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In the first part, we define the space L' (1) and the modified Stieltjes transformation intro-
duced by Lavoine and Misra (1979) and Marichev (1983), respectively. In the second part
of the paper, we extend Tauberian-type theorems for the distributional Stieltjes transfor-
mations to the distributional modified Stieltjes transformations.
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1. Introduction

The Abelian and Tauberian-type theorems were introduced by Stankovi¢ [7] and
Pilipovi¢ et al. [5]. In the first part of this paper, we give the definition of the quasiasymp-
totic expansion at 0* and the quasiasymptotic behaviour of distributions at infinity from
S, introduced in [1]. In this paper, we give the definition of space L' (r), classical Stielt-
jes transformation, modified Stieltjes transformation, and generalized modified Stieltjes
transformation. This enables us to obtain, in the second part of the paper, the Tauberian-
type theorems of quasiasymptotic behaviour of distributions at infinity. We give sufficient
conditions under which the behaviour at infinity of the modified Stieltjes transformation
L(r+1)(Trs1 f)(x), r € R\(=N), f € L'(r) determines the quasiasymptotic behaviour of
f at infinity.

Notation 1.1. As usually R,C,N are the spaces of real, complex, and natural numbers;
No = N U {0}. D is the space of infinitely differentiable functions with compact support.
S’ denotes the space of tempered distributions with support in the [0, o). The space of
rapidly decreasing functions is denoted as S, §’ is the space of all distributions of slow
growth. Ty, denotes the modified Stieltjes transformation with index r.

A positive continuous function L defined on (0, ®) is called slowly varying function at
oo if for every k > 0,

L(kx)
kingo L) =1. (1.1)
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We denote by >, the set of all slowly varying functions at . For the properties of slowly
varying functions, we refer the reader to [6].
If L is a slowly varying function at oo, then for every ¢ > 0, there is A, > 0 such that

x ¥ <L(x)<x® whenx>A,. (1.2)

Recall that for o > —1, x§¢ = H(x)x%, where H is Heaviside’s function. The following
scale of distributions from S/ has been used in the investigations of the quasiasymptotic
behaviour of distributions:

A" a>-—1
fun =4 L@+ (1.3)
D" fyins1, a<-1,a+n>-1,

where D is the distributional derivative.

2. Definitions
2.1. Definition of the quasiasymptotic behaviour (q.a.b.)
Definition 2.1. The quasiasymptotic behaviour of distribution (q.a.b.) at infinity.

If T is a distribution from S, such that the distributional limit

o T(kx)
k= p(k)

=y(x) (2.1)

exists in §'(y(x) # 0), then T is called the quasiasymptotic behaviour at infinity related to
the regular function p(k) = k*L(k) with the limit y; write this as

Tiy inS asx — oo, (2.2)
Here p is regularly varying at infinity and the limit y from S, is of the form

y(x) = Cfa1 (x). (2.3)

We will repeat in this section some well-known facts about the quasiasymptotic be-
haviour from [8].

Let f € §,. It is said that f has the q.a.b. at co with the limit g # 0 with respect to

k*L(k), Le> ((;)%(i), Le Z), aeR,
” 0 (2.4)

s k
if lim <kJ:‘(L(;<))’¢(t)> =(g(1), (1)), ¢eS

k—oo
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Definition 2.2. A function p : (a,0) — R, a € R, is called regularly varying function at
infinity if it is positive, measurable, and there exists a real number & such that for each

L ptkx)
x>0, ]1151010 o) =x% (2.5)

where the number « is called the index of p.

2.2. Space L'(r). We extend the definition of the space I'(r) given in [4] and using the
same idea, we give the definition of space L'(r).

L'(r), r € R\(—N), the space of all distributions f € S (R) such that there exist k € N,
and locally integrable function F, suppF C [0, %), so that f is of the form

f=t"DrF (2.6)
and there exist C = C(F) and ¢ = ¢ (F) > 0 such that
|F(x)| < C(Q+x)* =, x>0. (2.7)

The Stieltjes transformation S,.(f)(s), r € R\(—N), is complex-valued function, de-
fined by

Sr(f(t))(s)zro SO 4 se\(—o0,00, 0< < 0, r € R\(=N). (2.8)

0 (S+ t)r+l

Modified Stieltjes transformation introduced by Marichev is defined as

Ta(f(x))=$J0 <1+§) -%f(y)dy, x€C\(~0,0], 0< y< oo, r € R\(-N).

