
DETERMINATION OF SURFACES IN THREE-DIMENSIONAL
MINKOWSKI AND EUCLIDEAN SPACES BASED ON
SOLUTIONS OF THE SINH-LAPLACE EQUATION

PAUL BRACKEN

Received 23 January 2005

The relationship between solutions of the sinh-Laplace equation and the determination
of various kinds of surfaces of constant Gaussian curvature, both positive and negative,
will be investigated here. It is shown that when the metric is given in a particular set of co-
ordinates, the Gaussian curvature is related to the sinh-Laplace equation in a direct way.
The fundamental equations of surface theory are found to yield a type of geometrically
based Lax pair for the system. Given a particular solution of the sinh-Laplace equation,
this Lax can be integrated to determine the three fundamental vectors related to the sur-
face. These are also used to determine the coordinate vector of the surface. Some specific
examples of this procedure will be given.

The relationship between the solutions of certain types of partial differential equations
and the determination of various kinds of surfaces of constant curvature has generated
many results which have applications to the areas of both pure and applied mathemat-
ics. This includes the determination of surfaces of either constant mean curvature or
Gaussian curvature. It has long been known that there is a connection between surfaces
of negative constant Gaussian curvature in Euclidean R3 and the sine-Gordon equation.
Moreover, a great deal of work has been done recently [1, 3] with regard to the generalized
Weierstrass representation which permits inducing surfaces of constant mean curvature
in R3 as well as in higher-dimensional Euclidean and non-Euclidean spaces. The par-
tial differential equations whose solutions are used to generate surfaces in these types of
spaces are known to have soliton solutions and many examples of these have been given
[2]. From these types of solutions, it is usually possible to construct multisoliton solutions
for the equation. This can often be accomplished in more than one way. For example, an
auto-Bäcklund transformation can be determined for the differential equation, or a sys-
tem of differential equations, by making use of the transformation itself, or by making
direct use of the theorem of permutability [4].

We introduce here some fundamental concepts and equations pertaining to the theory
of surfaces in three-space, and, in particular, we study a class of sinh-Laplace equation
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which has the form

∂2u

∂x2
+
∂2u

∂t2
=±sinhu. (1)

Some further results are obtained based on the fundamental equations of surface theory,
and it is shown how specific solutions of the sinh-Laplace equation (1) can be used in
integrating these results to obtain the coordinates of a surface in either Minkowski R2,1

or Euclidean R3 space [5, 6]. For future reference, S2 will be the unit sphere in Euclidean
space R3, H2 and S1,1 are the unit “spheres” in the Minkowski space R2,1 with curvature
−1 and +1, respectively. It will be noted that there is a close relationship between (1)
and the harmonic maps from R2 to S2. From the harmonic maps, the Lax pair with this
integrability condition can be obtained, and conversely, from each solution of (1), the
corresponding harmonic map can be constructed. In fact, harmonic maps have many ap-
plications. The study of Yang-Mills theories has been motivated in part by analogies with
general relativity. Harmonic maps model, in a simplified form, a type of nonlinearity
that occurs in the Einstein equations, but different from that modeled by Yang-Mills the-
ories. Gauge vector fields, or connections in bundles, can be defined by using solutions of
the harmonic mapping equations, instead of the more familiar, inequivalent, Yang-Mills
equations. In any case, producing connections in bundles has applications to both pure
and applied areas of mathematics.

We now begin by introducing some basic ideas from differential geometry of sur-
faces. Let r be the position vector of point P in three-space such that r = r(u1,u2) is the
parametrization of a surface, and {P,e1,e2,n} a frame with P as its origin, ea = ∂r/∂ua

and n the normal vector. It is possible to take linear combinations of the vectors e1, e2

to produce an orthonormal set f1, f2. However, the notation will not be altered and the
basis {e1,e2,n} is simply referred to as an orthonormal frame for the surface. Writing
the differentials of r, ea, and n = e3 as linear combinations of the vectors in this set, the
fundamental equations of the theory of surfaces are written as

dr= ωaea,

dea = ωbaeb +ω3
an, a,b = 1,2,

dn= ωb3eb.

