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Let (u,) be a sequence of real numbers, L an additive limitable method with some prop-
erty, and U and V" different spaces of sequences related to each other. We prove that if the
classical control modulo of the oscillatory behavior of (u,) in AU is a Tauberian condition
for L, then the general control modulo of the oscillatory behavior of integer order m of
(1) in W or V is also a Tauberian condition for L.
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1. Introduction

In this paper, u,, = O(1) and u,, = 0(1) denote O(1) as n — o and o(1) as n — oo, respec-
tively. Let N', &, &, and JIl denote the space of sequences converging to 0, bounded, slowly
oscillating, and moderately oscillating, respectively.

The classical control modulo of the oscillatory behavior of (u,) is denoted by w (u) =
nAu, and the general control modulo of the oscillatory behavior of order m of (u,) is
defined by 0™ () = 0™V (w) — ot (0D (1)), where

Uy —Up-1, N1, 1 n
Aun—{ a —12 (1.1)

Uop, n= 03
Tauber [10] proved that if (u,) is Abel limitable and
(0 () €N, (1.2)

then (u,) is convergent. The condition (1.2) on the sequence (u,) is called a Taube-
rian condition for Abel limitable method and the resulting theorem is called a Tauberian
theorem.
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2 Tauberian conditions for a general limitable method

Tauber [10] further proved that the condition
(0" (@@ (w))) € N (1.3)

is also a Tauberian condition. It was shown by Littlewood [6] that the condition (1.2)
could be replaced by

(0P (u)) € B. (1.4)

Hardy and Littlewood [5] improved Littlewood’s theorem replacing (1.4) by onesided
boundedness of (w,ﬁo)(u)).

Stanojevi¢ [9] reformulated the definition of slow oscillation given by Schmidt [8] in a
more suitable form and then proved that the conditions (1.2) and (1.3) could be replaced

by
(0P (w) €, (1.5)
(o0 (w)) € ¥, (1.6)
respectively.

A generalization of slow oscillation, moderate oscillation, was introduced by Stano-
jevi¢ and it was proved by Dik [4] that (1.5) could be replaced by

(@ (w)) € M, (1.7)
and (1.6) could not be replaced by
(03" (0@ (w))) € A (1.8)
Recently, Canak and Totur [3] have shown that for any nonnegative integer m > 1,
(@i (w)) € (1.9)

is a Tauberian condition for Abel limitable method.

Meyer-Konig and Tietz [7] proved that if (1.2) is a Tauberian conditions for an additive
and regular limitability method, then (1.3) is a Tauberian condition for L. Canak et al. [1]
extended and generalized Meyer-Konig and Tietz’s [7] result and obtained the following
theorems for an additive and (C, 1) regular method L.

THEOREM 1.1. If(wﬁ,o)(u)) € ¥ is a Tauberian condition for an additive and (C,1) regular
limitable method L, then (wﬁ,l)(u)) € ¥ is a Tauberian condition for L.

THEOREM 1.2. If(w,(qo)(u)) € B is a Tauberian condition for an additive and (C,1) regular
limitable method L, then (wi,l)(u)) € B is a Tauberian condition for L.

Let U and V" be distinct spaces of sequences related to each other. In this paper, we
prove that if the classical control modulo of the oscillatory behavior of (u,) in U is a
Tauberian condition for an additive and (C, 1) limitable method L, then the general con-
trol modulo of the oscillatory behavior of integer order m of (u,) in U or V' is also a
Tauberian condition for L.



I. Canak and U. Totur 3

2. Notations and definitions

Throughout this paper, let u = (u,) be a sequence of real numbers. For each integer m > 0
. . (m)
and for all nonnegative integers n denote 0, (1) by

1 & Vk"’ D (Au)
— (u) = up+ m=>1,
o™ (u) = n+1] Z ) Z (2.1)
Up, m= 0:
where
oV (VImU(Aw)), m=1,
"(Au) =1 1 ikAu _— (2.2)
n+l5 ko o
The identity
uy — oV (u) = VIO (Au) (2.3)

is well known and will be extensively used. We define inductively for each integer m > 1
and for all nonnegative integers #,

(nA)muy, = nA((nA)m-1u,), where (nA)ou, = u,. (2.4)
It is proved in [2] that for each integer m > 1,
" (u) = (nA)m V"V (Au). (2.5)
Definition 2.1. A sequence u = (u,) is Abel limitable to s if the limit lim,_; (1 —
X) Yoo unX" =s.
Definition 2.2. A sequence u = (u,,) is L limitable to s if L — lim, u, = s.

A limitation method L is called additive if L —lim,u, = s and L — lim, v, = t imply
that L — lim, (4, +v,) = s+ t. A limitation method L is called regular if the L — limit of
every convergent sequence is equal to its limit. L is called (C, 1) regular if L — lim, u, = s
implies L — lim,, o» Y (u) = s. It is clear that every regular limitable method is (C, 1) regular.