(2.9)
It can be written as
W)
T = e J ey xeCi(-w0 (2.10)
Settingr =a—1, f(£) = y* 1 f(y) in (2.8), we get
a1 y ) .
St (7 () () = j e dr xeQi-w0l (2.11)
Using (2.10) and (2.11), we obtain the relationship between (2.8) and (2.10),
1
To(f)(x) = Sac1 (P 1 f (1)) (x), x € C\(—00,0]. (2.12)

I'(a)
By changing x by z and « by r + 1, it follows

Lr+ DTra(f)(2) =S (Y f)(z), z€ C\(=00,0], r € R\(=N). (2.13)
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2.3. Modified Stieltjes transformation 7T,;;. The modified Stieltjes transformation
Tr1(f), r € R\(—N), is complex-valued function defined by

I(r+ DT (f)(s) = (r+ l)kf %dt, r € R\(-N), s € C\(~00,0], 0< £ < oo,
(2.14)

where (a)r = (a) - (a+1) - (@+2)---(a+k—1).

2.4. Generalized modified Stieltjes transformation YN‘,H. The YN",H -transformation of a
distribution f € S, (R) is complex-valued function Tt (f) defined by

T(r+ 1) T (f)(s)

= Vlvllr}o (f),n)(s+t) " Texp(-wt)), weR,seAC (C\(-,0]), n€A(s).
(2.15)

Here A is the set of complex numbers for which this limit exists and A(s) is the family of all
smooth functions, defined on R for which there exists € = ¢, > 0 such that 0 < 5(¢) <1,
t € R, n(t) = 1, if t belongs to the €-neighbourhood of R, #(t) = 0 or if it belongs to the
complement of the 2e-neighbourhood of R+, where ¢ > 0 is arbitrary if Ims # 0, and 0 <
2e < maxRes, if for some Ims = 0 and [DPy(t)| < Cp, t € R. If 5(t) € A(s), s € (C\R_),
then n(£)(s+£) " Lexp(—w,t) € S(R) forw € Ry, r € R.

3. Main results

3.1. Tauberian-type theorems for modified Stieltjes transformation. For the main re-
sults of this section, we need the following assertion from [5].

THEOREM 3.1. Suppose that for some m >0 and

(¢ +x)m+ (¢ +x)m+1

and the following conditions are satisfied.

(1) Functions ¢ and ¢ are defined for x > 0 and are nondecreasing.

(2) limy—o ¢(x) = 0.

(3) For any C > 1, there are constants y and N, 0 < y < m, N >0, such that for any
x>y >N, ¢(x)/¢(y) < C(x/y). Then for A — o0, $(A) ~ ¢(A).

(This means [¢(1)/p(A) — 1] < eif A > Ag(e), A € B, meas((Ag,)\B) = 0.) Let us note
that condition (3) is called as the Keldysh-type condition.
Now we are ready to prove the first Tauberian result.

THEOREM 3.2. Suppose that s> 1, r+m—s>0, f € L'(r), and F (see (2.6)) is a nonde-
creasing function. Moreover, let

T(s) L(s)

I'(r+1) x°

L(r+ D)(Trir f)(x) ~ x — oo, (3.2)

>
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where L is a slowly varying function at co which is defined in some interval [A, o), such
that x'~%=L(x) is a nondecreasing function. Then f has the quasiasymptotic behaviour at
oo related to k" ~SL(k) with the limit Cx"~5, where C # 0.

Proof. Let us put

XLy
$(x) = I(r+m—s+1)’ ’ (3.3)
0, x < A.

Then ¢ has the quasiasymptotic behaviour at oo related to k""" ~*L(k) with the limit
fr+m75+1- (34)

Hence

J°° de(t) :(Hm)r’ P(t)dt (r+m)I(s) L(x)

o (x+pyrtm o x+0)rm T Trem+1) x

, X — o, (3.5)

Now, we show that the conditions of Theorem 3.1 hold for ¢ and F. In fact, we have only
to show that for some y, 0 <y <r+m — 1, and every C > 1, there exists N > 0, such that

q;%fj))<C)Ly, forA>1, y>N. (3.6)

Let us put y = r + m — s+ &, where we choose ¢ >0 such that y >0 and ¢ < s — 1. After
substituting ¢ in (3.6), we obtain L(Ay) < CA°L(y) and this inequality is true if A > 1 and
y >N, where N depends on C.