(2)

In (2), ωab, ω3
a are differential one-forms which depend on u1, u2 and satisfy

ωab =−ωba , ωa3 = ω3
a. (3)

The first fundamental form of the surface is

I = dr ·dr= gabωaωb, gab = ea · eb = gba. (4)

Differentiating the orthonormality condition n · ea = 0, we obtain n · dea + ea · dn = 0.
Upon substituting differentials from (2), this implies that

ω3
a =−gabωb3 . (5)
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Writing ω3
a = habωb, then from d2r= 0, it follows that hab = hba. The related form

II =−dr ·dn=−gabωb3ωa = habωaωb (6)

is called the second fundamental form of the surface. Now ωba can be written in the form

ωba = Γbacdu
c, (7)

where ωc = duc and Γbac are the Christoffel symbols. Differentiating dr, we obtain

d2r= ωba ∧ωaeb +ω3
a∧ωan. (8)

Since ea and n are independent, this will vanish provided that

ωba ∧ωa = 0, ω3
a∧ωa = 0. (9)

Of course, we can take ωa = dua and replace this in these equations. Upon differentiating
dea, we obtain

d2ea =
(
ωcb∧ωba +dωca +ωc3∧ω3

a

)
ec +

(
ω3
b∧ωba +dω3

a

)
n= 0. (10)

The vanishing of this expansion implies that the following equations hold:

dωca +ωcb∧ωba +ωc3∧ω3
a = 0, (11)

dω3
a +ω3

b∧ωba = 0. (12)

Equations (11) and (12) are called the Gauss equation and the Codazzi equation, respec-
tively. Finally, evaluating d2n simply reproduces (12) and (9) once again. Writing (11) in
the form dωca +ωcb∧ωba = ω3

a∧ωc3, the left-hand side is denoted by

dωba +ωbc ∧ωca =
1
2
Rbacdω

c∧ωd. (13)

This serves to introduce the Riemann curvature tensor. Using (5), it will be seen that it
can be related to the components hab through the relation

Rabcd = hachbd −hbchad, (14)

where a, b, c, d take the values 1, 2. One of the reasons that it is possible to produce con-
nections between surfaces and integrable equations, such as the sine-Gordon equation,
or system (1), is that there is a very straightforward connection between the Riemann
tensor and the Gaussian curvature K of the surface,

R1212

g11g22− g2
12
= h11h22−h2

12

g11g22− g2
12
= K. (15)

A second reason is that a parametrization of the surface can be written down such that
the first fundamental form assumes a particular form in terms of a function which sat-
isfies the sinh-Laplace equation in these specific coordinates. This leads to the following
definition.
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Definition 1. A coordinate system (t,x) of the space-like surface S is called Tschebyscheff

if the metric of S takes the form

I = cosh2 α

2
dt2 + sinh2 α

2
dx2, (16)

and the second fundamental form is given by

II = cosh
α

2
sinh

α

2

(
dt2 +dx2). (17)

Theorem 2. If a space-like surface S is of constant curvature K =±1 and free of umbilics,
then (i) S can be covered by charts with Tschebyscheff coordinates, (ii) the function α(t,x) in
terms of Tschebyscheff coordinates satisfies the sinh-Laplace equation.

Proof. Let {P,ei} with i = 1,2,3 be a field of orthogonal frames of S such that e1, e2 are
unit tangent vectors to the lines of curvature and e3 is the unit normal vector to the sur-
face. The fundamental equations of the surface are given by (2). Since e1, e2 are principal
tangent vectors, we can write

ω3
1 = Aω1, ω3

2 = Cω2. (18)

Using the property that, in this case, the curvature of S is K =−1, it must be that AC = 1.
Choose coordinates such that

ω1 = χdt, ω2 = ψdx, (19)

and put

ω1
2 =−ω2

1 = ξ dt+ηdx, (20)

where ξ and η are to be determined. From the integrability condition dωc +ωca∧ωa = 0,
the following equations are obtained:

ψξ = χx, χη =−ψt. (21)

