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We use the uniform asymptotics method proposed by A. P. Bassom et al. (1998) to study
the general fourth Painlevé transcendent, find a group of its asymptotics and the corre-
sponding monodromic data, and prove its existence and “uniqueness.”

1. Introduction

With more and more discovery of their applications in the areas of physics such as quan-
tum mechanics and solitons, Painlevé transcendents have attracted significant attention
of many mathematicians in about the last twenty years. One direction of the research in
this area is to find the asymptotics behaviour of the Painlevé transcendents as their in-
dependent variable approaches the singular points. The work about this can be found in
[1, 3, 5, 6, 7, 8, 9, 10, 11] and some other papers. But there are not many results about the
asymptotics of the fourth Painlevé equation

(PIV)

y′′ = y′2

2y
+

3
2
y3 + 4xy2 + 2

(
x2−α

)
y +

β

y
, (1.1)

where α and β are constant parameters. In [3], Clarkson and McLeod studied a special
case of (PIV) when β = 0 and obtained a group of asymptotics to its solutions. In [1],
Abdullayev applied the classical successive approximation method to (PIV) when β = 0
and proved the existence of one of the asymptotic expressions obtained by Clarkson and
McLeod in [3]. In [10], Lu studied the asymptotic behaviour of the solutions to (PIV)
when β > 0 and iα is real, and obtained a group of asymptotic expressions of the real
solutions when x approaches infinity along the ray arg(x)= π/4.

In this paper, we study the behaviour of the real solutions of (PIV) when β > 0 and
α > 0, and obtain the following result about the asymptotics of its real solutions. Noticing
that (PIV) does not change when we change x to−x and y to−y, we only need to consider
the asymptotics of the solutions in one side of the x-axis based on the result of Lemma 2.1
in Section 2.
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Theorem 1.1. If β > 0, the solutions of (PIV) cannot cross the x-axis. Furthermore, if α > 0,
the only negative solution of the Painlevé equation (PIV) that does not blow up at any finite
point when x goes to positive infinity is oscillating as x→ +∞ and it satisfies the following.

(1) As x→ +∞,

y =−2
3
x±d cosφ+O

(
x−1),

y′ = 2
√

3x
3

d sinφ+O(1),
(1.2)

where φ= (
√

3/3)x2− (
√

3/4)d2 logx+φ0 +O(x−1), d and φ0 are real parameters.
(2) As x goes to negative infinity, y blows up at a finite point of x.

It is important to point out that we care about both the existence and uniqueness of
the asymptotic expression in (1.2). There are several major differences between the results
in [3] and ours. First, Clarkson and McLeod proved that, as β = 0, (PIV) has a solution
approaching 0 when x goes to negative infinity. Because of the addition of the β term, not
only can we prove this solution does not exist any more, but we can also prove that every
solution blows up in that direction. Second, Clarkson and McLeod obtained three differ-
ent kinds of asymptotics when x goes to positive infinity. Here with the extra term, we can
prove that there is no solution approaching −2x any more. Our major result is that we
can rigorously prove the existence, “ uniqueness,” and the differentiability of the asymp-
totic expression in (1.2) by applying the uniform asymptotics method to this problem. Of
course, it is also possible to use the successive approximation method used by Abdullayev
[1] to prove the existence of the asymptotic expressions in (1.2). A very important side
product of this paper is the monodromic data corresponding to the asymptotic expres-
sion (1.2) that may be used to find the necessary connection formula in the future.

This paper is planned as follows. In Section 2, we use elementary analysis to prove
the general part of the theorem that states the rough behaviour of the solutions of (PIV)
and the general form of the asymptotics of its negative solution as x approaches posi-
tive infinity (or the general asymptotics of its positive solution as x approaches negative
infinity). Section 3 is the major part of this paper in which we apply the uniform asymp-
totics method to the general form of the asymptotics obtained in Section 2, find the cor-
responding monodromic data, and then use the monodromic data theory to refine the
general asymptotics expression found in Section 2. In Section 4, we get back to elemen-
tary asymptotics analysis and prove the statement (2) of Theorem 1.1.

