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Calder6n-type reproducing formula for Hankel convolution is established using the the-
ory of Hankel transform.
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1. Introduction

Calderén’s formula [3] involving convolutions related to the Fourier transform is useful
in obtaining reconstruction formula for wavelet transform besides many other applica-
tions in decomposition of certain function spaces. It is expressed as follows:

F = (gor g 0, (1)

where ¢ : R” — Cand ¢:(x) = t"¢(x/t), t > 0. For conditions of validity of identity (1.1),
we may refer to [3].

Hankel convolution introduced by Hirschman Jr. [5] related to the Hankel transform
was studied at length by Cholewinski [1] and Haimo [4]. Its distributional theory was
developed by Marrero and Betancor [6]. Pathak and Pandey [8] used Hankel convolution
in their study of pseudodifferential operators related to the Bessel operator. Pathak and
Dixit [7] exploited Hankel convolution in their study of Bessel wavelet transforms. In
what follows, we give definitions and results related to the Hankel convolution [5] to be
used in the sequel.

Let y be a positive real number. Set

R A
- T (y+3/2)°
j(x) = nyl/z_y]yflﬂ(x)) (1.2)

1
C, = 2?”1/21“< + —),
y y 2
where ], 1/, denotes the Bessel function of order y — 1/2.
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2 Calderén’s formula

We define L, ;(0,0), 1 < p < 0, as the space of those real measurable functions ¢ on
(0, 00) for which

191l = U: | $(x) |pd0(x)]1/p <o, l<p<ow,

(1.3)
[lleo,s = ess Sup. |$(x)| < oo
For each ¢ € L, ;(0, ), the Hankel transform of ¢ is defined by
(o) = J jxt)p(t)do(t), 0=<x<oo. (1.4)
From [5, page 314], we know that ¢ is bounded and continuous on [0, o) and
16l < 19111 (15)

If ¢(x) € L1,5(0,00) and if $(t) € L,,4(0, ), then, by inversion, we have [5, page 316]
- J i $(Dda(t), 0<x< oo, (1.6)
0

If ¢(x) and y(x) are in L ;(0,00), then the following Parseval formula also holds [10,
page 127]

J: $(OF(Hda(t) = J: Sy (x)do(x). (1.7)

To introduce Hankel convolution #, we define

D(x, y,2) = J: i(xt)j(y)j(zt)do ()
(1.8)

2
=273 [T<)’+ %)] [T 2] (ay2) 2 [AGey2)] 7,
where A(xyz) denotes the area of triangle with sides x, y, z if such a triangle exists and

zero otherwise. Clearly D(x, y,z) = 0 and is symmetric in x, y, z. Applying inversion for-
mulae (1.6) to (1.8), we get

J D(x,y,2)j(zt)do(z) = j(xt)j(yt) 0<x,y<co, 0=<t< oo (1.9)
0
Now setting t = 0, we obtain

J: D(x, y,2)do(2) = 1. (1.10)

Let p,q,r € [1,00) and 1/r = 1/p + 1/q — 1. The Hankel convolution of ¢ € L, ;(0, ) and
Y € Ly (0, 00) is defined by [5, page 311]

) = [ [ 90w @Dy, )do()do ). (1.11)
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By [9, page 179], the integral is convergent for almost all x € (0, 00) and

l¢#y e < 1@l pollyllge- (1.12)

Moreover, if p = oo, then (¢#y)(x) is defined for all x € (0, %) and is continuous. If ¢,y €
L, 5(0, ), then from [5, page 314]

@) (1) = p(OG(1), 0=t< oo, (1.13)

In this paper, Hankel dilation 9, is defined by

Dap(x) = ¢palx a‘zy—lgb(g), a>0. (1.14)

2. Calderon’s formula

In this section, we obtain Calder6n’s reproducing identity using the properties of Hankel
transform and Hankel convolutions.

