(t),

x(a)= x0,

ṗ(t)=−A∗(t)p(t) +C(t)x(t) +ψ(t),

x(·)∈ L2([a,∞);X
)
, p(·)∈ L2([a,∞);X

)
,

(1.5)

where ϕ(·),ψ(·)∈ L2([a,∞);X), and B(t), C(t) are selfadjoint linear operators from X to
X for all t ∈ [a,∞).

In [2], Lions has discussed the existence and uniqueness of solutions for system (1.5)
and gave an existence and uniqueness result. In [1], Hu and Peng considered the existence
and uniqueness of solutions for a class of nonlinear forward-backward stochastic differ-
ential equations similar to (1.3) but on finite horizon, they provided an existence and
uniqueness theorem for (1.3). Peng and Shi in [3] dealt with the existence and unique-
ness of solutions for (1.3) using the techniques developed in [1]. In this paper, we consider
the existence and uniqueness of solutions for infinite-dimensional system (1.4).

Throughout the paper, the following basic assumptions hold.
(I) There exists a real number L > 0 such that

∥∥F(x1, p1, t
)−F(x2, p2, t

)∥∥≤ L(∥∥x1− x2
∥∥+

∥∥p1− p2
∥∥),

∥∥G(x1, p1, t
)−G(x2, p2, t

)∥∥≤ L(∥∥x1− x2
∥∥+

∥∥p1− p2
∥∥) (1.6)

for all x1, p1,x2, p2 ∈ X and t ∈ [a,∞).
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(II) There exists a real number α > 0 such that

〈
F
(
x1, p1, t

)−F(x2, p2, t
)
, p1− p2

〉
+
〈
G
(
x1, p1, t

)−G(x2, p2, t
)
,x1− x2

〉

≤−α(∥∥x1− x2
∥∥+

∥∥p1− p2
∥∥) (1.7)

for all x1, p1,x2, p2 ∈ X and t ∈ [a,∞).

2. Lemmas

Two lemmas are given in this section. They are essential to prove the main theorem.

Lemma 2.1. Consider the Hamiltonian system

ẋ(t)=A(t)x(t) +Fβ(x, p, t) +ϕ(t),

x(a)= x0,

ṗ(t)=−A∗(t)p(t) +Gβ(x, p, t) +ψ(t),

x(·)∈ L2([a,∞);X
)
, p(·)∈ L2([a,∞);X

)
,

(2.1)

where ϕ(·),ψ(·)∈ L2([a,∞);X). The functions Fβ and Gβ are defined as

Fβ(x, p, t) :=−(1−β)αp+βF(x, p, t),

Gβ(x, p, t) :=−(1−β)αx+βG(x, p, t).
(2.2)

Assume that (2.1) has a unique solution for some real number β= β0 ≥ 0 and any ϕ(t), ψ(t).
There exists a real number δ > 0, which is independent of β0, such that (2.1) has a unique
solution for any ϕ(t), ψ(t), and β ∈ [β0,β0 + δ].

Proof. For any given ϕ(·),ψ(·),x(·), p(·)∈ L2([a,∞);X) and δ > 0, construct the follow-
ing Hamiltonian system:

Ẋ(t)=A(t)X(t) +Fβ0 (X ,P, t) +Fβ0+δ(x, p, t)−Fβ0 (x, p, t) +ϕ(t),

X(a)= x0,

Ṗ(t)=−A∗(t)P(t) +Gβ0 (X ,P, t) +Gβ0+δ(x, p, t)−Gβ0 (x, p, t) +ψ(t),

X(·)∈ L2([a,∞);X
)
, P(·)∈ L2([a,∞);X

)
.

(2.3)

Note that

Fβ0+δ(x, p, t)−Fβ0 (x, p, t)

=−(1−β0− δ
)
αp+

(
β0 + δ

)
F(x, p, t) +

(
1−β0

)
αp−β0F(x, p, t)

= αδp+ δF(x, p, t),

Gβ0+δ(x, p, t)−Gβ0 (x, p, t)

=−(1−β0− δ
)
αx+

(
β0 + δ

)
G(x, p, t) +

(
1−β0

)
αx−β0G(x, p, t)

= αδx+ δG(x, p, t).