2. The general form of the asymptotics as x→ +∞
To find a general form of the asymptotics as x → +∞, we first use the transformation
x =√t and y = xz =√tz to change (PIV) into the following equation:

8zz′′ − 4z′2 +
8zz′

t
− 3z4− 8xz3− 4z2 +

(
4α
t
− 1
t2

)
z2− 2β

t2
= 0. (2.1)

Lemma 2.1. If β > 0, t0 is a positive constant and z is a solution of (2.1) satisfying z(t0) �= 0,
then z �= 0 for all t > 0.
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Proof. Suppose that there exists a real number t1 > 0 such that z(t1) = 0. Because z(t) is
analytic nearby t1, we can expand it into a power series

z(t)= C
(
t− t1

)n
+O

((
t− t1

)n+1
)

, (2.2)

where C �= 0 and n≥ 1. Substituting expression (2.2) into (2.1), we obtain

8Cn(n− 1)
(
t− t1

)n−2− 4Cn2(t− t1
)n−2− 2β

t2C

(
t− t1

)−n
+O

((
t− t1

)n−1
)
= 0. (2.3)

Comparing the terms with lowest power, we get that n= 1 and 2C + (β/t2
1C)= 0. This is

clearly a contradiction to the fact that C > 0 and β > 0. �

Now, we can introduce new variables t and u by the following transformations:

x =√t, y =−xu2(t). (2.4)

The Painlevé equation (PIV) is changed by (2.4) into

u′′ + t−1u′ = 3
16

u5− 1
2
u3 +

1
4

(
1− α

t

)
u+

u

16t2
+

β

8t2u3
. (2.5)

Thanks to Lemma 2.1, we can assume that u>0. Because 3u5−8u3 + 4u= u(3u2− 2)(u2−
2), u may either blow up at a finite point or approach 0,

√
2, or

√
2/3 as t→ +∞ heuris-

tically. Surprisingly, we will be able to prove that it is impossible for u to approach 0 or√
2.

Lemma 2.2. If α > 0, β > 0, and u does not blow up at any finite value of t as t→ +∞, u is
bounded and satisfies u <

√
2 + o(1).

Proof. First, we prove that u cannot monotonously go to infinity as t→ +∞. Otherwise,
there would be constants C1 and t0 > 0 such that

u′′(t) + t−1u′(t) > C1u
5(t) for t ≥ t0. (2.6)

Applying the transformation τ = ln t and v(τ)= u(t) to the inequality (2.6) yields

v′′ > C1e
2τv5(τ) > C1v

5(τ) for τ ≥ τ0 = ln t0. (2.7)

Multiplying both sides of (2.7) by 2v′ which is positive and integrating it, we obtain

v′2(τ) >
1
3
C1v

6(τ)− 1
3
C1v

6(τ0
)

+ v′2
(
τ0
)

for τ ≥ τ0. (2.8)

Hence, there exist constants C2 and τ1 > τ0 such that

v′(τ) > C2v
3(τ) for τ ≥ τ1. (2.9)
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Integrating this inequality again, we obtain

v2(τ) >
1

v−2
(
τ1
)

+C2τ1−C2τ
for τ ≥ τ1 (2.10)

which forces v to blow up at a finite point.
Using a similar argument as we use to take care of Case 2 in Section 4, we can show

that u cannot approach a finite limit larger than
√

2 as t goes to infinity. Assume that u
is oscillating when t→ +∞ and t2 is a large number where u attains its maximum value.
Then, u′(t2)= 0, u′′(t2)≤ 0, and

3
16

u5(t2)− 1
2
u3(t2)+

1
4

(
1−αt−1

2

)
u
(
t2
)≤−u

(
t2
)

16t2
2
− β

8t2
2u3
(
t2
) < 0. (2.11)

Therefore,

√
4
3
− 2

3

√
1 + 3αt−1

2 < u
(
t2
)
<

√
4
3

+
2
3

√
1 + 3αt−1

2 , (2.12)

and the lemma is proved. �

Lemma 2.3. If α > 0, β > 0, and u does not blow up at any finite point, then u = √2/3 +
O(t−1/2) and u′ =O(t−1/2) as t goes to positive infinity.

Proof. Substituting u=√2/3 + t−1/2w into (2.5) yields

w′′ +
1
3
w =−1

4

√
2
3
t−1/2(w2 +α

)
+

1
4
t−1(3w3−αw

)
+

1
16

√
2
3
t−3/2(15w4 + 1

)
+

3
16

t−2(w5−w
)

+
βt−3/2

8u3
.