Using (12), we obtain

d(Aχdt) + (ξ dt+ηdx)∧Cψdx = 0, (22)

which yields the equation

Axχ+ (A−C)χx = 0. (23)

Similarly, from

d(Cψdx) +Aχdt∧ (ξ dt+ηdx)= 0, (24)

it follows that

Ctψ + (C−A)ψt = 0. (25)
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Since the surface is free of umbilics A �= ±1, hence setting A= tanh(α/2) and C = coth(α
/2), these equations are transformed into

(lnχ)x =
(

lncosh
α

2

)
x
, (lnψ)t =

(
lnsinh

α

2

)
t
, (26)

hence χ(t)= f (t)cosh(α/2) and ψ(x)= g(x)sinh(α/2). By means of a reparametrization
of x and t, we can write

χ = cosh
α

2
, ψ = sinh

α

2
. (27)

Hence, from (19), it follows that

ω1 = cosh
α

2
dt, ω2 = sinh

α

2
dx. (28)

This gives the required structure for the fundamental forms. The second part follows
immediately from the Gauss equation, dω1

2 = Kω1∧ω2. Since

ξ = χx
ψ
= 1

2
αx, η =−ψt

χ
=−1

2
αt. (29)

The one-forms are given by

ω1 = cosh
α

2
dt, ω2 = sinh

α

2
dx, ω1

2 =
1
2

(
αxdt−αtdx

)
,

ω3
1 = sinh

α

2
dt, ω3

2 = cosh
α

2
dx.

(30)

Differentiating ω1
2, it is found that

dω1
2 = ξx dx∧dt+ηt dt∧dx =

(
ξx −ηt

)
dx∧dt = 1

2

(
αxx +αtt

)
dx∧dt. (31)

The right-hand side is ω1∧ω2 =−(1/2)sinhαdx∧ dt, thus when K =−1, we obtain the
equation αxx +αtt = sinhα. The case K = 1 follows similarly.

From these results, it follows that Aχ = sinh(α/2) and Cψ = cosh(α/2). Now, the equa-
tions for the surface provide a method for constructing a space-like surface of constant
Gaussian curvature K =−1 inR2,1 which is based on a solution of the sinh-Laplace equa-
tion. This amounts to using these equations to write down a Lax pair for the system such
that compatibility holds modulo the sinh-Laplace equation and which can be integrated
given a particular solution of the equation. �

Theorem 3. Let α(t,x) �= 0 be a solution of the sinh-Laplace equation (1) on a simply con-
nected region Ω ⊂ R2. Then there exists a space-like surface S ⊂ R2,1 of constant Gaussian
curvature K =−1 such that (t,x) are its Tschebyscheff coordinates.

Proof. If a solution for the set of basis vectors {e1,e2,e3} can be obtained from the funda-
mental equations, then the equation for dr can be integrated to produce the coordinates
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of a surface. Therefore,

de1 = e1,xdx+ e1,tdt = 1
2
αte2dx+

(
sinh

α

2
e3− 1

2
αxe2

)
dt. (32)

Equating coefficients of dx and dt on both sides of (32), we obtain the pair

e1,x = 1
2
αte2, e1,t = sinh

α

2
e3− 1

2
αxe2. (33)

From the next equation, it follows that

de2 = e2,xdx+ e2,tdt = 1
2
αxe1dt+

(
− 1

2
αte1 + cosh

α

2
e3

)
dx. (34)

Thus,

e2,x =−1
2
αte1 + cosh

α

2
e3, e2,t = 1

2
αxe1. (35)

Finally, the last equation gives the pair

e3,x = cosh
α

2
e2, e3,t = sinh

α

2
e1. (36)

To summarize these results, we introduce the more compact notation e1 = n, e2 =m, and
e3 = p such that p2 =−1, m2 = n2 = 1, p ·m= p ·n= m ·n= 0, then this system takes
the form

px = cosh
α

2
m, pt = sinh

α

2
n,

mx =−1
2
αtn + cosh

α

2
p, mt = 1

2
αxn,

nx = 1
2
αtm, nt =−1

2
αxm + sinh

α

2
p.