Definition 2.3. A sequence u = (u,) is one-sidedly bounded if for some C > 0 and for
each nonnegative integer n, u, = —C.

Definition 2.4. A sequence u = (u,) is slowly oscillating [9] if

k

2. Auj

j=n+l

limlim max =0, (2.6)

A-1t 1 p+l<k<[An]

where [An] denotes the integer part of An.
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A sequence u = (u,) € ¥ if and only if ( f,o)(Au)) € ¥ and (V,SO)(Au)) € B (see [4]).

The next definition is a generalization of slow oscillation.

Definition 2.5. A sequence u = (u,) is moderately oscillating [9] if for A > 1,

k
> Au

j=n+l

lim max < 00,

n p+l<k<[An]

A sequence (u,) € AL if and only if (Vi" (Au)) € B (see [4]).

3. Results and proofs

(2.7)

THEOREM 3.1. If(wﬁlo)(u)) € JM is a Tauberian condition for L, then for any integer m = 1,

(wilm)(u)) € JM is also a Tauberian condition for L.

Proof. Assume that (w,(f))(u)) € JM is a Tauberian condition for L. Let L — lim, u, = s.
Since L is (C, 1) regular, it follows by (2.3) that L — lim, Vy(,o)(Au) = 0. It is obvious that

L —lim, u, = s implies L — lim,,(nA),,_ V™Y (Au) = 0. Since
(0™ (W) = (nA((nA) 1 V"V (Au))) € M,

by assumption, we have

(A) -1 V™D (Au) = o(1).
By the same reasoning, we deduce that

(1)1 V"~V (Au) = nA((nA) 2 V"D (Aw)) = o(1)

and L — lim,(nA),,—» V,(mel) (Au) = 0. Again by assumption, we have

(nA) 2 V,Y”‘”(Au) =o(1).
From the identity

(1)1 V™D (Au) = (n4) 2 V"2 (Au) = (nD) -2 V"D (Au),

(3.2),and (3.4), we have

(1A 2 VI (Au) = o(1).
Continuing in this vein, we have

nAVr(ll)(Au) =o0(1).

Since L — lim, V3" (Au) = 0, it follows by (3.7) that

Vr(ll)(Au) =o(1).

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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From (3.7) and (3.8), we have Vr(,o)(Au) =o(1). L —lim, o,gl)(u) = s and V,(,O)(Au) =
nAo,(,I)(u) = o(1) imply that lim, a,gl)(u) = s. Hence, by (2.3), (u,) converges to s. O

THEOREM 3.2. If(w,(f))(u)) € B is a Tauberian condition for L, then for any integer m = 1,
(w;m)(u)) € B is also a Tauberian condition for L.

Proof. Assume that w? ( )=0(1) is a Tauberian condition for L. Let L — lim, u, = s.
Since L — lim, (nA),,_1 VA" (Au) = 0 and @™ (1) = nA((nA) 1 VA"V (Au)) = O(1),
(nA) -1V, yim=b (Au) = 0(1) by assumption. The rest of the proof is as in the proof of
Theorem 3.1. U

TaeorEM 3.3. If for some C = 0, w (1) = —C is a Tauberian condition for L, then for any
integer m = 1, " (1) = —C is also a Tauberian condition for L.

Proof Assume that wﬁo)(u) > —C for some C > 0 is a Tauberian condition for L. Let

—lim,, 4, = s. Since L —hm,,(nA)m VY (AL = 0.and 0™ (u) = nA((1A), VAT
(Au)) > —C, (nA)m-1 yim 1)(Au) = 0(1) by assumption. The rest of the proof is as in the
proof of Theorem 3.1. O

We now prove that if (w&o)(u)) € Jl (or € 9B) is a Tauberian condition for L, then for
any integer m > 1, (w;(qm)(u)) € B (or € J) is a Tauberian condition for L, respectively.

THEOREM 3.4. If ( 0 () € M is a Tauberian condition for L, then for any integer m = 1,
(wn (u)) € B is also a Tauberian condition for L.

Proof. It is sufﬁcient to note that w" )( ) = (nA),,Va {m= 1)(Au) = V,(,O)(Aw(m‘l)(u))
= O(1) implies (wn (u)) € J. Proof now follows from Theorem 3.1. O

THEOREM 3.5. If(wn (u)) € B is a Tauberian condition for L, then for any integer m = 1,
(w,(qm)(u)) € JM is also a Tauberian condition for L.

Proof. It is sufficient to note that (w M) e M implies VA0 (1) = 0" (1) =
O(1). Proof now follows from Theorem 3.4. O

Remark 3.6. Because of the inclusion N' C ¥ C ., the condition “belonging to Al” can
be replaced by “belonging to ¥” or “belonging to N'.”

In Theorems 3.1, 3.2, and 3.3, taking m = 1 and replacing Jl by ¥, we have [1, Theo-
rems 4.1, 4.2, and 4.4] by Canak et al.
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