(2.13)

Multiplying both sides by 2w′ and integrating it, we have

w′2 +
1
3
w2 +

1
6

√
2
3
t−1/2w3− 3

8
t−1w4− 3

8

√
2
3
t−3/2w5− 1

16
t−2w6 +

1
4
α
∫ t

t0
t−2w2dt

=− 1
12

√
2
3

∫ t

t0
t−3/2(w3 + 3αw

)
dt+

3
8

∫ t

t0
t−2w4dt+

9
16

√
2
3

∫ t

t0
t−5/2w5dt

+
1
8

∫ t

t0
t−3w6dt+

3
16

√
2
3

∫ t

t0
t−5/2wdt− 3

8

∫ t

t0
t−3w2dt− 1

2

√
2
3
αt−1/2w

− 1
4
αt−1w2 +

1
8

√
2
3
t−3/2w− 3

16
t−2w2− βt−1

8u2
− β

8

√
2
3

∫ t

t0

t−2

u3
dt+C3.

(2.14)
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Noticing that

−
∫ t

t0
t−3/2(w3 + 3αw

)
dt = −1

6λ2 + 2

∫ t

t0
t−3/2(λ|w|+w

)3
dt− 3

2
α
∫ t

t0
t−3/2(λ|w|+w

)
dt

+
1

6λ2 + 2

∫ t

t0
t−3/2(λ|w|−w

)3
dt+

3
2
α
∫ t

t0
t−3/2(λ|w|−w

)
dt

≤− (λ− 1)3

6λ2 + 2

∫ t

t0
t−3/2w3dt+

1
6λ2 + 2

∫ t

t0
t−3/2(λ|w|−w

)3
dt

+
3
2
α
∫ t

t0
t−3/2(λ|w|−w

)
dt,

−
√

2
3
< t−1/2w <

√
4
3

+
2
3

√
1 + 3αt−1−

√
2
3
<

7
9

√
2
3

, for large t,

(2.15)

we can obtain

1
3
w2 +

1
6

√
2
3
t−1/2w3− 3

8
t−1w4− 3

8

√
2
3
t−3/2w5− 1

16
t−2w6 ≥ 1

10
w2. (2.16)

Since t−1/2w is bounded, we can claim that both
∫∞
t0 t−5/2wdt and

∫∞
t0 t−3w2dt converge.

Hence, for λ > 1, the following inequality holds:

− 1
12

√
2
3

λ− 1
6λ2 + 2

∫ t

t0
t−3/2|w|3dt+

3
8

∫ t

t0
t−2w4dt+

9
16

√
2
3

∫ t

t0
t−5/2w5dt+

1
8

∫ t

t0
t−3w6dt

≤ 0, for some large t0.
(2.17)

Substituting the above inequalities into (2.14) yields

w′2 +
1

10
w2 ≤ 1

24
(
3λ2 + 1

)√2
3

∫ t

t0
t−3/2(λ|w|−w

)3
dt

+
1

12

√
3
2
α
∫ t

t0
t−3/2(λ|w|−w

)
dt+C2.

(2.18)

Hence,

(
λ|w|−w

)2 ≤
√

2
3

∫ t

t0
t−3/2(λ|w|−w

)3
dt+

(
λ2 + 1

)√2
3
α
∫ t

t0
t−3/2(λ|w|−w

)
dt+C2.

(2.19)

Let

I =
√

2
3

∫ t

t0
t−3/2(λ|w|−w

)3
dt+

(
λ2 + 1

)√2
3
α
∫ t

t0
t−3/2(λ|w|−w

)
dt+C2. (2.20)
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Then,

I′ =
√

2
3
t−3/2(λ|w|−w

)[(
λ|w|−w

)2
+

3
2

(
λ2 + 1

)
α
]
≤
√

2
3
t−3/2

√
I
[
I +

3
2

(
λ2 + 1

)
α
]
.