(37)

Since system (2) is linear in {e1,e2,e3}, the orthonormal solution of (37) is defined on
all of Ω. To obtain the coordinates of the surface, it remains to integrate the expression
for dr, which is also integrable. For a solution of sinh-Laplace equation (1), system (37) is
completely integrable, and the solution is defined on all ofΩ. Now an initial condition can
be chosen (t,x)= (t0,x0)∈Ω, and a surface is obtained in the coordinates of Definition 1.

�

Lemma 4. The system (37) satisfies the necessary compatibility conditions provided that
α(t,x) satisfies the sinh-Laplace equation αtt +αxx = sinhα.

Proof. The pair of equations (px,py) is satisfied trivially with respect to (37). Differenti-
ating mx with respect to t, we obtain mxt =−(1/2)αttn− (1/2)αtnt + (αt/2)sinh(α/2)p +
cosh(α/2)pt, and mt with respect to x gives mtx = (1/2)αxxn + (1/2)αxnx. Equating the
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derivatives mxt =mtx modulo (37), we obtain

−1
2
αttn− 1

2
αt

(
− 1

2
αxm + sinh

α

2
p
)

+
αt
2

sinh
α

2
p + cosh

α

2
sinh

α

2
n= 1

2
αxxn +

1
4
αxαtm.

(38)

Upon simplifying this expression, it is clear that it holds exactly when α satisfies the pos-
itive sinh-Laplace equation. A similar calculation gives the same result for the (nt,nx)
pair. �

Theorem 5. Let α(t,x) �= 0 be a solution of the sinh-Laplace equation (1) on a simply con-
nected region. Then there exists a space-like surface S ⊂ R3 of constant Gaussian curvature
such that (t,x) are the Tschebyscheff coordinates, and the associated Lax pair is given by

px = cosh
α

2
m, pt = sinh

α

2
n,

mx =−1
2
αtn− cosh

α

2
p, mt = 1

2
αxn,

nx = 1
2
αtm, nt =−1

2
αxm− sinh

α

2
p.

(39)

Lemma 6. The system (39) satisfies the integrability or compatibility condition provided that
α(t,x) satisfies the sinh-Laplace equation αtt +αxx =−sinhα.

It is worth explaining exactly how (1) is related to the Gaussian curvature K of the
actual surface. From (15), it can be seen that there is a very straightforward relation-
ship between the Riemann tensor R1212 and the Gaussian curvature of the correspond-
ing surface. The metric for the cases of interest here is given for α �= 0 in Definition 1.
Based on the metric, it is straightforward to calculate R1212. In terms of α, R1212 is simply
(1/2)(αtt +αxx), hence (15) gives

(
∂2α/∂t2

)
+
(
∂2α/∂x2

)
−sinhα

= K. (40)

For the case in whichK =±1, the sinh-Laplace equation (1) is obtained. This implies that
if the metric of the unit sphere S2 or H2, for example, is written in the form (16), then α
must be a solution of the sinh-Laplace system (1).

Consider the Lax pair given by (39). From the definition of the pair (pt,px), it is clear
that

p2
x −p2

t = 1, px ·pt = 0, (41)

since m and n are orthonormal. Differentiating pt with respect to t and px with respect
to x, we obtain

ptt = αt
2

cosh
α

2
n + sinh

α

2
nt, pxx = αx

2
sinh

α

2
m + cosh

α

2
mx. (42)
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Therefore, it follows by substituting the known derivatives from (39) that

ptt + pxx +
(

p2
t + p2

x

)
p= αx

2
sinh

α

2
m + cosh

α

2

(
− 1

2
αtn− cosh

α

2
p
)

+
αt
2

cosh
α

2
n

+ sinh
α

2

(
− 1

2
αxm− sinh

α

2
p
)

+
(

cosh2 α

2
+ sinh2 α

2

)
p= 0.

