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1. Introduction

Let X be a real Banach space, A a nonempty convex subset of X , T a selfmap of A, and let
x0 = u0 ∈A. The Mann iteration (see [2]) is defined by

un+1 =
(
1−αn

)
un +αnTun. (1.1)

The Ishikawa iteration is defined (see [1]) by

xn+1 =
(
1−αn

)
xn +αnTyn,

yn =
(
1−βn

)
xn +βnTxn,

(1.2)

where {αn} ⊂ (0,1), {βn} ⊂ [0,1).
These methods were applied, in [3], to a class of functions T satisfying the inequality

‖Tx−Ty‖ ≤Q(M(x, y)
)
, (1.3)

where Q is a real-valued function satisfying
(a) 0 < Q(s) < s for each s > 0 and Q(0)= 0,
(b) Q is nondecreasing on (0,∞),
(c) g(s) := s/(s−Q(s)) is nonincreasing on (0,∞),

M(x, y) :=max
{‖x− y‖,‖x−Tx‖,‖y−Ty‖,‖x−Ty‖,‖y−Tx‖}. (1.4)

In [4], the following conjecture was given: “if the Mann iteration converges, then so
does the Ishikawa iteration.” In a series of papers [4–8], the authors have given a posi-
tive answer to this conjecture, showing, for example, the equivalence between Mann and
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2 Equivalent iterations for generalized contractions

Ishikawa iterations for strongly and uniformly pseudocontractive maps. In this note, we
show that the convergence of Mann iteration is equivalent to the convergence of Ishikawa
iteration, used to approximate fixed points of a map which satisfies condition (1.3). Such
a map is independent of the class of strongly pseudocontractive maps. The class of gener-
alized contractions satisfying (1.3) generalizes the class of quasi-contractions, see, for ex-
ample, [9]. Thus, our result generalizes the main [9, Theorem 1], which states the equiv-
alence between Mann and Ishikawa iterations when applied to quasi-contractions.

Lemma 1.1 [10]. Let {an} be a nonnegative sequence which satisfies the following inequality:

an+1 ≤
(
1− λn

)
an + σn, (1.5)

where λn ∈ (0,1) for all n≥ n0,
∑∞

n=1 λn =∞, and σn = o(λn). Then limn→∞ an = 0.

The following result is a lemma from [3, page 351].

Lemma 1.2 [3]. Let A be a nonempty closed convex subset of a Banach space X , and T
a self-map of A satisfying (1.3). Let {αn} satisfy the conditions αn > 0 for all n ≥ 0 and
∑∞

n=0αn =∞. Then the sequences {xn}, {yn}, {un}, {Txn}, {Tyn}, and {Tun} are bounded.

2. Main result

Theorem 2.1. Let A be a nonempty closed convex subset of a Banach space X , and T
a self-map of A satisfying (1.3). Let {αn} satisfy the conditions αn > 0 for all n ≥ 0 and
∑∞

n=0αn =∞. Denote by x∗ the unique fixed point of T . Then for u0 = x0 ∈ A, the following
are equivalent:

(i) the Mann iteration (1.1) converges to x∗;
(ii) the Ishikawa iteration (1.2) converges to x∗.

Proof. Lemma 1.2 assures that both Mann and Ishikawa iterations are bounded and
hence, in order to prove the equivalence between (1.1) and (1.2), we need to prove that

lim
n→∞

∥
∥xn−un

∥
∥= 0. (2.1)

Set

rn =max
{

sup
(∥∥xn−Tyj

∥
∥ : j ≥ n)∪ sup

(∥∥un−Tuj
∥
∥ : j ≥ n)

∪ sup
(∥∥xn−Tuj

∥
∥ : j ≥ n)∪ sup

(∥∥un−Tyj
∥
∥ : j ≥ n)}. (2.2)

Then the following are true:
∥
∥xn−Tyj

∥
∥≤ (1−αn−1

)∥∥xn−1−Tyj
∥
∥+αn−1

∥
∥Tyn−1−Tyj

∥
∥

≤ (1−αn−1
)
rn−1 +αn−1Q

(
M
(
yn−1, yj

))