(2.21)

Thus,

tan−1

√
2I

3
(
λ2 + 1

)
α
≤ tan−1

√
2C2

3
(
λ2 + 1

)
α

+

√
4

9
(
λ2 + 1

)
α

(
t−1/2
0 − t−1/2). (2.22)

We can take t0 large enough such that the right side of (2.22) is less than π/2, and there-
fore, I is bounded and we complete the proof of the lemma. �

Combining all the lemmas in this section, we can conclude that the solution y of (PIV)
either approaches −(2/3)x as x approaches infinity or blows up at a finite point, and
y′ =O(x) when y approaches −(2/3)x.

3. Monodromic data and proof of Theorem 1.1(1)

Now, based on the conclusion of the previous section, we seek a solution of the form

y =−2
3
x+U(x), y′ = 2

√
3

3
xV(x) (3.1)

with U(x)=O(1) and V(x)=O(1) as x→∞.
Equation (PIV) can be obtained as the compatibility condition of the following linear

systems [4]:

dY

dz
=


z+ x+

θ0− v

z
u− yu

2z

2v− 2θ0− 2θ∞
u

+
2v
(
v− 2θ0

)
yuz

−z− x− θ0− v

z

Y(z,x), (3.2)

dY

dx
=
 z u

2
(
v− θ0− θ∞

)
u

−z

Y(z,x). (3.3)

Indeed, d2Y/dzdx = d2Y/dxdz implies the following equations:

dy

dx
=−4v+ y2 + 2xy + 4θ0, (3.4)

du

dx
=−u(y + 2x), (3.5)

dv

dx
=−2v2

y
+
(

4θ0

y
− y

)
v+

(
θ0 + θ∞

)
y, (3.6)
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where α= 2θ∞ − 1 and β =−8θ2
0. It is important to point out that (PIV) is hiding in (3.4)

and (3.6). Fokas et al. have proved the following result [4].

Proposition 3.1. Let Yj , j = 1, . . . ,4 be a solution of (3.2) analytic in the neighborhood of
infinity such that detYj = 1 and Yj ∼ Y∞ as |z| →∞ in Sj , Y∞ is the formal solution matrix
of (3.2) in the neighborhood of infinity, and the sectors Sj are given by

Sj :−π

4
+ ( j− 1)

π

2
≤ argz <

π

4
+ ( j− 1)

π

2
. (3.7)

Then,
(1) Yj ∼ Ŷ∞(z)zdiag(−θ∞,θ∞)ediag((z2/2)+zx,−(z2/2)−zx) as |z| →∞ in Sj , where Ŷ∞ is holomor-

phic at z =∞, and Ŷ∞(z)∼ I +O(z−1),
(2) Y2(z)=Y1(z)G1,Y3(z)=Y2(z)G2,Y4(z)= Y3(z)G3,Y1(z)= Y4(ze2iπ)G4M∞, where

G1 =
(

1 0
p 1

)
, G2 =

(
1 q
0 1

)
, G3 =

(
1 0
r 1

)
, G4 =

(
1 s
0 1

)
,

M∞ = diag
(
e2πiθ∞ ,e−2πiθ∞

)
,

(3.8)

and the entries p, q, r, and s are independent of ξ,
(3) all of the monodromy data of the system can be expressed in terms of two of the four

entries p, q, r, and s.

We need to find the monodromy data p and q corresponding to the asymptotic repre-
sentations in (3.1). Since the values p and q are independent of the independent variable
x, we will be able to solve the equation of the monodromic data and find the asymptotic
expressions of U and V . To apply the uniform asymptotics method to system (3.2), we
need to use a tricky transformation. It is interesting to notice that it is almost impossible
to “integrate” the system (3.2) without the following tricky transformation and the magic
number a.

Let

Ỹ =

 1
a√
2v

−1
a

√
2v 1

u−(1/2)σ3Y , (3.9)

where the constant a will be determined later as needed. Then,

dỸ

dz
= 1

2


1
a

√
2vB+

a√
2v

C − 2a√
2v

A+B− a2

2v
C

−2
a

√
2vA+C− 2v

a2
B −1

a

√
2vB− aC√

2v

 Ỹ . (3.10)
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Let φ = (B− (a2C/2v)− (2a/
√