(2.4)
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The assumption of Lemma 2.1 implies that (2.3) has a unique solution for each pair
(x(·), p(·))∈ L2([a,∞);X)×L2([a,∞);X). Therefore, the mapping J ,

L2([a,∞);X
)×L2([a,∞);X

)−→ L2([a,∞);X
)×L2([a,∞);X

)
, (2.5)

given by

J
(
x(·), p(·)) := (X(·),P(·)) (2.6)

is well defined.
Let J(x1(·), p1(·)) = (X1(·),P1(·)) and J(x2(·), p2(·)) = (X2(·),P2(·)). Since X1(·)−

X2(·) ∈ L2([a,∞);X) and P1(·)− P2(·) ∈ L2([a,∞);X), there exists a sequence of real
numbers a < t1 < t2 < ··· < tk < ··· such that tk →∞ as k→∞ and

X1
(
tk
)−X2

(
tk
)−→ 0, P1

(
tk
)−P2

(
tk
)−→ 0, as k −→∞. (2.7)

Note that

d

dt

〈
X1(t)−X2(t),P1(t)−P2(t)

〉

= 〈Fβ0

(
X1,P1, t

)−Fβ0

(
X2,P2, t

)
+αδ

(
p1− p2

)
+ δ
(
F
(
x1, p1, t

)−F(x2, p2, t
))

,P1−P2
〉

+
〈
Gβ0

(
X1,P1, t

)−Gβ0

(
X2,P2, t

)
+αδ

(
x1− x2

)
+ δ
(
G
(
x1, p1, t

)−G(x2, p2, t
))

,X1−X2
〉

:= I1 + I2.
(2.8)

Since

Fβ0

(
X1,P1, t

)−Fβ0

(
X2,P2, t

)=−α(1−β0
)(
P1−P2

)
+β0

(
F
(
X1,P1, t

)−F(X2,P2, t
))
(2.9)

implies that

I1 =−α
(
1−β0

)∥∥P1−P2
∥∥2

+β0
〈
F
(
X1,P1, t

)−F(X2,P2, t
)
,P1−P2

〉
+αδ

〈
p1− p2,P1−P2

〉
+ δ
〈
F
(
x1, p1, t

)−F(x2, p2, t
)
,P1−P2

〉
,

(2.10)

similarly,

Gβ0

(
X1,P1, t

)−Gβ0

(
X2,P2, t

)=−α(1−β0
)(
X1−X2

)
+β0

(
G
(
X1,P1, t

)−G(X2,P2, t
))

(2.11)

implies that

I2 =−α
(
1−β0

)∥∥X1−X2
∥∥2

+β0
〈
G
(
X1,P1, t

)−G(X2,P2, t
)
,X1−X2

〉
+αδ

〈
x1− x2,X1−X2

〉
+ δ
〈
G
(
x1, p1, t

)−G(x2, p2, t
)
,X1−X2

〉
.

(2.12)
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It follows from the estimates for I1, I2, and the assumption (I) that

I1 + I2 ≤−α
(∥∥X1−X2

∥∥2
+
∥∥P1−P2

∥∥2)
+αδ

(∥∥p1− p2
∥∥∥∥P1−P2

∥∥+
∥∥x1− x2

∥∥∥∥X1−X2
∥∥)

+ δ
∥∥F(x1, p1, t

)−F(x2, p2, t
)∥∥∥∥P1−P2

∥∥
+ δ
∥∥G(x1, p1, t

)−G(x2, p2, t
)∥∥∥∥X1−X2

∥∥
≤−α(∥∥X1−X2

∥∥2
+
∥∥P1−P2

∥∥2)

+ δ(2L+α)
(∥∥X1−X2

∥∥2
+
∥∥P1−P2

∥∥2
+
∥∥x1− x2

∥∥2
+
∥∥p1− p2

∥∥2)
.

(2.13)

Therefore,

d

dt

〈
X1(t)−X2(t),P1(t)−P2(t)

〉

≤−α(∥∥X1−X2
∥∥2

+
∥∥P1−P2

∥∥2)

+ δ(2L+α)
(∥∥X1−X2

∥∥2
+
∥∥P1−P2

∥∥2
+
∥∥x1− x2

∥∥2
+
∥∥p1− p2

∥∥2)
.

(2.14)

Integrating between a and tk, we have

〈
X1
(
tk
)−X2

(
tk
)
,P1
(
tk
)−P2

(
tk
)〉− 〈X1(a)−X2(a),P1(a)−P2(a)

〉

≤−α
∫ tk
a

(∥∥X1−X2
∥∥2

+
∥∥P1−P2

∥∥2)
dt+ δ(2L+α)

×
∫ tk
a

(∥∥X1−X2
∥∥2

+
∥∥P1−P2

∥∥2
+
∥∥x1− x2

∥∥2
+
∥∥p1− p2

∥∥2)
dt.