THEOREM 2.1. Let ¢ and y € L, 4(0, 00) be such that following admissibility condition holds:

P s do(E)
|, PR -1 (2.1)
forall & € (0,00). Then the following Calderén’s reproducing identity holds:
Fx) = J (F#datya) (x d‘zfy(fl) Vfel(R), (2.2)

Proof. Taking Hankel transform of the right-hand side of (2.2), we get

%[ jw (fdatya) () dfy(fl) ]

2 d
J f(©) v/a(f zyﬂ f(f)f $a(E fy(fl) (2.3)
j Blat)ptad) 220 = F(o)
Now, by putting a¢ = w, we get
do(a) RPNN do(w/&)
J ¢ (a)y(al) P . ¢(w)W(w)W
L do(w) (2.4)
- |, Pt 5

Hence, the result follows.
The equality (2.2) can be interpreted in the following L?- sense. O
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THEOREM 2.2. Suppose ¢ € Ly (0, ) is real valued and satisfies

J [$(ad) ]Zd(zfyﬂ) =1 (2.5)
For f € L1,,(0,00) N Ly,4(0, 00), suppose that
Jes(x) = J (f#¢atda) (x dzy(fl). (2.6)

Then || f — feslloe — 0as€ — 0 and § — .

Proof. Taking Hankel transform of both sides of (2.6) and using Fubini’s theorem, we get

fs®) = 730 [ Thae 97, 2.7)

By [5, page 311], we have

||¢a#¢a#f||2,o = ||¢a#¢a||l,0“f||2a0

(2.8)
< ligalli ol fll2o-
Now using above inequality and Minkowski’s inequality [2, page 41], we get
0o 8 d 2
11 = j do)| [ @argut N a‘z’fﬁ)
s 7@
| (Gatat f)(x | o(x a2
do(a)
j 160260 ) ) s 22
dt
< gl [ &
€
)
=114l o1 f12alog (£).
Hence, by Parseval formula (1.7), we get
lim 1 ~ sl = i 1] = Jeals
N 5 2 (2.10)
L ~ B ~ 2d0(a)> ‘ _
i, [ F© (1], 9@oP<5e) | dotw -0

Since If(f)(l — ff[(ﬁ(uf)]z(da(a)/az)’“))| < If(E)I, therefore, by the dominated conver-
gence theorem, the result follows.

The reproducing identity (2.2) holds in the pointwise sense under different sets of nice
conditions. O
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THEOREM 2.3. Suppose f,f € L1,,(0,00). Let ¢ € L1 4(0,00) be real valued and satisfies

J: [$(a€)]zify(fl) —1, &eR-{0}. (2.11)
Then
hmf (Fratda) (0 200 = f) (2.12)
£
Proof. Let
Foslx) = j (Futda) o) 0. (2.13)

By [5, page 311], we have
16a#at fll1,5 < 1t dall 1ol f1]1,0

=gl 7ol £l (2.14)
Now,
eollo = [ doto| [ (gueeer) 0222
= Ja r | ($atpat f)(x)|do(x) dfy(fl)
JH Putdatf)(x lllgify(fl (2.15)

< el [ %
= 19allL /11018 (2.

Therefore, fc5 € L'(0,00). Also using Fubini’s theorem and taking Hankel transform of
(2.13), we get

fs®= [ i) [[ (0262907 ) aoto

H J) (ot ) (0o () 2515

s (2.16)
GGG
c a2y+1

- je& j [$tat) 2920
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Therefore, by (2.11), Iﬁ,g(f)l < \f(f)l. It follows that ﬁ,g € L1,,(0, ). By inversion, we

have
f) = fes(x) = j: JEB )~ fes(O)]da(€), x € (0,0). (2.17)
Putting
hes(&5x) = jE[F(E) — fes(©)]
R 5 (2.18)
- a7 ®[1- [ aoris],
we get
F0) = fea@) = [T - fea®)1do(®)
0 (2.19)
= |, hesEs0do(@),
Now using (2.11) in (2.18), we get
1€i£r(} hes(é3x) =0, &€ R-{0}. (2.20)
-0
Since |hes(é3x)] < If(f )|, the Lebsegue dominated convergence theorem yields
leifr& [f(x) = fes(x)] =0, Vx. (2.21)
-0
O
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