2v)A)−1/2Ỹ (1), z = xη, and ξ = ix2. Then,

d2φ

dη2
= x2

{
z2 + 2xz+ x2 +

2x
(
θ0− v

)
z

+
θ2

0

z2
− 2θ∞ +

2v
(
v− 2θ0

)
yz

− y
(
v− θ0− θ∞

)
z

+

√
2vy

4az2
− av

(
v− 2θ0

)
√

2vyz2

− y/2 + a2
(
v− 2θ0

)
/y− 2a/

√
2v
(
z2− θ0 + v

)
z
[
z− a2z− y/2− a2v/y− 2a/

√
2v
(
z2 + xz− v

)] · √2v
2a

(
1− y

2z
+ a2 +

a2v

yz

)

+
3
[
y/2 + a2

(
v− 2θ0

)
/y− (2a/

√
2v)
(
z2− θ0 + v

)]2

4z2
[
z− a2z− y/2− a2v/y− (2a/

√
2v)
(
z2 + xz− v

)]2

− −y− 2a2
(
v− 2θ0

)
/y− 4a

(
θ0− v

)
/
√

2v
z2
[
z− a2z− y/2− a2

(
v− 2θ0

)
/y− (2a/

√
2v)
(
z2 + xz+ θ0− v

)]}φ.
(3.11)

We denote G = y/2 + a2v/y − a
√

2v, H = −y/2 + a2v/y, and select a = (i +
√

3)/2 such
that G− (2a/

√
2v)z2 is a multiple of 3η+ 1. Hence,

d2φ

dη2
=−ξ2

{
η2 + 2η+ 1 +

4
27η

− 2iθ∞
ξ

− i
(
U2 +V 2 + (8/3)θ∞

)
4ξη

+

√
3

9ξη2
+

i
(
η2− (√2v/2ax2

)
G
)[(

1 + a2
)
xη+H

]
ξη2

[− (2a/
√

2v)x2η2 +
(
1− a2− (2ax/

√
2v)
)
xη−G

] +O
(
ξ−3/2)}φ

=−ξ2F(η,ξ).
(3.12)

This equation has three turning points

η1,2 =−1
3
± ξ−1/2T0 +O

(
ξ−1/2),

η3 =−4
3

+O
(
ξ−1), (3.13)

where η2 takes the positive sign and T2
0 = i(U2 +V 2)/4 +

√
3/3 = id2/4 +

√
3/3 and the

Stokes curve of this equation is defined by arg(ξη2)= kπ or arg(η)= kπ/2− (1/2)arg(ξ).
To transform (3.12) to an equation related to the parabolic cylinder equation, we de-

fine a constant α̂ and a new variable ζ by

1
2
πiα̂2 =

∫ α̂

−α̂

(
ζ2− α̂2)1/2

dζ =
∫ η2

η1

F1/2(η,ξ)dη,∫ ζ

α̂

(
ζ2− α̂2)1/2

dζ =
∫ η

η2

F1/2(η,ξ)dη.

(3.14)
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We need to find the asymptotic expression of ζ first. Let η∗ = −1/3 + ξ−1/2T where T is a
large parameter with T
 ξ1/4 determined as needed later and

∫ η

η2

F1/2(η,ξ)dη =
∫ η∗

η2

F1/2(η,ξ)dη+
∫ η

η∗
F1/2(η,ξ)dη = I1 + I2. (3.15)

Then,

I1 =− i
√

3

2ξ̄

(
T2− T2

0

2
−T2

0 log(2T) +T2
0 logT0

)
+O

(
T2

0

ξ̄T2

)
,

I2 =
∫ η

η∗
F1/2(η,ξ)dη

=
{√

3η
18

(3η+ 4)3/2− iθ∞
ξ

log

√
3η+ 4 +

√
3η√

3η+ 4−√3η
+
i
√

3T2
0

2ξ
log

√
3η+ 4 + 3i√η√
3η+ 4− 3i√η

− 1
4ξ

√
3η+ 4
η

+
i

2ξ
log

√(
3R1 + 4

)
η−

√
(3η+ 4)R1√(

3R1 + 4
)
η+

√
(3η+ 4)R1

+
i

2ξ
log

√(
3R2 + 4

)
η−

√
(3η+ 4)R2√(

3R2 + 4
)
η+

√
(3η+ 4)R2

+O
(
ξ−3/2)}∣∣∣∣∣

η

η∗

= 1
2
η2 +η+

1
3
− iθ∞

ξ
log(3η)− π

√
3T2

0

3ξ
−
√

3
4ξ

+
π

2ξ
−
√

3i
6

+

√
3i

2ξ
T2

− πθ∞
3ξ

− i
√

3T2
0

2ξ
log
(
ξ−1/2T

)
+
i

ξ
log2− i

2ξ
log(U + iV) +O

(
η−1)+O

(
ξ−3/2),

α̂2 =− i
√

3T2
0

ξ
+ o
(
ξ−1),

(3.16)