From the assumption that f € L'(r) and from (3.5), we have

© F(®)
I+ (T )) = (4 D | s
_ “  dF(t) I'(s) _ L(x)
= (r+ D Jo (x+t)yrtm  T(r+1) «x° (3.7)
o (x+p)yrtm’ ’
This implies that
[(r+m+1)(Trim1 F)(x) ~T(r + m+1)(Trimi14)(x), x— oo, (3.8)
and by Theorem 3.1, it follows that F ~ ¢, x — 0.
Thus we obtain that
r+m-—s
Flo)ym —ELO) (3.9)

Ir+m—-s+1)’
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Since r + m — s > 0, it follows that f has the quasiasymptotic behaviour at co related to
krtm=sL(k) with the limit x5,

Since f =t "D™F, it easily follows that f has the quasiasymptotic behaviour at o
related to k" *L(k) with the limit Cx"%, where C is a suitable nonzero constant. This
completes the proof of the theorem. O

4. Tauberian-type results related to the quasiasymptotic behaviour

For the quasiasymptotic behaviour of all original f and for the ordinary asymptotic of the
corresponding function I'(r + 1)(Ty+; f ), we need the following theorem and [5, Lemmas
1, 2, and 3].

THEOREM 4.1. Let apm, n,m € N, be a matrix of complex numbers.
(1) If apm converges uniformly in m € N to a, as n — o and limy,_.« a,, exists, then
lim lim a,,, = lim lim a,,,, = hm Anm- (4.1)

Nn— 00 Mm— 0 m— 00 n— 00
m—»oo

(11) If limy—co Anm exists for every n € N, limy,—.c an,m exists for every n € N, limy, 15— 0
Anm exists, then a, , converges uniformly inn € N as m — co.

LemMa 4.2. Letr € R\(—N), k € N be given and let y € C, then for every n € N,

n+l

> <n;r1)(—l)"(2n+r+k+3)---(2n+r+k—i)(2n+r+k+y+3—i)
i=1

4.2

(r+k+y+it2)+utr+k+y+3)- - (r+k+y+2) (42)

=(=D"(A=y)---(n=p)r+k+y+2)n).
LemMA 4.3. Suppose that f € S, and that f has the quasiasymptotic at oo related to k*L(k),
where v<r. Then there exist k € No, k+v>0, and a continuous function F, suppF C [0, o),

such that f =t""DFF and Fy(x) = [; F(t)dt, x € R, (L k1L (r +k + 2)(Trips2F1) (%)
F1(20))/(x(1+x)"*L(x)) converges uniformly to zero in (0, o).

LEMMA 4.4. LethL andI‘(r+1 (Ty1 f)(x) ~x"L(x), x — 00, v > —1.
Then T'(r + 1)(Tyy1 f),(x) has the quasiasymptotic behaviour at oo related to kL(k).

Proof We have (¢ € S),

w1 T DT ), k), 90) = i (Fr DT, . 9(3 )
- mjolr(r+l)(Tr+1f)(x)
(o) s~ () i)

1 ® X
+kVTL(k)L r(T+1)(Tr+1f)(x)</5<k)dx( |
4.3
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Since the first part on the right-hand side of (4.3) converges to zero as k — oo, we have
to prove that (1/k”L(k)) [ T(r + 1)(Trs1 f) (kx)$(x)dx — [;° x”L(x)¢(x)dx as x — oo.

Let us recall T'(r + 1) (Trs1 f)(x) ~ x"L(x), x — 0.

This implies that for a given ¢ > 0, there exists x > 0, such that

IT(r+1)(Tye1 f)(x) = x"L(x)| <ex"L(x), x>x0> 1. (4.4)

We use the following decomposition:

1 o0
G100 ), T D (T g
X(]/k
L e (T g (4:3)
— l/koo S.
L) | TG+ )T ) (k) gx)dx
xo/

The first member on the right-hand side of (4.5) tends to zero, when k — oo, because

xo/k
1 J |T(r+1)(Tra1 f) (kx)g( |dx_k”£4

L) Jin (46

where M = max{|I'(r + 1)(T,41 f)(x)] : 1 <x < x¢}. Also, one can prove easily that or a
given xp > 1,

1 XU/k
o L |XLX)P) [dx — 0 ask — oo. (4.7)

Now by (4.4), (4.6), (4.7), we have

1 © 1 .
1 | T DT N0~ s | Lipta|
1 xo/k ] o/ )
= kvL L/k ‘F(r+1 ( Hlf) kx)¢(x) ‘ dx+ k”L(k) L |(kx) L(kx)¢(x)dx|
1 ) 4
# 0 e T+ DT )0 — oLk |10 e
(4.8)
Now we completed the proof of the lemma. 0

Now we will assume that L satisfies the inequality L(mx)/L(m) < C(1+x),x >0,m > 0.
Now we are ready to prove the following.

