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We present a backward biorthogonalization technique for giving an orthogonal projec-
tion of a biorthogonal expansion onto a smaller subspace, reducing the dimension of
the initial space by dropping d basis functions. We also determine which basis functions
should be dropped to minimize the L? distance between a given function and its projec-
tion. This generalizes some recent results of Rebollo-Neira.
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In [3], Rebollo-Neira gives a backward biorthogonalization technique for projecting a
biorthogonal expansion onto a subspace, reducing the dimension N of the initial space
by dropping d = 1 basis function. In this note, we generalize this method to reduce the
space by an arbitrary number d of basis functions, d < N. Proposition 3.4 in [3] indi-
cates which single basis function is to be removed in order to minimize the L? distance
between a function f and its orthogonal projection into the reduced space. We will also
generalize this result in Proposition 7. If more than one basis function is to be dropped,
Rebollo-Neira recommends iterating the d = 1 process. We show via Example 8 that in
some circumstances iterating the d = 1 process k times leads to results inferior to using
Proposition 7 and dropping k = d basis functions simultaneously.

We begin with a Hilbert space H and an N-dimensional subspace V. Assume biorthog-
onal bases of V' given by {xlf}fil and {xi}f\il such that (x{,xj) = d;;. Now drop d basis
elements from each set, without loss of generality the first d elements for notational pur-
poses, and form the reduced subspaces V = span{x;}Y ;,, and V' = span{x;}L,. We wish
to modify the x; so that the projection from V to V is orthogonal. We next recursively
construct the sequence {v/}%, c V' by
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We observe that the set {v/}%, forms an orthogonal basis of V' by construction. We then
construct the sequence {X/}Y ., by

Ve (2)

and set U = span{X;}Y ,.,. We will see that this formula generalizes the dual modification
of [3, Theorem 3.1] for d = 1. Note that each % is created to be orthogonal to V' by
subtracting from x; its projection onto V.

ProposITION 1. The spaces U and V' are orthogonal complements in V, V = Vel

Proof. Choose i, j such that j < d < i and use the definition of X; and the orthogonality
of {v;},

d (xva) ro
(xi,v)) = (xi,v)) Z (Veovj) = (xi,vj) = (xj,vj) = 0. (3)
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Thus U and V"’ are orthogonal subspaces of V, and their dimensions add to N. O
We next verify that U and V are actually the same space.
LeMMA 2. The spaces U and V' are orthogonal complements in V, and U = V.

Proof. By (1), we can write v; = Zz,zlanx; for some constants a,, so the original
biorthogonality condition (x;,x;) = &;; says that, for j <1, (v},xi) = Zf,:l an{x;,,x;) = 0.
Thus V and V' are orthoggnal subspaces of V, and their dimensions add to N. By the
previous proposition, U = V. g

Next we give the desired biorthogonal bases of the reduced subspace V.

PrOPOSITION 3. The reduced spaces U and V are identical and have biorthogonal bases
{x }Nd+1 and {xJ}] =d+1*

Proof. Using Lemma 2 and (2), we have for i,j >d = ¢,

d d

~ (x,v, (x}, v
(x7,xj) = (x},xj) Z & €>( Vo) Z iVe) 0=20;. (4)
5:1 VpsVp) = (Ve ve) .

In order to give an explicit method for determining which basis functions to drop to
minimize the residual, we give a formula for the projection operator.

PROPOSITION 4. The orthogonal projection of V onto V is P(-) = SN 4 %/(+)x.

Proof. By Proposition 3, P(w) = w for all w € V and Range(P) = V. From Propositions
1 and 3, V' is the null space of P, and Range(P) and V' = Null(P) are orthogonal, so P is
an orthogonal projection. O
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The following generalizes [3, Corollary 3.2] to give the coefficients of P( f) for the case
d=1
THEOREM 5. If f = Zﬁl cixi, where ¢; = (xj, f), then

N

P(f)= > cixi, wherec,=ci— Z (x,,ve) Ve f). (5)

i=d+1 Vf’vf

Proof. We calculate, using (2),

N N
P(f)= D> X(f)x 2( Z“’m bf)) X (6)

i=d+1 i=d+1 <v€’

soP(f) = Z£d+1 c;x;, where

d

-3 L ). @)
o1 \Vesve 0

The following generalizes [3, Corollary 3.3] for the case d = 1.
COROLLARY 6. If f = Zﬁl cixi, where ¢; = (xj, f), then

i

1£1% = [[PCHIP +Z (8)

V, >xk

Proof. Since V = V @ V', we can write f = P(f) @ projy. (f), where projy. (f) =
S Wi/ ViDL £ i/lIviD) is the projection of f onto ¥’ using the orthogonal basis {v;}.
Thus by Parseval and then Lemma 2, we have

i<|| ik f>|| il

_IPHIP +Z l

2

LF 1% = [[P(F)I* + = lP(HII ZH H2|< LA

2 9)

Ck <Vi)-xk>

O

Next we generalize [3, Proposition 3.4] for the case d > 1.

PROPOSITION 7. By reindexing the original x; and x, to examine all possible (g) combina-
tions of d components dropped from the original basis of V and to minimize the L* distance
between f and P(f), choose the set of d basis elements x; that minimizes

2

> ek (Vi xk) (10)

We now give an example demonstrating that iterating the process k times with d = 1
may give a projection considerably farther from the original f than reducing by k = d
basis functions simultaneously.
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(b)

Figure 1. Drop two basis functions: iteratively (a), and simultaneously (b), for Example 8.

Example 8. For simplicity, we consider a function f(t) in the four-dimensional subspace
V with basis functions generated from cardinal spline wavelets. Let B3(x) be the stan-
dard quadratic cardinal spline supported on [—1,2] and let w(¢) be the standard associ-
ated wavelet for the Riesz basis of L?>(R) generated by B3(x) as mentioned in [1] or [2].
Let V = span{x,x2,X3,X4}, where x;(t) = B3(t +2)/|IBs|l, x2(t) = Bs(t — 2)/1IBsl, x3(t) =
(B3(t —2) + Bs(t +2) + 0.2B3(t))/|| B3|, x4 = w(t). The function f can be expressed as
f(t) = 0.7x;(t) + 0.5x2(t) + 0.4x3(t) + x4(t). We wish to drop d = 2 basis elements and
obtain the best two-dimensional approximation to f. If we iteratively drop one basis ele-
ment at a time using Proposition 7 with d = 1, then we remove x3 and then x;, leaving pro-
jection P(f) = 0.9x; + x4 as shown in Figure 1(a) with residual error || f — P(f)|* = 0.82.
However, if we simultaneously drop two elements with d = 2, then we instead drop x;
and x, leaving projection P(f) = 1.1x3 + x4 as shown in Figure 1(b) with residual error
Il f = P(f)II*> = 0.03. As can be seen from these errors and the plots in Figure 1, there is a
considerable advantage for ¢ > 1.5 in removing two basis elements together, rather than
dropping them iteratively.
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When the value of (I;] ) is large, the computational expense of choosing the optimal
set of basis elements to be dropped can be quite large. Investigation of this issue merits
further study.
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