where R1,2=(
√

2v/4ax2)[(1− a2− 2ax/
√

2v)x±
√

(1− a2− 2ax/
√

2v)2x2 + (8ax2/
√

2v)G]
with R1 taking the + sign and R2 taking the − sign. Moreover,

1
2
ζ2− α̂2

2
log(2ζ)− α̂2

4
+
α2

2
logα+O

(
α̂4

ζ2

)
= I1 + I2

=− i
√

3
2ξ

(
T2− T2

0

2
−T2

0 log(2T) +T2
0 logT0

)
+O

(
T2

0

ξT2

)
+

1
2
η2 +η+

1
3

+
3M1

2ξ
log(−3η)− πM1

√
3

3ξ
+
π
(
3M2 + i

)
12
√

3ξ
−
√

3i
6

+

√
3i
2

ξ−1T2

+
πiM1

ξ
−
√

3M1i

ξ
log
(
ξ−1/4T1/2)+

i
(
3M2 + i

)
2
√

3ξ
log
(√

7i
2

ξ−1/2T
)
.

(3.17)
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Now, we get

1
2
ζ2 +

√
3iT2

0

2ξ
logζ = 1

2
η2 +η+

1
3
−
√

3i
6
− iθ∞

ξ
logη− i

2ξ
log(U + iV)

+
b

ξ
+O

(
1
ξη

)
+O

(
ξ−3/2), (3.18)

where b = ((i
√

3/8)T2
0 − iθ∞) log3− 5π

√
3T2

0 /24−√3/4 +π/2−πθ∞/3 + i log2.
For the function F(η,ξ) to be a polynomial on η, [2, Theorem 1] is proved. Actually,

its proof is still valid for our case although our function F(η,ξ) is rational on η. Hence,
we have the following theorem.

Theorem 3.2. Given any solution φ of (3.12), there exist constant c1 and c2 such that,
uniformly for η on the Stokes curve, as ξ →∞,

(
ζ2− α̂2

F(η,ξ)

)−1/4

φ(η,ξ)=
{(
c1 + o(1)

)
Dν

(
eπi/4

√
2ξζ

)
+
(
c2 + o(1)

)
D−ν−1

(
e−πi/4

√
2ξζ

)}
,

(3.19)

where ν=−1/2 + (1/2)iξα̂2 and Dν(τ), D−ν−1(τ) are the solutions of the parabolic cylinder
equation.

By Proposition 3.1,

Ỹ (11)
1 ∼ u−1/2z−θ∞e(1/2)z2+ξz as z −→∞ along arg(z)=−π

4
,

Ỹ (12)
1 ∼ au1/2

√
2v

zθ∞e−(1/2)z2−zx as z −→∞ along arg(z)=−π

4
,

Ỹ (11)
2 = Ỹ (11)

1 + pỸ (12)
1 ∼ u−1/2z−θ∞e(1/2)z2+zx as z −→∞ along arg(z)= π

4
.

(3.20)

Using the asymptotic expressions for the parabolic cylinder function [2]

Dν(z)∼



zνe−(1/4)z2
if |argz| < 3

4
π,

zνe−(1/4)z2 −
√

2π
Γ(−ν)

e±πiνz−ν−1e(1/4)z2
on argz =±3

4
π,

e−2πiνzνe−(1/4)z2 −
√

2π
Γ(−ν)

eπiνz−ν−1e(1/4)z2
on argz = 5

4
π,

e−2πiνzνe−(1/4)z2
if

5
4
π < argz <

11
4
π,

(3.21)

and (3.20), we have to choose

Ỹ (11)
1 = c1η

1/2

(
ζ2− α̂2

F(η,ξ)

)1/4

Dν

(
eπi/4

√
2ξζ

)
,

Ỹ (12)
1 = c2η

1/2

(
ζ2− α̂2

F(η,ξ)