(43)

To summarize this result, it has been shown that p(t,x) satisfies the equation

ptt + pxx +
(

p2
t + p2

x

)
p= 0. (44)

In fact, (44) is exactly the equation for harmonic maps from R2 to S2. Consequently,
p(t,x) is a harmonic map from R2 to S2. A normalized harmonic map is defined as a
harmonic map which satisfies (41) as well. Given a solution α(t,x) for the negative sinh-
Laplace equation (1) on a simply connected region Ω⊂R2, by solving the Lax pair with
some initial condition (t0,x0)∈Ω, a normalized harmonic map is obtained. This implies
that a normalized harmonic map can be constructed from a solution of the negative sinh-
Laplace equation (1). This establishes a connection between solutions of the negative
sinh-Laplace equation and harmonic maps.

A surface of constant Gaussian curvature in R2,1 based on a particular solution of
the sinh-Laplace equation corresponding to the harmonic maps from Ω ⊂ R2 to H2 ⊂
R2,1 will be obtained. Here H2 is considered to be the upper component of p2 = −1 in
R2,1. The corresponding Lax pair that is integrated has been given in (37), and Lemma 4
clearly shows that integrability is satisfied provided that α is a solution of the positive
sinh-Laplace equation. This is rigorously adhered to here. For purposes of presentation,
the t and x labels will be interchanged in (37). A particularly nice form for the surface
coordinates in which sinh t and cosh t appear explicitly in terms of t is obtained in this
event, and the Lax takes the form

pt = cosh
α

2
m, px = sinh

α

2
n,

mt =−1
2
αxn + cosh

α

2
p, mx = 1

2
αtn,

nt = 1
2
αxm, nx =−1

2
αtm + sinh

α

2
p.

(45)

The following α is a solution of the sinh-Laplace equation provided that µ2 + λ2 = 1,

α(t,x)= 2sinh−1
(

1
sinh(λt+µx)

)
, λt+µx > 0. (46)

This implies that

sinh
α

2
= 1

sinh(λt+µx)
, cosh

α

2
= cosh(λt+µx)

sinh(λt+µx)
. (47)
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This solution will be substituted into the Lax pair given by (37) and integrated. To this
end, differentiating (47), it follows that the derivatives of α are

αx =−2µsinh
α

2
, αt =−2λsinh

α

2
. (48)

We introduce three new variables a, b, and c which are defined by

a= λp + m, b= p + λm +µn, c=−p− λm +µn. (49)

Differentiating a with respect to x, it follows with respect to the Lax pair that

ax = λpx + mx = λsinh
α

2
n− λsinh

α

2
n= 0. (50)

Similarly, differentiating b and c with respect to x, then modulo the Lax, we obtain that
a, b, and c satisfy the following system:

ax = 0, bx = µsinh
α

2
b, cx =−µsinh

α

2
c. (51)

This system of differential equations may be integrated to yield

a(x, t)= a0(t), b(x, t)=−b0(t)tanh
(
λt+µx

2

)
, c(x, t)=−c0(t)coth

(
λt+µx

2

)
,

(52)

where b and c can be expressed in terms of α as follows:

b(x, t)=−b0(t)
(

cosh
α

2
− sinh

α

2

)
, c(x, t)=−c0(t)

(
cosh

α

2
+ sinh

α

2

)
. (53)

Here a0(t), b0(t), and c0(t) are vector functions which are independent of x. Moreover, p,
m, and n can be determined in terms of a, b, and c as follows:

p= 1
2µ2

(b− 2λa− c), m= 1
2µ2

(2a + λc− λb), n= 1
2µ

(b + c). (54)

Next, a system of equations which are satisfied by a0, b0, and c0 will be obtained and
which can be solved. Differentiating a with respect to t and using the Lax as well as (53),
we obtain

at = λpt + mt = cosh
α

2
(λm + p) +µsinh

α

2
n= 1

2
cosh

α

2
(b− c) +

1
2

sinh
α

2
(b + c)

=−1
2

b0

(
cosh2 α

2
− sinh2 α

2

)
− 1

2
c0

(
sinh2 α

2
− cosh2 α

2

)
,

(55)

which simplifies to

a0t =−1
2

b0 +
1
2

c0. (56)
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Similar operations can be performed on b and c, and the system which is satisfied by a0,
b0, and c0 is given by

a0t =−1
2

b0 +
1
2

c, b0t =−a0, c0t = a0. (57)