(2.15)

Letting k→∞ and noting that (2.7), we obtain

∫∞
a

(∥∥X1−X2
∥∥2

+
∥∥P1−P2

∥∥2)
dt ≤ 2δL+ δα

α− 2δL− δα
∫∞
a

(∥∥x1− x2
∥∥2

+
∥∥p1− p2

∥∥2)
dt.

(2.16)

Choose a small δ (independent of β0) such that

2δL+ δα
α− 2δL− δα ≤

1
2

, (2.17)

then J is a contractive mapping and hence has a unique fixed point. Thus, (2.3) becomes

ẋ(t)= A(t)x(t) +Fβ0+δ(x, p, t) +ϕ(t),

x(a)= x0,

ṗ(t)=−A∗(t)p(t) +Gβ0+δ(x, p, t) +ψ(t),

x(·)∈ L2([a,∞);X
)
, p(·)∈ L2([a,∞);X

)
.

(2.18)

This shows that system (2.1) has a unique solution on [a,∞) for β ∈ [β0,β0 + δ]. The
proof is complete. �
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Lemma 2.2. System (2.1) has a unique solution on [a,∞) for β = 0, that is, the system

ẋ(t)= A(t)x(t)−αp(t) +ϕ(t),

x(0)= x0,

ṗ(t)=−A∗(t)p(t)−αx(t) +ψ(t),

x(·)∈ L2([a,∞);X
)
, p(·)∈ L2([a,∞);X

)
,

(2.19)

has a unique solution on [a,∞).

For the proof, see [2, Section 6.2, Chapter III].

3. Main theorem

Theorem 3.1. System (1.4) has a unique solution under assumptions (I) and (II).

Proof. By Lemma 2.2, system (2.1) has a unique solution on [a,∞) in the case β0 = 0. It
follows from Lemma 2.1 that there exists a real number δ > 0 such that (2.1) has a unique
solution on [a,∞) for any β ∈ [0,δ] and ϕ,ψ ∈ L2([a,∞);X). Let β0 = δ in Lemma 2.1.
Repeating this procedure implies that (2.1) has a unique solution on [a,∞) for any β ∈
[δ,2δ] and ϕ, ψ ∈ L2([a,∞);X). After finitely many steps, one can show that system (2.1)
has a unique solution for β = 1. Therefore, it is proved that system (1.4) has a unique
solution on [a,∞) by letting β = 1, ϕ(t)≡ 0, and ψ(t)≡ 0. �

Remark 3.2. Consider system (1.5). Note that

〈
F
(
x1, p1, t

)−F(x2, p2, t
)
, p1− p2

〉
+
〈
G
(
x1, p1, t

)−G(x2, p2, t
)
,x1− x2

〉
= 〈B(t)

(
p1− p2

)
, p1− p2

〉
+
〈
C(t)

(
x1− x2

)
,x1− x2

〉
.

(3.1)

By Theorem 3.1, system (1.5) has a unique solution if it is assumed that both B(t) and
C(t) are uniformly negative definite on [a,∞), that is, there exists a real number γ > 0 such
that 〈B(t)x,x〉 ≤ −γ‖x‖2 and 〈C(t)x,x〉 ≤ −γ‖x‖2 for all x ∈ X , x �= 0, and t ∈ [a,∞).

Remark 3.3. Consider the control system

ẋ(t)= A(t)x(t) +Bu(t), x(a)= x0, (3.2)

with a quadratic cost functional

J
[
u(·)]=

∫∞
a

[〈
Qx(t),x(t)

〉
+
〈
Ru(t),u(t)

〉]
dt, (3.3)

where u(t) and x(t) take values in Hilbert spacesU and X , where B ∈�[U ,X], and where
Q ∈�[X ,X] and R∈�[U ,U] are selfadjoint operators.
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From optimal control theory, the following Hamiltonian system is derived:

ẋ(t)= A(t)x(t)−BR−1Bp(t),

x(a)= x0,

ṗ(t)=−A∗(t)p(t)−Qx(t),

x(·)∈ L2([a,∞);X
)
, p(·)∈ L2([a,∞);X

)
.

(3.4)

This is a special case of system (1.5). Therefore, system (3.4) has a unique solution if
both BR−1B and Q are positive definite.
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