)1/4

D−ν−1

(
e−πi/4

√
2ξζ

) (3.22)
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with

c1 = u−1/2x−θ∞

× 21/4−(
√

3/4)T2
0 ξ1/4−(

√
3/4)T2

0 eπi/8−(πi
√

3/8)T2
0 +ξi/3+

√
3ξ/6+(1/2)log(U+iV)+bi+O(η−1ξ)+O(ξ−1/2),

c2 = au1/2
√

2v
xθ∞

× 21/4+(
√

3/4)T2
0 ξ1/4+(

√
3/4)T2

0 e−πi/8−(πi
√

3/8)T2
0−ξi/3−

√
3ξ/6−(1/2)log(U+iV)−bi+O(η−1ξ)+O(ξ−1/2).

(3.23)

Thus, as z→∞ along argz = π/4,

Y
(11)
2 = Ỹ (11)

1 + pỸ (12)
1

∼ c1ζ
1/2
[(

eπi/4
√

2ξζ
)ν
e−(1/4)(eπi/4

√
2ξζ)2 −

√
2π

Γ(−ν)
eπiν

(
eπi/4

√
2ξζ

)−ν−1
e(1/4)(eπi/4

√
2ξζ)2

]
+ pc2ζ

1/2
(
e−πi/4

√
2ξζ

)−ν−1
e−(1/4)(e−πi/4

√
2ξζ)2

.

(3.24)

Comparing (3.20) with (3.24), we obtain the entry p in Proposition 3.1:

p = c1
√

2π
c2Γ
(− (

√
3/2)M

)e(π
√

3i/4)T2
0−(3πi/4)

= 2
√
πv(U + iV)

auΓ
(− (

√
3/2)M

)
× x−2θ∞2−(

√
3/2)T2

0 ξ−(
√

3/2)T2
0 e−πi/2+(πi

√
3/4)T2

0 +2ξi/3+
√

3ξ/3+2bi+O(ξη−1)+O(ξ−(1/2)).

(3.25)

Similarly, by Proposition 3.1, we have

Ỹ (12)
3 = qỸ (11)

2 + Ỹ (12)
2 ,

Ỹ (12)
2 ∼ au1/2

√
2v

zθ∞e−(1/2)z2−xz,

Ỹ (11)
2 ∼ u−1/2z−θ∞e(1/2)z2+xz.

(3.26)

Thus, we have to choose

Ỹ (11)
2 = c3η

1/2

(
ζ2− α̂2

F(η,ξ)

)1/4

Dν

(
eπi/4

√
2ξζ

)
+ c4η

1/2

(
ζ2− α̂2

F(η,ξ)

)1/4

D−ν−1

(
e−πi/4

√
2ξζ

)
,

Ỹ (12)
2 = c5

(
ζ2− α̂2

F(η,ξ)

)1/4

D−ν−1

(
e−πi/4

√
2ξζ

)
(3.27)
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with

c3 = u−1/2x−θ∞21/4−(
√

3/4)T2
0 ξ1/4−(

√
3/4)T2

0 eπi/8−(πi
√

3/8)T2
0 +ξi/3+

√
3ξ/6+(1/2)log(U+iV)+bi,

c4 = c3
√

2π
Γ
(− (

√
3/2)M

)e−3πi/4+(
√

3πi/4)T2
0 ,

c5 = au1/2
√

2v
xθ∞21/4+(

√
3/4)T2

0 ξ1/4+(
√

3/4)T2
0 e−πi/8−(πi

√
3/8)T2

0−ξi/3−
√

3ξ/6−(1/2)log(U+iV)−bi.

(3.28)

Therefore,

q = c5
√

2π
c3Γ
(
1 + (

√
3/2)M

)e−5πi/4+(3πi/4)T2
0

= au
√

2π(U + iV)−1
√

2vΓ
(
1 + (

√
3/2)M

)x2θ∞(2ξ)(
√

3/2)T2
0 e−3πi/2+(3πi

√
3/4)T2

0−2ξi/3−(
√

3/3)ξ−2bi,

(3.29)

pq = 1− eπi
√

3M. (3.30)

Since the monodromic data p and q are independent of x, we have proved that M =
i(U2 +V 2)/4= id2/4 is a constant relative to x. Solving the equation of q, we get

U + iV = au
√

2π
q
√

2vΓ
(
1 + (

√
3/2)M

)x2θ∞e−3πi/2+(3πi
√

3/4)T2
0−2ξi/3−(

√
3/3)ξ+(

√
3/2)T2

0 log(2ξ)−2bi.