≤ (1−αn−1
)
rn−1 +αn−1Q

(
rn−1

)
,

∥
∥un−Tuj

∥
∥≤ (1−αn−1

)∥∥un−1−Tuj
∥
∥+αn−1

∥
∥Tun−1−Tuj

∥
∥

≤ (1−αn−1
)
rn−1 +αn−1Q

(
M
(
un−1,uj

))

≤ (1−αn−1
)
rn−1 +αn−1Q

(
rn−1

)
,

(2.3)
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moreover,

∥
∥xn−Tuj

∥
∥≤ (1−αn−1

)∥∥xn−1−Tuj
∥
∥+αn−1

∥
∥Tyn−1−Tuj

∥
∥

≤ (1−αn−1
)
rn−1 +αn−1Q

(
M
(
yn−1,uj

))

≤ (1−αn−1
)
rn−1 +αn−1Q

(
rn−1

)
,

(2.4)

also,

∥
∥un−Tyj

∥
∥≤ (1−αn−1

)∥∥un−1−Tyj
∥
∥+αn−1

∥
∥Tun−1−Tyj

∥
∥

≤ (1−αn−1
)
rn−1 +αn−1Q

(
M
(
un−1, yj

))

≤ (1−αn−1
)
rn−1 +αn−1Q

(
rn−1

)
.

(2.5)

Eventually, one gets the following evaluation:

rn ≤
(
1−αn−1

)
rn−1 +αn−1Q

(
rn−1

)⇐⇒ αn−1g
(
rn−1

)≤ rn−1− rn, (2.6)

which implies that {rn} is nonincreasing in n and positive. Hence, there exists limn→∞ rn,
denoted by r ≥ 0. Suppose r > 0. From (2.6), we obtain

αn−1g(r)≤ αn−1g
(
rn−1

)≤ rn−1− rn⇐⇒ g(r)
n∑

k=0

αk ≤
n∑

k=0

(
rk − rk−1

)= r0− rn+1. (2.7)

The right-hand side is bounded and the left-hand side is unbounded. Thus, r = 0. Hence,

lim
n→∞

∥
∥xn−Tun

∥
∥= 0, lim

n→∞
∥
∥un−Tyn

∥
∥= 0,

lim
n→∞

∥
∥xn−Tyn

∥
∥= 0, lim

n→∞
∥
∥un−Tun

∥
∥= 0.

(2.8)

Suppose now that the Mann iteration converges, then one has

∥
∥xn+1−un+1

∥
∥≤ (1−αn

)∥∥xn−un
∥
∥+αn

∥
∥Tyn−Tun

∥
∥

≤ (1−αn
)∥∥xn−un

∥
∥+αn

(∥∥Tyn− xn
∥
∥+

∥
∥xn−Tun

∥
∥).

(2.9)

Using (2.8) and (2.9) and Lemma 1.1, with

λn := ∥∥xn−un
∥
∥,

σn := αn
(∥∥Tyn− xn

∥
∥+

∥
∥xn−Tun

∥
∥),

σn = o
(
αn
)
,

(2.10)
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we have limn→∞ λn = 0, that is, (2.1) holds. The relation
∥
∥xn− x∗

∥
∥≤ ∥∥xn−un

∥
∥+

∥
∥x∗ −un

∥
∥−→ 0 (2.11)

leads to the conclusion that Ishikawa iteration converges too. Suppose now that the Ishi-
kawa iteration converges, then one has

∥
∥xn+1−un+1

∥
∥≤ (1−αn

)∥∥xn−un
∥
∥+αn

∥
∥Tyn−Tun

∥
∥

≤ (1−αn
)∥∥xn−un

∥
∥+αn

(∥∥Tyn−un
∥
∥+

∥
∥un−Tun

∥
∥).

(2.12)

Using (2.8) and (2.12) and Lemma 1.1, with

λn := ∥∥xn−un
∥
∥,

σn := αn
(∥∥Tyn−un

∥
∥+

∥
∥un−Tun

∥
∥),

σn = o
(
αn
)
,

(2.13)

we have limn→∞ λn = 0, that is, (2.1) holds. The relation
∥
∥un− x∗

∥
∥≤ ∥∥xn−un

∥
∥+

∥
∥xn− x∗

∥
∥−→ 0 (2.14)

leads to the conclusion that Mann iteration converges too. �
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