TaeoreM 4.5. If f € 8 and f has the quasiasymptotic behaviour at oo related to k”L(k),
r—1<v<r,reR\(=N), then the double sequence

I(r+k+2) (Tr+k+2F1 )+(xm)
mv+k+1L(m)

s L1 @D ( )>, mmneN, ¢ €s, (4.9)
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converges uniformly in n € N as m — o, where k € N, k+v >0, and F, are defined in
Lemma 4.4.

Proof. Let us put

G = <4n,r,kx T+l)( r+1f) ,¢(x)> (410)

m”L(m)

Since

L(r +k+2)(Trsk2Fr) , (mx)
m“’*k“L(m)

Aum = (—1) L (r+ 1)k+1< s Ll ¢<k“>(x)>, (4.11)

we have to prove that a,,,, converges uniformly in n € N as m — co.
First, we will prove that the conditions of Theorem 4.1(i) are satisfied. Then, from
Theorem 4.1(ii), the assertion of this theorem will follow

_/ f(mx)
Apm —— Am = <m”L(m)’ ¢(X)>, n— oo, me N. (412)

Since

¢V (x)dx

®/ I'(r+k+2)(T Fi)(mx)
_ k+1 n,r.k+1,x r+k+214'1
= = (=D D | o

_ (_l)kﬂ(r_'_ it L:o Lnrgrial (r+k+(27'r)lfc)(ril:ri;))gﬁx) Fy (mx)(mx)

(1+mx)"*L(mx)
mv+k+1L m)

¢(k+l) )dx
(4.13)

from Lemma 4.4 and the fact that

(mx) (1 + mx)"**L(mx) mx (1 + (mx)"*k)

<2C(1+x)(x+x"1), x>0,

<2C(1+x)

m"’*k“L(m) mytk+1
(4.14)
we obtain that a,,,, — a,;, — 0 uniformly inneNasn— oo,
We have T'(r + 1)( ,Hf ~ (L(r —=v)/T(r +1)) x*"2L(x), x — . Since —1 < v —

r, we have by Lemma 4.4 that ['(r+ 1)(Tr41 f )+ has the quasiasymptotic at oo related to
k"~ "L(k) with the limit (I'(r —»)/T'(r +1))x”".
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By Leibniz formula, we have

Dn+1x2n+r+k+3Dn+1r(r+k+2)(Tr+k+2Fl)(x)

n+1 ) (n+1-0)
A (”jl)((x2"+r+k+3)“’r<r+k+2>(Tr+k+zF1)<x>)
n+l
=>(-1) (”Jl“ )(2n+r+k+3) “(2n+r+k+4-1i) (4.15)
i=1

(2n+2—1i)
x ((x2"+f+k+3*") (r<r Tk 2)(TraraaFr) <x))

(2n+2)
+ (x2”+r+k+3)r(1’+k+3)(Tr+k+3Fl)(x)> :

Let y = v — r. Then x> +K*3~IT(r + k + 2)(Ty4x+2F1) (x) has the quasiasymptotic behav-
iour at oo related to k2" *k+yt3-i (k) with the limit T'(—y)x?" K53~/ T(r + 1) (r + 1)1

Lemma 4.2 and the properties of quasiasymptotic behaviour imply that D!
xRS DT (r 4 k + 2)(Ty1k42F1 ) (x) has the quasiasymptotic behaviour at co related
to k" tk+r+1L (k) with the limit

(=D)"y(A=yp)---(n=p)(r+k+y+2)u %xﬁk“ﬂ. (4.16)

Thus, we obtain

lim lim (=)%Y (r + 1)1

n— 00 tM— 00

4n,r,k+l,xr(7‘ +k+ 2) (Tr+k+2F1)+(mx)
< mv+k+1L(m) ’¢(x)>

) (DM T(r+k+2) Tn—y+1)T(r+k+y+n+3) I(-y)  (4.17)
s (n+ )I(n+r+k+2) T(—y)  Tr+k+y+2) T(r+1)

X (xv+k+1 , ¢(k+1)(x)>.

To prove that the last limit exists, we have to use the Stirling formula.
[(s+1) ~ /2messt*V/2, s — co. Thus for the double sequence a,,,;, Theorem 4.1(i)
holds and Theorem 4.1(ii) implies the assertion. O

TaEOREM 4.6. Let f € L'(r) and let I'(r + 1)(Trs1 f)+(x) have the quasiasymptotic at co
related to k*L(k), —1 < a < 0. If for any ¢ € s, the double sequence (4.9) converges uniformly
inn €N asm — co, then f has the quasiasymptotic at oo related to k**"L(k).

Proof. 1f ay,, is the double sequence defined in the proof of Theorem 4.5, we have by
Theorem 4.1(i) the assertion. O
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