(3.31)

Solving for the real and imaginary parts of this equation, we obtain the expected asymp-
totic expression

U =±d cos
(√

3
3
x2−

√
3

4
d2 logx+φ0 +O

(
x−1)),

V =∓d sin
(√

3
3
x2−

√
3

4
d2 logx+φ0 +O

(
x−1)),

(3.32)

where φ0=argq+ argΓ(3/2 + (i
√

3/8)d2)−π/4− (
√

3/8)d2(log2 + (1/2)log3)− 2πθ∞/3 +
mod (2π).

4. Proof of Theorem 1.1(2)

To prove Theorem 1.1(2) which concerns the behaviour of the solution in the third quad-
rant, we can study the behaviour of the solution in the first quadrant by its symmetry.
Now, we let y = xu2(t) and t = x2. Then,

u′′ + t−1u′ = 1
16

t−2u+
3

16
u5 +

1
2
u3 +

1
4
u− α

4
t−2u+

β

8t2u3
. (4.1)

For the sake of contradiction, we assume that u does not blow up at any finite point.
Then, there would be four possibilities:

(i) u is oscillating when t goes to infinity;
(ii) u approaches a finite positive limit l as t goes to infinity;
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(iii) u goes to zero monotonously when t goes to infinity;
(iv) u goes to infinity monotonously as t goes to infinity.

Now, we proceed to eliminate all four possibilities.

Case 1. In this case, there would be a large value t0 such that u′(t0)= 0 and 1−αt−2 > 0
for all t ≥ t0. Hence, integrating both sides of (4.1) yields

tu′(t)=
∫ t

t0

(
1

16
t−1u+

3t
16

u5 +
t

2
u3 +

t

4

(
1−αt−2)u+

β

8tu3

)
dt > 0. (4.2)

This is clearly a contradiction.

Case 2. In this case, there would exist constants C and t0 such that

u′′ + t−1u′ > C for t ≥ t0. (4.3)

Multiplying both sides of this inequality by t and integrating from t0, we get

tu′ >
1
2
Ct2 +C1 for t ≥ t0. (4.4)

Integrating again, we have

u >
1
4
Ct2 +C1 ln t+C2. (4.5)

This is clearly a contradiction again.

Case 3. In this case, there would be a positive constant C3 such that

u′′ > C3u. (4.6)

Multiplying both sides of (4.6) by 2u′ which is nonpositive and integrating it from t1 ≥ t0,
we have

u′2(t) < C3u
2(t) +u′2

(
t1
)−C3u

2(t1). (4.7)

If there is a constant t1 > t0 such that u′2(t1)−C3u2(t1) < 0, we can find a large t such that
u′2(t) < 0 and this is a contradiction. Thus, for all t > t0, we have

u′(t) <−C4u(t). (4.8)

Therefore, we have

u(t) < C5e
−C4t . (4.9)

Now, we go back to (4.1) and get that, for large t,

u′′(t) >
C6

t2u3
> C7t

−2e3C4t >
C7

t2
. (4.10)
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And then,

u′(t)−u′
(
t1
)
>
C7

t1
− C7

t
. (4.11)

Because u′(t)≤ 0, u′(t1) +C7/t1 ≤ 0 for all t1 > t0. Hence, we have

u(t)≤−C7 ln t+C8. (4.12)

This is impossible.

Case 4. This case can be eliminated by using the argument used at the beginning of the
proof of Lemma 2.2.
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Painlevé IV, V, Phys. D 30 (1988), no. 3, 247–283.

[5] S. P. Hastings and J. B. McLeod, A boundary value problem associated with the second Painlevé
transcendent and the Korteweg-de Vries equation, Arch. Ration. Mech. Anal. 73 (1980), no. 1,
31–51.

[6] A. R. Its and V. Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of
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Int. J. Math. Math. Sci. 2003 (2003), no. 13, 845–851.

[11] H. Qin and N. Shang, Asymtotics analysis of a bounded solution to the fourth Painlevé equation,
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