Differentiating the first equation with respect to t, then replacing the last two, we find
that a satisfies a0tt = a0, so the general solution of this system is given by

a0(t)= σ cosh t+ ν sinh t,

b0(t)= τ −σ sinh t− ν cosh t,

c0(t)= τ +σ sinh t+ ν cosh t,

(58)

in terms of constant vectors τ, σ , and ν. Let t = 0 and x→−∞, then from (58), we obtain

a0(0)= σ , b0(0)= τ − ν, c0(0)= τ + ν,

a0(0)= λp0−m0, b0(0)= p0 + λm0 +µn0, c0(0)=−p0− λm0 +µn0.
(59)

Eliminating a0(0), b0(0), and c0(0), we obtain

σ = λp0−m0, τ − ν = p0 + λm0 +µn0, τ + ν =−p0− λm0 +µn0. (60)

Adding the second and third equations, we find that τ = µn0, and then subtracting,
we have

ν =−p0− λm0. (61)

Here, p0, m0 and n0 form an orthonormal set of vectors in H2 ⊂ R2,1. Substituting τ, σ
and ν into the expression for a0(t), b0(t), and c0(t), we obtain

a0(t)= (λp0−m0
)

cosh t− (p0 + λm0
)

sinh t,

b0(t)= µn0−
(
λp0−m0

)
sinh t+

(
p0 + λm0

)
cosh t,

c0(t)= µn0 +
(
λp0−m0

)
sinh t− (p0 + λm0

)
cosh t.

(62)

Substituting these results into (54), we obtain that with ζ = µx + λt, and collecting all
terms which multiply p0, m0, and n0, respectively, we can write p, m, and n explicitly as
follows:

p=
(
λ

µ2
(sinh t− λcosh t) + (λsinh t− cosh t)cothζ

)
p0 +

n0

µsinhζ

+
(
− 1
µ2

(λcosh t+ sinh t)cothζ +
λ

µ2
(cosh t+ λsinh t)

)
m0,

m=
(

1
µ2

(λcosh t− sinh t)sinhζ +
λ

µ2
cothζ(λsinh t− cosh t)

)
p0− λn0

µsinhζ

−
(

1
µ2

(cosh t+ λsinh t)− λ

µ2
cothζ(λcosh t+ sinh t)

)
m0,

n= (cosh t− λsinh t)
µ2 sinhζ

p0 +
(sinh t+ λcosh t)

µ2 sinhζ
m0− 1

µ
cothζn0.

(63)
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To obtain one variety of surface, it suffices to take dr in the form

dr= cosh
α

2
dtm + sinh

α

2
dxn. (64)

This clearly generates the correct form I = dr · dr. In this form, it is possible to do all
the integration. Integrating rx = sinh(α/2)n with respect to x by taking n from (63), we
obtain

r= r0(t)− 1
µ2

(sinh t− λcosh t)cothζm0 +
1

µsinhζ
n0 +

1
µ2

(λsinh t− cosh t)cothζp0.

(65)

To determine the remaining function r0(t), differentiate (65) with respect to t and sub-
stitute rt and m into the remaining equation rt = cosh(α/2)m. This function satisfies the
first-order equation

r′0(t)= λ

µ2
(cosh t− λsinh t)p0 +

λ

µ2
(sinh t+ λcosh t)m0. (66)

Integrating both sides of this, we finally obtain that

r0(t)= λ

µ2
(sinh t− λcosh t)p0 +

λ

µ2
(cosh t+ λsinh t)m0. (67)

Substituting (67) into (65), we obtain the final equation for r,

r= 1
µ2

(
λ(sinh t− λcosh t) + (λsinh t− cosh t)cothζ

)
p0 +

n0

µsinhζ

+
1
µ2

(
λ(cosh t+ λsinh t)− (sinh t+ λcosh t)cothζ

)
m0.

(68)

This result gives an expression for the coordinates of the surface in this space.
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